
SLAC -PUB - 3574 
February 1985 

(1) 

PROPERTIES OF THE PRIMARY IONIZATION 
OR PHOTO-ELECTRON DISTRIBUTION 

FOR AN ENERGY LOSS DETECTOR* 

DIDIER BESSET 

Princeton University 

and 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94,905 

ABSTRACT 

The distribution of the number of primary ion pairs is discussed for a gaseous 

detector measuring ionization energy loss. This distribution also applies to the 

number of photo-electrons emitted at the photo-cathode of a photo-multiplier. 

After examining the general properties of the distribution, explicit formulas are 

given for the Landau and Vavilov models of the energy loss. The numerical 

evaluation of the distribution is fast enough to allow the fitting of experimental 

data to yield the distribution parameters. The main parameter - called the 

collection factor - is the number of primary ions (or photoelectrons) per unit 

of deposited energy. It can be used for calibration purposes as well as to monitor 

the detector performance. 
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Particle identification becomes increasingly difficult as the energy of the par- 

ticle goes up. Momentum determination is still feasible because of the progress 

made in position resolution in drift chambers; however measurements of the par- 

ticle velocity cannot be performed using time of flight techniques. There are two 

methods currently applied in high energy physics: Cerenkov ring imaging devices 

and energy loss measurement (2) in a thin detector. For particles heavier than 

the electron, the average value of the energy deposited in a thin medium is asymp- 

totically proportional to ln7. It is therefore suited to the measurement of the 

velocity of high energy particles. However the g values are subjected to large 

fluctuations and the estimation of the average requires several measurements. 

Therefore a typical x dE detector consists of several cells. 

In addition to the fluctuation of the energy deposited in the cells, one must 

take into account the variations associated to the detection of the deposited 

energy. If the medium is a gas (in a drift chamber for example), the ioniza- 

tion energy deposited is directly measured by the number of ion or electron-hole 

pairs induced in the medium. If the medium consists of a thin sheet of scintil- 

lator, the deposited energy may be collected as light onto the photo-cathode of 

a photo-multiplier tube. The number of primary ions (PI) or photo-electrons 

(PE) generated is rather small (of the order of 100). The fluctuation of this 

number can be modeled by a Poisson distribution for most practical purposes. 

The average number of primary ions or that of primary electrons is often used as 

a figure of merit of a detector; we will define instead an other parameter - the 

collection factor - which is useful to describe and monitor the detector’s perfor- 

mance. For both types of detectors, the fluctuations caused by the subsequent 

amplification are negligible compared to these effects, due to the very large gain 

involved, unless the average number of photo-electrons is very small (of the order 

of 5 or less). Therefore the distribution of the number of primary ions or photo- 

electrons, which we will call PI/PE for short, is a convolution of the 2 with a 

Poisson distribution. This paper points out the remarkable fact that, whereas 

the g distribution is quite difficult to compute, the PI/PE is much easier to 
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calculate and a lot of its properties can be inferred without even knowing the 

exact shape of the g distribution. 

After a brief review of the dE a problem in the first section, the PI/PE distri- 

bution is introduced in the second section and its properties are discussed in the 

third section. The two next sections carry out some of the general formulas for 

the Landau”’ and Vavilov”’ approximation of the g distribution. The results 

can be applied to the calibration and the monitoring of a g detector. 

1. Theory of ionization energy loss 

Ionization energy loss occurs through collisions of an incident particle with 

the atomic electrons of the medium used for detection. Let f (E, z, A) be the 

probability for a particle of energy E going through a medium of thickness z to 

lose a energy between A and A + dA. This probability function must then obey 

the kinetic equation!” 

(14 

b 
af (6 ~9 A) 

ax = / 
w(E+c,c) f (E+c,x,A-E)dc 

0 
Gno+ 

-f (JO,@ / w(E,+c, 
0 

which is a statement about conservation of particle flux and energy. In this 

equation, w (E, c) is the probability per unit length for a particle of energy E to 

lose an amount c of energy, emoz is the maximum kinetic energy transferred during 

a single collision and b is equal to min (A, cmrrz). Usually, the incident particle’s 

mass is large compared to that of the electron and the maximum energy transfer 

may be written as: 

P2 
hnaz =2m,- 

1 - p2 
= 2m, (r2 - 1) . (1.2) 

Since we are considering thin detectors, the energy lost by incident particles is 

negligible compared to their kinetic energy; thus the explicit energy dependence 
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in f and w can be forgotten. Under these conditions, equation (1.1) can be 

solved by introducing the Laplace transform of the probability density function 

f defined by: 
00 

F(x,t) = 
/ 

f(x,A)emtAdA. (l-3) 
0 

Combined with boundary conditions, the Laplace transform of the energy loss 

distribution satisfying equation (1.1) can be written as: 

p(t) = lnF(x,t) = -x 
/ 

w (c) (1 - est”) dc . 
0 

(1.4 

Determining w (e) allows one to calculate the distribution f (x, A). Of course, 

carrying out the inverse Laplace transform is not always possible and a simple 

analytical expression for the distribution cannot be obtained in most cases. 

2. Generation of the PI/PE distribution 

An energy loss detector measures A by detecting the amount of ionization 

deposited in its active region. We define fi as the average number of primary ions 

or photoelectrons. Let q be the proportionality constant between A and A the 

amount of energy deposited in the cell. Thus by definition: 

n=rjA. (2.1) 

We shall refer to q as the collection factor of the cell. For a gaseous or a thin 

silicon detector, this is simply the average number of ions or electron-hole pairs 

induced in the medium per unit energy. For a detector with photo-multiplier 

read-out, this factor takes into account how much light is collected by the light 

guide and the quantum efficiency of the photo-cathode. Combining the energy 
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loss and the Poisson distributions, the probability P,, of detecting n PI/PE will 

be given by: 

Pn = - ewqA j (x, A) dA . 
0 

(2.2) 

Because of the Poisson term, this probability can simply be expressed as a high 

order derivative of the Laplace transform of the energy loss distribution: 

p 
n= 

(-M PF (x9) 
n! atn t=tl - (2.3) 

Thus, the inverse Laplace transformation does not need to be performed to cal- 

culate the PI/PE distribution. As an example, this equation can be used to 

calculate the inefficiency of the detector: 

PO = F(v?) , (2.4 

when the function F (x, t) is known. We will apply this technique to the Lan- 

dau and Vavilov distributions. As we shall see, the computation of the PI/PE 

distribution is overwhelmingly simplified. Before doing so, we will deduce some 

general properties of the distribution using only the fact that f is a probability 

density function (i.e. it is continuous, its integral is 1, etc.. .). 

3. Distribution’s properties and numerical evaluation 

A distribution obtained by the convolution of a probability function describ- 

ing the occurrence of a primary event with a Poisson distribution is called a 

contagious distribution because it was first introduced by Neyman’S1 to describe 

the propagation of the larvae of some vegetable pest. However most contagious 

distributions combine two discrete elementary processes~“” whereas here the en- 

ergy loss, which is described by a continuous distribution, is convoluted with a 

discrete one, the collection of the primary ions or photo-electrons. 
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Asymptotic estimation. 

Using (2.2)) it is possible to obtain an upper limit for the probability of having 

a signal exceeding the dynamic range of the apparatus. This is a parameter 

particularly important in choosing the amplification gain of the electronics and 

useful to retrieve information about particles whose energy loss falls above the 

normal range of detection. By definition, we have: 

Prob (n 2 N) = 2 /mB @$eBnA , 
n=N o . (3.1) 

where we have used the short hand notation df = f (x, A) dA. Permuting the 

sum with the integral and using the formula to compute 

series yields: 
00 VA 

Prob (n 2 N) = 
// 

df 
SN-l e-s 

(N - l)! ds 
0 0 

the remainder of a Taylor 

A rlA sN-l 00 
r 

(N - l)! ds+ df 
I 0 0 A 

(34 

where A is an arbitrary number which will be chosen so as to minimize the above 

estimation. Now we know that: 

where h (A) is any function monotonically increasing with A. In particular, using 

h (A) = A gives: 

Prob(n 2 N) I df klNN (A) N, 
. + A , (3.4 

where (A) is the average energy loss. Using as upper limit to the first integral 

6 



its end point value and minimizing over A, we get for large N: 

Prob(n>N)sp. P-5) 

Although this does not constitute a very tight upper bound, this formula allows 

to quickly obtain some rough design parameters. A somewhat better estimate 

will be obtained later when we will discuss energy loss according to the Landau 

model. 

Generating function. 

Equation (2.3) h s ows that G (y) = F [x, q (1 - y)] is the generating function 

of the PI/PE distribution, i.e.: 

00 

G(Y) = Cf’nY” - 
n=O 

Using the property of the generating function, we must have: 

F(x,O) = 1, 

which is clearly satisfied by equation (1.4) for any function w, and: 

P = (4 = --r) aF (x, t) .& 
t=o ’ 

s2 = (n2) - (n)2 = q2 a2fJ$9 t, 1 - p (p - 1) . 
t=o 

(3.6) 

P-7) 

(3.8) 

Higher order moments of the distribution can also be obtained in a similar way. 

However the cumulants discussed in the next section provide a better method to 

compute the moments of a distribution. 
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Cumulant neneratinn function. 

The cumulant generating function is defined as: 

\k (y) = 1nG (eY) , 

and the cumulants /cn are defined by the series: 

g(Y)= gn,S. 
m=O . 

(3-g) 

(3.10) 

In case the function cp (t), defined at equation (1.4), can be developed in a power 

series around the origin, we can obtain all the cumulants of the distribution. 

Before showing this, we shall express all energies in units of cmaz in order to 

simplify the equations. Introducing the variable z = -emazt, and the function 

(3.11) 

equation (2.3) becomes: 

p _ (nmaz)n dneutz) 
n- n! dzn 9 (3.12) 

z=-nmc. 

where nmaz = q cmaz. Then the cumulant generating function can be written as: 

Q (2) = 1nU [YLmaz (e’ - l)] , (3.13) 

If the function u (z) has a power series defined around the origin* : 

(3.14) 

it is very easy to show”’ that the cumulants /cm of the distribution are given by: 

Km = 2 {T} ak bhJk , 
k=l 

(3.15) 

where the {y} are the Stirling numbers of the second kind using the notation 

* From equation (3.7): u(0) = 0. 



of D. Knuth!” These numbers are discussed in the appendix. In particular, we 

have: 

P = n1 = al nmaz , 

S2 = ~2 = (al + a2nma2 nmaz - ) 
(3.16) 

Since the detector read-out is a value an = gn + p, where g is an overall gain 

and p the pedestal, the cumulants of a distribution are very convenient for the 

quantities: 

Km 
7m =X, form=3,4 ,... , 

lc2”‘ 
(3.17) 

are the same for both random variables on and n. 

Numerical evaluation. 

Finally let us rewrite equation (3.6) using a complex variable varying on the 

unit circle: 
00 

c 
pnein’ = F [x,0 (l-e’*)] . (3.18) 

n=O 

From the estimation of equation (3.5), we know the above sum may be approxi- 

mated by a finite number of terms, say M, and let: 

rp _ 2&k -- 
M’ 

(3.19) 

then we have: 
M-l 

c 
pne21i% N F x,v 1 - e2*iIb 

[ ( >I 
. (3.20) 

n=O 

This equation shows that the PI/PE probabilities are the discrete Fourier trans- 

form of the series {F [x,~ (1 - e2.ih)] , k = 0, M - l}. The numerical evalu- 

ation of a discrete Fourier transformation is very fast so that the computation 

overhead will be minimal. In addition, since the transformation maps a set of 

complex numbers into a set of reals, looking at the magnitude of the imaginary 

parts of the result provides a fair evaluation of the numerical error in the deter- 

mination of the Pn. 
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This method is applicable to the computation of any discrete distribution. If 

the expression of the generating function is simpler than that of the distribution, 

it is the fastest way to evaluate the probabilities. The application of this method 

to the number of photo-electrons generated on the photo-cathode of a Cerenkov 

detector is discussed in the appendix. 

4. Application to the Landau case 

In a classical paperlll Landau solves equation (1.4) by using the following 

collision probability: 

where 

t= 
2dq2q,4px c z Dx q2 

mJ2 CA = m, p” (4.2) 

In the definition of 6, U is the Avogadro number, me the mass of the electron and 

qe its charge, /3 is the velocity of the incident particle, q its charge, p the medium 

density and 2 and A the atomic and mass numbers of the elements which the 

medium is made of. In order to simplify the result, Landau let the upper limit of 

the integral of equation (1.4) go to infinity, assuming highly relativistic particles. 

His final solution is: 

Cp (t) = -(t 
( 

%az 1 + In 12 - p2 - C - In Emazt 
> 

, 

where C = .577216.. . is the Euler constant. A distribution generated with 

the above equations is shown in figure 1 together with the result of a simulation 

program. Using the fast Fourier transform, the computation of 1024 points of 

the distribution on a VAX 780 with floating point accelerator is performed in 600 

milliseconds. In contra+., a program computing the inverse Laplace transform 

of the above equation and performing the convolution of equation (2.2) required 

nearly 3 hours of cpu time to obtain the same result. 
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Landau also gave the formula for the asymptotic expansion of the g prob- 

ability density function: 

f(x,A) - l (w (w + 1) ’ (4.4 

for large A, where w (A) is defined by: 

A t w+lnw=--h-r-. 
t 8 

He also shows that: 
00 

df = mm!- 
w (A) 

A 

(4.6) 

Using this result back in equation (3.2) and using our previous estimation for the 

first integral, the smallest bound is obtained by minimizing respective to w (A) 

and we get: 

Prob (n 2 N) 5 ’ 
v&W-1) ’ (4.7) 

which is a better bound than that of equation (3.5) for large values of the collec- 

tion factor. 

However, the function cp (t) in equation (4.3) does not have a power series 

expansion around the origin. Prom equations (3.8), one can see that, in the 

Landau model, the PI/PE distribution does not have a finite mean nor a finite 

variance. This comes mainly from the fact that extending the integral of equation 

(1.4) to infinity allows a infinite energy transfer to the electrons of the medium 

and therefore introduces (non-physical) infinite contributions. When convoluted 

with the Poisson distribution, the weight of these overwhelms the average com- 

putation. Therefore the average number of PI/PE in the Landau case is not a 

meaningful quantity since it depends logarithmically upon the cut-off value. It 

is much preferable to use the collection factor q. 
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5. Application to the Vavilov case 

Revising the work of Landau in order to obtain a theory which would also 

be valid for non-relativistic particles, Vavilov “’ uses the following collision prob- 

ability: 

(5.1) 
In order to subtract the non-essential singularity, equation (1.4) is rewritten as: 

cp (t) = -At-x 
/ 

w (e) (1 - e+ - tc) dtz (54 
0 

where 00 
/ 

2 
A=x l+In+-p2 

0 
(5.3) 

is the average collision energy loss as has been used by Vavilov. A detailed 

discussion of this quantity is given by Fano’81 who describes many correction 

terms to this expression. 

Integrating by parts, one can rewrite the solution in the form: 

where the integral is a regular function: 

8 
E(s) = / 

O” (-S)n 1-ye-Ydy= -c- 
nn! 

0 n=l 
(5.5) 

which converges on the entire complex plane and diverges at infinity. Since one 

can show: 

E (5) - Ins + C , (5.6) 

we see that, for large values of c mazt, the Vavilov and Landau solutions are 
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equivalent. A distribution generated with the above equations is shown in figure 

2 together with the result of a simulation program. Because the evaluation of the 

generating function requires the computation of an integral in the complex plane, 

the calculation of 1024 points on a VAX takes 3.2 seconds which is significantly 

more than in the Landau case. Using the variable z = -ema& and introducing 

the Vavilov parameter IE = &, the function u(z) defined in equation (3.11) 

becomes: 

2 u(z) = K 
[( 

l+ln+-P2 > 
--I 

z+l-ee+ (z-p”) lSYe-Ydy . 1 1 (5-V 
0 

Using the power series expansion for the integral and the exponential yields: 

u(z)=n 2 
1 ( ln? -qz+q-&-; $ ) 1 . (5.8) 

=Ic 2 1 ( hl- E~z-B’)z+~(~+;)-$] 
n=2 . 

Using this expression in equations (3.16) gives: 

P = 2c (In y - p2) q, 

s2 = 26 
( 

(5-g) 
In y-p2)?j+(fmaz 1+$ $. 

( ) 

The first equation is simply our definition of the collection factor. From the 

expression of the average energy loss, the logarithmic divergence of the average 

number of PI/PE in the Landau case is obvious. A more accurate formula for the 

average energy loss can be found in reference 8 or in the Particle Data Book!“’ 

Combining the previous equations we find that the following statistic: 

s2 - P = (n2) - (n) ((n) + 1) = Dq2 (7’ + 1) v2 (5.10) 

allows to compute the collection factor using particles of known type and mo 

mentum. Let us recall that q is the charge of the incident particle and that D, 

13 



defined in equation (4.2), characterizes the properties of the medium. In practice, 

however, this equation cannot be used because the detector will not register large 

amount of energy loss. The cause may be due to the limitation of the electronics 

(e.g. saturation). Th e un f d amental problem, however, is that a single collision 

which causes the particle to lose a lot of energy (i.e. close to cmaz) gives rise to 

electrons energetic enough to emerge as delta rays out of the detector cell. The 

loss of large signals will strongly bias the determination of ~1 and s2 and the above 

equation will not be correct for a truncated distribution. 

6. Truncated distribution 

The problem of signal cut-off is a difficult one. When delta rays are produced, 

the energy loss will not be deposited into a single detector cell. An accurate 

treatment of this phenomenon requires a theory of truncated distribution. Un- 

fortunately, such a theory does not yet exist and only a few simple distributions 

can fully be treated analytically[s1!10-121 

One can however make some reasonable assumption about the physical pro- 

cess leading to a delta ray leaving the detector cell. The energy lost by the 

particle in a single collision will not be deposited in the cell if it is larger than 

the minimum energy, ceut, which is needed for a delta ray to emerge from the 

cell. The treatment here can no longer be exact because the delta ray will give 

back part of its energy in the cell through regular $. In addition the presence 

of delta rays emerging from a cell will perturb the measurement of the next cell. 

In drift chambers the emerging delta ray can be separated after some distance 

and the net effect is a loss of information in a few cells which can be identified 

geometrically. Therefore ccut is a quantity which must be determined empirically 

because it strongly depends on the detector type and configuration, as well as on 

the property of the associated apparatus if the latter is needed to identify delta 

rays. 



In case ceut can be defined in a reasonable way, it will replace cmcrz in equation 

(1.4) since collisions yielding electrons with energies larger than c,,t no longer 

deposit energy in the detector cell. In the definition of A and w (c), cmoz is a 

normalization factor and it will also be replaced by ccut since we now deal with 

conditional probabilities. Thus, we can rewrite our results using ccut instead of 

cmczz. However, the number of PI/PE is no longer proportional to the energy lost 

by the particle crossing a detector cell, but to the amount of energy deposited in 

the cell, these two quantities being different. One must be wary that, whereas 

D is a parameter of the medium and Q is a property of the detector cell, ccut is 

a function of the cell and the whole detector since it depends on how well delta 

rays are separated. In particular, it may well be dependent on the reconstruction 

algorithm. With this caveat equation (5.10) becomes: 

62 - 
p 

--- - Dxq2 y2 + 1 
zrn, 72 _ 1 

bd? 2 

Dxq2 
N- -ecutrj2 for 2mc 7 B 1. 

(64 

Thus, for sufficiently energetic particles, the above statistic is independent of the 

particle velocity. 

7. Calibration and monitoring procedure 

Because of the simplicity of equation (4.3), the numerical evaluation of the 

PI/PE distribution in the Landau case is fast. The Vavilov case is not as favor- 

able. Equation (5.4) still contains an integral and the function given in equation 

(5.7) converges poorly, especially when, for a typical detector, z can be as large as 

700. Some distribution shapes are plotted in figures 3a-c. However, for highly 

relativistic particles, the Landau and Vavilov PI/PE distributions are practically 

indistinguishable for n -< 1000 as can be seen from figure 3c. It is thus possible 

to fit a g p s ectrum of known particles using the Landau formula in order to 

determine independently the collection factor q and the cut-off parameter ccut. 
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Once these parameters are known, the stability of the product ceutv2 can be 

used to monitor the detector performance by selecting particles of sufficiently 

high momentum to compute the statistic of equation (6.1). These particles could 

be selected by determining the track curvature. The path length through the 

cell, x, can then be calculated and combined with the 2 readout. One could 

also use this statistic to flag particles having a charge different from one if they 

have a sufficiently high momentum. 

Programs to compute and fit the PI/PE distribution can be obtained from 

the author. 

8. Conclusions 

This paper shows that, when taken into account, the fluctuations caused 

by the Poisson statistic in detecting the primary ionization of an energy loss 

signal simplify the probabilistic treatment of the phenomenon. We have given 

analytical expressions for the generating functions of the primary ionization or 

the photo-electron distribution, for the Landau and Vavilov theory of energy loss 

and shown how one can use these expression for a fast numerical evaluation of 

the probability distributions. 

Because of this, an experimental spectrum can be fitted to determine the 

detector parameters, in particular the collection factor which describes how well 

the detector cell is performing. This can be done over a large data sample; 

alternatively, with certain kinematic cuts, one can define subsamples to monitor 

possible changes in time of the collection factor. Clearly such monitoring is useful 

to diagnose any change (gas composition, ageing effects, etc.) that could be taking 

place in a detector. 
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APPENDIX 

Application to Cerenkov counters signals 

The first example of a contagious distribution is the compound Poisson dis- 

tribution, which was studied by Neyman!“’ We will show that this distribution 

describes the number of photo-electrons generated at the cathode of a photo- 

multiplier of a Cerenkov counter. 

The number of photons n7 emitted in the radiator follows a Poisson distri- 

bution given by: 

pm, = Pe-P ) 
n,! (Al) 

where ~1 is the average number of photons generated in the radiator given by: 

~1 k: 500 sin2 0, (A2) 

for one centimeter of radiator (cf. reference 9 for the exact formula). Assuming a 

collection factor q between the number of generated photons ~1 and the number 

of photo-electrons emitted by the cathode n, (i.e. (n,) = qp), we have: 

00 (pr)ne e--rln7 pn7e-P 

pne = C 
n7=0 

n,! . +I * . w 

The similarity with the equations for the PI/PE distributions is obvious. The 

generating function of the Pn, is: 

- G(z) = exp (-p + pe-q+vz) , (A41 

which is much easier to evaluate than the expression of equation (A3). 
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If the average number of photo-electron is small (of the order of 5), the 

fluctuations caused by the multiplication of the signal at the first dynode of the 

photo-multiplier can no longer by ignored. Let tad be the number of electrons 

emerging from the first dynode and let X be the average multiplication factor of 

dynode. Then the probability must be computed as 

P nd = c 
O” (Xne)nd e-h 2 (qn7)n” e-qn7 pn7e-Cc 

f 9 W) 
ns- -0 

nd! 
n7=0 ne. n7! 

whereas the generating function expression is still quite simple: 

G (z) = exp -p + pexp -r) + ~e-x+xz 1 ( >I 
, ( w 

Stirling numbers of the second kind 

The Stirling number of the second kind are defined by the relation of recur- 

rence: 

and the initial values: 

{:}=I, {:}=Oand {nT1}=O forn#O. 

The following table give the first of them 

n 
{ 1 k k=l 2 3 4 5 6 7 8 9 10 

n=l 1 
2 11 
3 13 1 
4 17 6 1 
5 1 15 25 10 1 
6 1 31 90 65 15 1 
7 1 63 301 350 140 21 1 
8 1 127 966 1701 1050 266 28 1 
9 1 255 3025 7770 6951 2646 462 36 1 

10 1 511 9330 34105 42525 22827 5880 750 45 1 

18 



REFERENCES 

1. L. Landau, Journal of Physics USSR 8 (1944) 201. 

2. P. V. Vavilov, J. Exptl. Theoret. Phys. USSR 32 (1957) , 920; 

translated, JETP 5 (1957) 749. 

3. J. Neyman, Ann. Math. Statist. 10 (1939) 35 

4. W. Feller, Ann. Math. Statist. 14 (1943) 389 

5. Proceedings of the ht. Symp. on classical and contagious discrete distri- 

butions, G. P. Patil ed., Montreal 1963. 

6. C. Jordan, Calculus of Finite Differences, Chelsea NY 1955. 

7. D. E. Knuth, The Art of Computer Programming, 2nd ed., Addison-Wesley 

1973. 

8. U. Fano, Ann. Review of Nuclear Sciences 13 (1963) 1. 

9. M. Roos et al., Review of Particle Properties, LBL-100 (1982). 

10. P. G. Moore, Biometrika 39 (1952) 247 

11. P. R. Rider, J. Amm. Statist. Ass. 48 (1953) 826 

12. R. F. Tate and R. L. Goen, Ann. Math. Statist. 29 (1958) 755 

13. B. Schorr, CERN Data Handling Division, Report D D/73-26, August 1973. 

19 



FIGURE CAPTIONS 

1. Simulated PI/PE distribution for a thin plastic scintillator (Pilot B) for 

high relativistic particles. The solid line is the PI/PE distribution obtained 

by computing the generating function with equation (4.3) and using a fast 

Fourier transform as described in this paper. The value of the parameters 

is indicated on the figure. The histogram was generated using the routines 

DISLAN ‘la1 and POISSN from the CERN computing library using the same 

parameters. The curve was normalized to the same number of events. No 

other adjustment was made. 

2. Simulated PI/PE distribution for the same detector as figure 1 for non- 

relativistic particles. The solid line is the PI/PE distribution obtained by 

computing the generating function with equation (5.4) and using a fast 

Fourier transform. The CERN library routine DISVAV’*” was used instead 

of DISLAN. 

3. Comparison of the PI/PE distributions for the Landau and Vavilov models 

for different particle velocity. When the two curves are discernable, the 

distribution is plotted with a solid line for the Vavilov case and a dotted 

line for the Landau case. 
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Simulated PI/PE distribution (Landau case) 
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Simulated PI/PE distribution (Vavilov case) 
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PI/PE distribution (non-relativistic case) 
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PI/PE distribution (relativistic case) 
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PI/PE distribution (high relativistic case) 
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