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ABSTRACT 

Compared to classical calculations, quantum corrections greatly reduce the 
radiation emitted when the e+ and e- beams collide in a linear collider. This 
allows a given luminosity to be obtained with much lower beam powers by 
making the beam size smaller. 

INTRODUCTION 

In the design of high energy, high luminosity e’e- linear colliders there are 
several constraints which must be satisfied by the beam parameters’11 . These 
beam parameters and their nominal values at SLC are: 

2a, : the radius of the beam (2 x 1.8 p) 
(in this paper we will assume uniform cylindrical beams) 

2&, : the length of the bunch (2fixlmm) 
(The numerical factors in the definitions of a, and c+ 
are a convention to help make formulas for cylindrical 
beams similar to those for Gaussian ones.) 

N : the number of particles per bunch (5 x 10’0) 
f : the repetition rate of the machine (180 Hz) 
7 : Efmc2 (1 x 105) 

(where E is the beam energy). 

From these five basic beam parameters, four other parameters can be 
derived. There are constraints on these four parameters placed by the needs of 
High Energy Physics and by beam dynamics. The derived parameters are 

l The total beam power 

P = fNymc2 (= 74 KW at SLC) (1) 

has no strict constraints on it but small beam powers are preferred as the 
total AC power consumed by the accelerator and therefore its cost scales 
with P. 
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l The luminosity 

l = s (= 6 x  1030cm-2sec-’ at SLC ‘“I ) 
r 

must increase with the energy of the beams in order to keep a constant 
event rate. Since the interaction cross section falls as l/r2 we must have 
1~ = 10f where e.g., $ = 1oao 

(105)1* 
l The disruption parameter 

is related to how many oscillations an electron will go through as it passes 
through the magnetic field caused by the other beam. If it is too large 
there is an instability which will increase the beam size and reduce the 
luminosity. One must require D < 20. 

l The beamsstrahlung parameter 

6 
r; N27 

classical = -- 3J3 U& 

tells what fraction of a beams energy is lost due to synchrotron radiation 
in the magnetic field of the other beam. The subscript indicates the 
equation comes from a classical calculation. To do a clean high energy 
physics experiment, one wants the spread in the center-of-mass energy- to 
be less than about 10%. This spread is S/a, hence, one must require 
ii < 0.3. 

There are a total of 9 parameters: Q,, Q*, N, f, 7, P, L, D and 6 and 4 
equations relating them. So one can specify 5 parameters and then solve for 
the other 4. For example, specifying 7, fZ, f, P and D one can solve for ur, uz, 
N and 6. In particular 

P 
N=fme2r (5) 

P 
u, = 

rnc2JrL 

6 classical = 
(47r)2rf7L2mc2 

6fijDP - 

(7) 

(8) 
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Plugging in reasonable numbers for a 5 TeV linac Ia1 : 

7 = 10’ 
L = 103” cmW2secB1 
j=SkHz 

D=2 
P=lOMW 

(9) 

gives 

N = 2.4 x 10’ 
up = 0.14mm 
u, = 0.0049 pm = 49 A (10) 

6 = 76 

It is unphysical to have each electron lose 76 times more energy than it has. 

QUANTUM CORRECTIONS TO BEAMSSTRAHLUNG 

The cause of this unphysical result is that &lasrieal was derived with classical 
formulas for the radiation of a moving charge in a magnetic field. It turns out 
that we are in the quantum regime. This can be seen as follows. Consider 
a particle at radius t in the uniform cylindrical bunch. For the numerical 
examples r = 2u, (a particle at the very outside of the uniform cylindrical 
bunch) is used. It sees a magnetic field 

where NI is the number of electrons inside a circle of radius r. B is 4.8 x 10’ 
Gauss for our example. There is an equal force coming from the electric field. 
The radius of curvature of the electron’s trajectory in these fields is 

ymc2 fi7mc2rt7, @7ruz 
P z-z 

2eB 2Nre2 = 2N,t, (12) 
This is 177 cm for our example. Now class~ally the synchrotron radiation 
spectrum peaks at w - iwc where we = 9”’ . The critical energy is the 
energy of these photons 

3 9 @ icy2N,r, 
E, = Aw, = -hc- = 

2 P ru, . (13) 

This is 268 ergs = 168 TeV for our example. This is much greater than the 5 
TeV beam energy so clearly such photons can not be radiated. 
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Obviously the classical calculation is invalid and a proper quantum me- 
chanical calculation must be used. A full quantum treatment of synchrotron 
radiation was done in 1952 by Sokolov, Ternov and Klepikovi4’ . The results 
are illustrated in Fig. 1”’ . When E/EC > 1 the classical calculation is correct. 
When E/E, < 1, the power spectrum follows the classical curve and then drops 
exponentially at the electron’s energy. Here we will use the approximation that 
the radiated power follows the classical curve until the photons energy equals 
the electron’s energy where it sharply drops to zero. This approximation is 
always greater than the exact solution and is accurate to a few percent for 
E/E, < 0.1. 

Fig. 1. Differential power spec- 
tra of the radiation emitted by 5 
TeV electrons for several values of 
E/E,. Parts a-c are in the classi- 
cal, intermediate and quantum 
regimes respectively. Shown are 
the classical calculation, the exact 
quantum calculation and the ap- lo- g - (cl 
proximation used here. QMfi 
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The classical synchrotron radiation formula for the power radiated as a 
function of frequency is “I 

‘tw) = 3w,p2 G 
2req4mc2 s w 

( > 
(14 

where S contains the integral of a modified Bessel function. For W/C+ < 1; 
S(w/wc) = J(w/wc) ‘i3. Hence, using this approximation, the total power radi- 
ated is 

Ptot = P(w)dw = 2rey;2mc 
0 

(15) 

this power is radiated for the time it takes a particle to pass through the other 
bunch, namely 2&7=/c. Hence 6 which is the fraction of the electrons energy 
which is radiated is 

kpf = (16) 

Putting in numbers for the outside particle in the above example gives 

~58~ = 2.7. 08) 

Note that the outside particle sees the largest magnetic field and loses the most 
energy. Averaging over radius for uniform cylindrical beams gives another factor 
of 3/4, 

rz7N2 
bQM L &7;uz 

( $;;;c) 4’3 . 

Note that at small radius the extreme quantum limit does not apply, but the 
approximation used here is always greater than both the exact classical and 
quantum formulas. Hence an upper bound on ~QM has been calculated. A 
more accurate answer will require a computer simulation which is in progress. 



EFFECTS ON SCALING LAWS OF LINEAR COLLIDERS 

It is interesting to express these quantum formulas in terms of 7, l, f, P 
and D instead of trr, a*, N and 6. Plugging equations (S)-(7) into (17) and 
(19) gives 

E Pf’12D 
- = 2fi(7rL)3/2r@y EC 

bf = % 2d& 
2 ( rc )4’3(~)“3, 

(20) 

(21) 

For our example 5 TeV machine E/EC = 0.03 which is truly much less than one. 
In fact from the form of equation (20) it is clear that for any high luminosity, 
high energy collider quantum effects in beamsstrahlung are important. This is 
because L: - r2 so the denominator increases like 7’ and there are practical 
limits on how large P, f and D in the numerator can be made. This strong 7 
dependence is why at SLC quantum corrections are unimportant but at 5 TeV 
they are very large. 

For our example 5 TeV machine the corrections were not quite large enough. 
We still have an average 67~ of 2.1”’ which is greater than the 0.3 needed by 
high energy physics. Referring to equation (21) one sees that if D and P are 
both reduced by a factor of 20 then ~QM = 0.29 which is acceptable. Using 
equations (S)-(8) one gets the following consistent set of parameters for a 5 
TeV machine 

7 = 10’ 
L: = 1O34 crnm2 set-r 
j=SkHz 

D = 0.1 
P = 0.5MW 
N = 1.2 x lo* 

QP = 0.4 pm 
ur = 2.5 Hi 

E/EC = 7.5 x 1o-5 + quantum regime 
6 clarsical = 30,000 

&~QM = 0.29 

(22) 

Comparing equations (8)) (20) and (21) one sees there are two possible 
regimes of beam parameters for a high energy (> 5 TeV) , high luminosity e+e- 
linear collider. 



1. One can use very high power (> 100 MW) and high repetition-rate beams. 
For this case the beam size is relatively large and the classical formulation 
of beamsstrahlung is valid. However if the accelerator is e.g. 3% efficient 
then the power consumption is 3 GW and the accelerator is obviously 
very expensive. 

2. One can use low power beams. For this case the beam size is very small 
and the quantum formulation of beamsstrahlung must be used. Attaining 
such a small beam size will be difficult to say the least. 

Note how different the scaling laws are for classical and quantum 
beamsstrahlung. To keep 6clarrical small f, D and P must be large. To keep 
6s~ small, f must be large while D and P are small. 

In conclusion, quantum corrections to the beamsstrahlung are often impor- 
tant. Their inclusion extends the set of linear collider beam parameters which 
are useful for high energy physics. 
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7. Particles can not lose 2.1 times their energy. We have implicitly assumed 
that the particles energy doesn’t change much as it traverses the other 
beam. Actually after the electron has radiated some photons, it will have 
less energy and will radiate less than we calculated. Nevertheless a large 6 
indicates the electron lost a good fraction of its energy, presumably more 
than the 30% allowed. 


