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ABSTRACT 

We study the axial and parity anomalies in abelian gauge theories using the 

direct yet intuitive approach of counting the relative number of states of one 

chirality with respect to the other. A fundamental gauge invariant quantity, the 

determinantal ratio, is introduced to this purpose. We find that the number of 

states is conserved and that the gauge fields differentially phase shift states of 

opposite chirality at infinite energies. This implies a relative change of the density 

of states at infinite energies which must be compensated by a rearrangement of 

the density of states at finite energies. We then derive a sum rule which yields 

two alternative formulae for the index of a Dirac operator. One expresses the 

index in terms of its high energy behavior, and the other in terms of the low 

energy properties; these are the “zero modes” of definite chirality. Two examples 

are worked out in detail to clarify our general result. 

The physics of the axial anomaly is shown to translate into that of the parity 

anomaly in (2 + 1) dimensions, in which parity and chirality have interchanged 

roles. We also analyze the vacuum charge in regard to its high and low energy 

origin. The possibility of spectral flow is formulated and briefly discussed. In 

short, we provide a physical interpretation of certain mathematical indices, relate 

them to an extended version of Levinson’s theorem of potential scattering, and 

simplify their evaluation. 
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1. Axial Anomaly, density of states and indices 

A) Introduction: The Problem and Strategy: 

The axial anomaly arises as the violation of the classical conservation law for 

axial currents at the quantum level. In quantum theory this violation is seen to 

arise from the interaction of Fermi fields with background gauge fields (hereafter 

referred to as b.f.). Therefore we are led to study the axial currents induced by 

these b.f.‘s, and the resulting conservation laws. Ever since their discovery’ they 

have played a fundamental role in the understanding of gauge theories as well as 

being important in certain physical reactions. 

Originally they were associated with ultraviolet divergences of the theory, 

whose regularization presented a conflict between gauge and chiral invariance. 

Anomalies severely restrict the fermion content of axial-vector theories.2 The 

existence of anomalies has been related via the Atiyah-Singer index theorem3 to 

the possible zero eigenvalues of the Dirac operator. These “zero modes” make 

the functional integral vanish when the fermions interact with a topologically 

non-trivial gauge field (such as instantons, vortices, etc.)’ 

In this note we will discuss the anomaly and its physical origin by making 

extensive use of the generalization of Levinson’s theorem 586 that was developed in 

our earlier papers on fractional charge7 (hereafter called BB) and indices in one 

dimension.* In BB we gave a complete method for the calculation of the charge of 

the vacuum state. Our approach yielded a simple and direct way of computing the 

fractional part of the charge. In addition, by introducing a suitable comparison 

Hamiltonian, we also gave another “Index”, the (Q - QV ) of the concluding 

section, which we showed was always an even integer measuring the spectral flow 

(energy levels crossing zero). This splitting allows a clear separation of the global 
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from the local properties of the b.f. This method will allow a clear understanding 

of the role played by the two dimensional anomaly in the physics of the vacuum 

charge in (2 + 1) dimensions. 

The anomaly has already been studied from several different perspectives: in- 

dex theorems,’ simple models, lo lattice formulations,” etc. It was Fujikawa12’13 

that realized that the fermionic measure in the functional integral was not invari- 

ant under chiral transformations, with the Jacobian being related to the anomaly. 

On the other hand, by using a dispersive analysis1”r5 and unitarity16 it was found 

that the axial anomaly induces a singularity at threshold in certain amplitudes. 

More recently, methods of differential geometry were introduced to discuss the 

anomaly. 17 

We feel that there are still questions in need of answers: why is the anomaly 

reflected both as a high energy (triangle diagram) and as a low energy (zero 

modes, threshold singularity) phenomena? why not any old energy range? what 

is the role of regulators since the anomaly is finite and independent of the regula- 

tors? what is the physical interpretation and content of index theorems? Recently 

a new effect was discovered in (2 + 1) dimensions, that of a parity anomaly’8-21 

in which the vacuum currents induced by the b.f. have abnormal parity. Again 

observed as a conflict between gauge invariance and parity, 20 a discrete symme- 

try, its existence was related to the chiral anomaly lQ in (1 + 1) dimensions and 

high energy behavior. However, it was also argued that the effect arose from the 

existence of “zero modes” 22 -a new realization of the interplay of high and low 
9 

energy features. 

This paper is a modest attempt to try to answer the above by providing an 

understanding of anomalies using simple concepts and methods. Our aim is to 
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clarify the interplay of high and low energies and to offer a physical explanation 

of some of the content of index theorems. 

The strategy is very simple- count the number of positive minus the number 

of negative chirality states in the presence of a b.f. A net difference breaks 

chiral invariance. To this end we provide an extension of Levinson’s theorem so 

familiar from potential scattering.’ The standard form of Levinson’s theorem 

is a (completeness) comparison of two Hamiltonians, usually the free particle 

problem compared to the scattering case with a potential. Our extension of the 

theorem allows one to also compare the positive and negative energy parts of the 

spectrum of the same Hamiltonian. This device has several advantages, amoung 

which are ease of calculation and the fact that no explicit regulator is necessary. 

Since we shall be discussing long range potentials, special care is required because 

many of the results of scattering theory do not hold.23 One cannot just make 

a cursory reference to standard treatments of scattering theory in the cases of 

interest. For example, for a soliton-type potential, the divergence of certain 

volume integrals of the potential violate one of the existence conditions for the 

standard Jost function. The manner for avoiding this problem was given in Ref. 

8. 

After a general presentation of our formalism, we will apply it to two specific 

models in two dimensions. The first is a strip problem of finite width in the 

y-direction. The treatment of this classic problem that the reader may find most 

useful for purposes of comparison is that of Michael Stone 24 , where additional 

references can be found. The second example that we treat is the vortex problem. 

In this problem there is a centralized cylinder or bar of flux. For comparison the 
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reader should consult the paper by Joe Kiskis 25 on the low energy aspects of 

this problem. Both of these examples possess an anomaly and our approach will 

precisely relate the high and low energy features and will yield a detailed physical 

picture of the underlying phenomena. 

Our main purpose in presenting these two examples is to develop a more 

detailed understanding of the anomaly. The expert reader will find our presenta- 

tion too tedious, and others may find it too detailed, but all may find it a useful 

exercise. We have tailored the presentation so that it should be understandable 

to a wide audience. 

In the next section contact is made with the work of Fujikawa (Ref. 12) and 

a bridge is established with the dispersive analysis of Refs. 14,15,16. After a 

discussion of the well known results of perturbation theory in (3 + 1) dimensions, 

the treatment is generalized and the phase shift is evaluated at infinite energies 

in terms of the standard anomaly. In the following section the vacuum charge 

and parity anomalies are studied in (2 + 1) dimensions in the abelian theory. 

The treatment relies heavily upon the techniques developed in BB. Finally we 

summarize our conclusions. Two Appendices are provided that give some useful 

technical details and formulae. 

B) Review: 

In order to make this exposition self-contained and thus readable, and to intro- 

duce our notation and language, let us first turn to a review which the reader 

, will find familiar. 26 

The axial-vector current is written as 

(J:(z)) = iTr [r5V‘S(w)] 9 (1.1) 
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where S(z, y) is the fermion propagator in the presence of the b.f. and satisfies 

(iQ + im) S(Z,Y) = b(z - Y) (1.2) 

and iq = i7p(a, - iA,). We introduce a spectral representation of S(z, y) in 

terms of the eigenvectors and eigenvalues of ;4>. The massless Dirac equation 

then leads immediately to the relation 

where cx is understood as a sum over discrete states and an integral over states 

in the continuous part of the spectrum. 

Using these last two equations one can write the divergence of the axial vector 

current as 

% (J3 = +(475++(4 -2imC X+im +2C$(z)r5ti+(4 - (14 
A x 

Clearly the second term on the right is the familiar and ambiguous (0 x 00) and 

it must be regulated. 

As usual we introduce a Pauli-Villars (gauge invariant) regulator and write 

h(Jj3 = -2im J5(z, m) + 2i $lim M J5 (5, M) 

, 
where 

J’(z,m) = c Wr5+'(4 

x X+im s 

(14 

( 1.7) 
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Integrating over Euclidean space one achieves 

/ 
ar( (Ji) ddz = 2A(m) + 2A, 

where the anomaly is identified as 

A= $irnoo iM Tr 4 

U-8) 

(1-Q) 

and the trace is performed on space and Dirac labels. We propose to study the 

quantity 

A(m) = -imTr ” I 1 iJD+im ’ (1.10) 

which has been extensively studied in the literature. 27 Since as we shall see 

shortly, A(m) contains considerable information about the spectrum of iJb. 

We will study this quantity in (1 + 1) Euclidean dimensions (d = 2) and for 

the matrices will use the representation 

71 = Ul 72 = t72 75 = 03 . (1.11) 

The u’s are the usual Pauli matrices. In this representation, the Dirac equation 

is written as 

(1.12) 

The chiral structure of the theory is now evident. After a short calculation one 

finds 

A(m) = m2Tr L+L:m2 - LL+l+ ,2 [ 1 - 
From the Dirac equation we see that the wave function ++($-) is an eigenvector 

of IL+ and (L+L) with eigenvalue A2. Therefore it is clear that A(m) has 
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information on the relative spectrum of LL+ and I;+& whose eigenvectors have 

positive and negative chirality. 

C) General Formulation: 

Motivated by our previous work, we introduce the quantity’ 

J&Z) = det 
[ I 
z: z : (1.14) 

which gives a direct comparison of the positive and negative chirality spectrum, 

and where 

H- = L+L , H+ = LL+ (1.15) 

and 

A(z) = t $ hJ,(-z) . (1.16) 

Therefore the anomaly defined by (1.9) can be written as 

A= - ;LT A(Z) . (1.17) 

the z-derivative of the logarithm of the Jost ratio JR(Z) is the difference of the 

resolvents of the operators H- and H+ at an energy E = --z. This observation 

allows us to derive the following general sum rule. 

Consider the quantities 

JR(E) = JR(-z = E + iv) (1.18) 

-&L~JR(E) = Tr E 
[ - 

lH- 7 E lH+ - I . (1.19) 

In general, the spectrum of Hf consists of discrete bound eigenvalues (here 
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assumed to be isolated) and a continuum. Thus the second of the above equations 

will have poles at the bound state energies and continuum branch cuts. The 

discontinuity across such cuts is directly related to the relative density of states. 

This simple but important fact is the basic reason that we do not forced to 

regulate the sums and integrals in this approach. The infinite density of states 

in the free (no b.f.) case is precancelled. One finds by direct calculation that 

Ap(E) = p-(E) -p+(E) = -iIm -& ~JR(E + iv), (1.20) 

where Ap(E) is the relative density of states with + and - chirality. 

Integrating (1.19) in the complex E-plane along the contour shown in Figure 

1, we find a sum rule that connects low and high energies 

where 

I,= & I -$ hJR(E) dE 
f 

r 
I6 = - 

/ b(E) dE 
ET 

(1.21) 

(1.22) 

1 
Ir = s -& tnJR(E) dR . 

r 

The contour c is a circle of radius e around the left edge of the continuum. The 

contour I’ is the large circle whose radius will ultimately be taken to 00. The sum * 
rule expressed in (1.21) relates the difference in the number of isolated bound 

states of H- and H+ to the three I integrals (i.e. threshold, the continuum and 

infinity behavior). 
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From (1.12) it is seen that the eigenvalues of H- and H+ have the familiar 

pairing property. If $- is an eigenvector of H- then Ltjr- is an eigenvector (not 

normalized) of Hi with the same eigenvalue. This is the usual argument that 

ensures that the number of bound states with E not zero are the same for H- 

and H+. This pairing argument is known to fail in the continuum , essentially 

because the density of continuum states is different for the two Hamiltonians. 

When the variation in the background gauge fields is compact (Le. 

F w - 0), the difference between H- and H+ is vanishingly small at spatial 
Z1Y-r~ 

infinity (Euclidean space) and the Jost ratio JR can be shown to exist (introduce 

a suitable comparison Hamiltonian as in Ref. 7 and 8). Also notice that 

H+-H- - Q&A, . (1.23) 

Therefore an interpretation of the basic sum rule is that the total number of 

states is the same in H+ and H-. Indeed it will be easy to see in the two 

dimensional examples given in the next section that the difference between the 

two Hamiltonians is compact and is proportional to B, the magnetic field, which 

we take to vanish sufficiently fast at infinity. It is essential to keep in mind that 

we will always be comparing two systems or operators that differ by a compact 

(i.e. localized in space) potential. 

If the continuum does not extend to zero energies, that is, a gap exists in the 

energy spectrum, we may expect that the integral I, arising from the small circle 

at the lower edge of the continuum will vanish. Indeed, for isolated bound states 
, 

in the gap between zero and threshold, the pairing of chirality states ensures 

that their net contribution to the sum rule vanishes. Thus from continuity one 

might expect that the same cancellation will occur for those states just at the 
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edge of the continuum. We are then led to expect that the integral It will be 

different from zero only when the continuum extends to zero energy and indeed 

there are no isolated states in this case. These statements will be proved in the 

next section for the models considered. 

Now the total contribution from the E = 0 states is known as the index of 

the operator iJ.3. Therefore from (1.21) we find two fundamental expressions for 

the index, thereby clearly exposing its low and high energy features: 

Index(@) = ni - ni - & / -&&JR(E) dE 

f I 

(1.24) 

or 

r 
Index(Q) = - 

/ 
[p-(E) - P+(E)] + $ f & en&@) dE (1.25) 

ET+O r 

We can use either of these formulae to evaluate the index in specific cases. Their 

consistency will be checked in the two examples discussed in the next section. 

The reader should be warned that the above index may differ in sign from some 

of the literature. 

If the threshold were to approach zero, and ‘pinch’ the discrete spectrum 

then it is necessary to rewrite the low energy relation in the form 

Index(ilp) = -& 
/ 

$ bzJR(E) dE , (1.26) 
I? 

where the contour e (shown in Figure 1) starts at c to the right of threshold and 

circles enclosing the origin. One can use this equivalent form to show that the 

order of limits does not mutter in our later discussion of examples. 
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From the previous analysis we have seen that the fundamental quantity that 

we wish to study in different contexts is the ratio JR(E). Now let us turn to a 

characterization of the behavior of the Jost ratio JR(E) and its consequences for 

the sum rule. 

For energies above threshold, the Jost ratio is complex and its phase is defined 

as 

JR(E) = 1 JR(E) 1 e-i6R(E) (1.27) 

where the relative phase shift of the scattering states is 

OR = 6-(E) - P(E) 

and from the previous definitions it follows that 

Ahp(E) = $&R(E) 

(1.28) 

(1.29) 

and thus 

aR(r>], (1.30) 

where 6~(0+) arises from the lower limit of the integration and is the sum of the 

eigenphases, each evaluated at its own threshold. 

Now as E approaches threshold, the behavior of the Jost ratio can be char- 

acterized as 

JR(E) - (E - ET)’ (1.31) 

’ which leads immediately to the result Ic = -q. In the subsequent sections q will 

be shown to be the total magnetic flux in the two examples that are discussed 

there. 
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The existence of the anomaly, i.e. a non-trivial limit for A(Z) for z 3 00, 

has direct consequences for the sum’rule. Suppose that the anomaly is A = F, 

then by equation (1.17), we find 

lim A(Z) = -F 
E-+00 (1.32) 

which implies 

and therefore 

$442 (E) F __)-- 
E+oo E 

(1.33) 

1 
Ir = s f 

-&&J(E) dE = -F . (1.34) 
ho0 

Therefore the contribution from the large circle I’ in the sum rule is deter- 

mined by the anomaly. In addition, the value of the phase shift at infinite energy 

is also completely determined by the anomaly; if the above three relations are 

satisfied, then by integration 

JR(Z) - Jo x CF 
L--*00 

(1.35) 

where JO is a constant, and thus by continuation around the large semicircle, 

JR(E + iv) ?oo Jo x (-E - iv)-= , 
-+ 

(1.36) 

The phase can now be read off as 

9 6R(oo + iv) = -aF. (1.37) 

There is a (27r) branch ambiguity in this phase. V@e have made the natural choice 

above, but our final results will be independent of the branch. 
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This result has a very deep physical meaning. It implies that the background 

fields cause a relative phase shift in states with opposite chirality at very high 

energies. One then interprets this result as meaning that the anomaly is produced 

when the density of infinite energy states of one chirality is enhanced relative to 

ones of opposite chirality. The sum rule (i.e. the conservation of states) implies 

that the states being removed at high energies, appear elsewhere in the relative 

spectrum. Using the results from (1.34) and (1.37), the sum rule of (1.21) can 

be written as: 

(1.38) 

where by is the phase shift (at threshold) defined following eqn. (1.30) . 

In terms of the eigenvectors and eigenvalues of ig. The index of the operator 

(iJ3) now reads 

SR (o+) Index(iq) = ~ . (1.39) 

We now see that this result is nothing but an extension of the familiar Levinson’s 

theorem of potential scattering.’ 

To close this section we briefly summarize those results which we expect to be 

general before turning to two more specific examples in the following sections. We 

assumed that the variations in the b.f.‘s were compact and hence the Jost ratio of 

determinants ,JR(-z), exists. The total number of states of each chirality is the 

same. The existence of the anomaly implies that at very high energies, states of 

opposite chirality are differentially phase shifted and there is a relative deficit in 

the density of states. This is the high energy aspect of the anomaly. This deficit 

of states at high energies must then be compensated by a rearrungement of states 

in the finite part of the spectrum. 
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In the next section we study two problems that can be cast in the above 

framework and will then clarify and illuminate the physics of these concepts. 

2. Two Problems in two dimensions 

Let us now proceed to implement this approach to selected problems in two 

dimensions (1 + 1 Euclidean). As was mentioned in the introductory remarks, the 

physics of anomalies presents several puzzles. Anomalies are customarily consid- 

ered to be related to the high energy (short distance) behavior of the theory. On 

the other hand, index theorems”’ and recent dispersion relation analyses 14,15,16 

indicate that they are also a low energy property of the theory, and that the high 

and low energy aspects are completely equivalent. This brings us to the questions 

posed in the introduction: Why is only the lowest and highest energies relevant 

(and not intermediate values)? What is the “magic” that produces the anomaly 

in the first place? To explore these questions and the physical interpretation of 

this behavior, we now turn to two quite general examples in two dimensions. We 

shall explicitly show that the sum rule and the two alternative expressions for 

the index are valid. 

A) Stone’s Strip: 

In this section we will study the problem in which space (Euclidean) is finite in 

one direction, y, with width L, and the gauge field is configured as 

AZ = 0 A, = A+) F,, = &A,(z) . (24 

This problem has been studied from different points of view in several recent 

papers, and perhaps the reader would like to compare our treatment with the 
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clear paper of Michael Stone 24,28 which originally sparked our interest in this 

problem. Since the y-direction is a “free” problem, we impose periodic boundary 

conditions (now the topology is that of a cylinder of radius L and infinite length 

in z). The Dirac spinors can then be written as 

f&y) = ?#b(x) cik,v (2.2) 

with 

k 
27rn n=- 

L 
n=O,fl,f2 ,... . (2.3) 

Therefore the problem now becomes an (infinite) collection of one-dimensional 

modes each labeled by an integer n. For each fixed n, the corresponding Dirac 

equation reads 

where 

h,(x) = k, - A,(x) . P-5) 

The X = 0 states (“zero modes”) can be found in the usual way. They are 

. 
or 

P-6) 

P-7) 



Now $- is normalizable when 

(n-F+)>O; (n-F-)<0 

whereas $+ is normalizable when 

(n-FF+)<O; (n-F-)>O, 

and we have defined 

(2.8) 

(2-Q) 

(2.10) 

and 

A; = lim Ay(x) . Z--ckOO (2.11) 

The total flux passing thru the tw*dimensional system is (F+ - F-). We shall 

treat the case of positive F (F = F* ) in order to simplify the notation. From 

the discussion in the previous section we expect that 

ni - ni - W-l- P+l) 9 (2.12) 

where [F] stands for the nearest integer just below F. As mentioned above, for 
. 

fixed n in (2.3) the problem is one-dimensional and this fact brings up another 

, puzzle: for each mode there is no anomaly since A(Z) vanishes for large z for 

each n value; how then does the anomaly arise? The answer arises of course 

from the infinite number of n values (modes).For each n value we can define the 

quantity A“(t) just as in (1.13). This quantity has been extensively studied in 
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the literature;2gD30b it is given by 

with 

fp$ = $ (n - F*) . (2.14) 

(2.13) 

Since the n modes are multiplicative in the Jost ratio and thus additive in A, we 

introduce the quantity 

A(%, F) = f 
00 

= [J 

b - F) (2.15) 
?a=-00 x2+ (n- F)2 - d* 1 

which is an odd function of F, with 

(2.16) 

and finally write 

A(z) = A(%, F+) - A(%, F-) . (2.17) 

We have added and subtracted the F = 0 terms to achieve (2.15). First the 

problem of evaluating A(%, F) as given by (2.15) will be discussed. Note that 

this A(%, F) corresponds to a problem in which the gauge field vanishes at one 
9 

endpoint. The corresponding Dirac operator will be denoted by (tv)o ). The 

results for F = F* will then be combined to demonstrate the validity of the sum 

rule. 
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If F is an integer, one may be tempted to shift the sum index n in (2.15) and 

conclude that A(%, F = integer) is identically zero. However this is an illegitimate 

shift since each of the two terms in (2.15) is linearly divergent. Note that this is 

the analog of the “routing of momenta” ’ problem in the Feynman diagrams that 

determine the anomaly. However this divergence in each term is independent of 

F and Z. Therefore we can compute unambiguously that 

aA = 1 
i3F -sx 

2 O” 
R=oo [x2 + (n !- F)2]3/2 * c (2.18) 

This sum is convergent and the reader will recognize this as the analog of the 

usual procedure for computing the “surface terms” for the routing problem in 

the anomalous diagrams. 

We have studied this sum and refer the reader to appendix A for details. 

The expression (2.18) can easily be evaluated for any F in the limit of large B 

(x2 + 00); approximating the sum by an integral in this limit one finds that 

;$& A(%, F) = -F . (2.19) 

As shown in appendix A the correction to A in this limit is exponential in x. 

The anomaly is therefore A = F. 

Hence we see that the puzzle is resolved-the “conspiracy” between infinitely 

many one-dimensional modes produce a non-trivial limit. Indeed, for x2 + oo 

the values of n that dominate the sum are of order x2. Now using the results of 

Section 1, we find , 

Ir=-F and ibn(oofirl)=-F. (2.20) 

This nonzero value of the relative phase shift means that states have been removed 
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at high energies as explained in Section 1. To see where they went study the 

density of continuum states and the bound spectrum. Using (2.15) the density 

of states can be computed from (1.20) to be 

&(E,F) = APb + AA , (2.21) 

where 

A/+, = ; 
00 

c [~(n - F) 
-W 

(2.22) 

and 

ApC = - f g [{n-F} - {n}] . 
-03 

(2.23) 

The subscripts b and c stand for the bound and continuum contribution6 to 

Ap(E, F) . We have introduced the notation 

and 

c(x) = 

EdE (L/~T)~ - (j)2 
(2.24) 

lz>O 
lz>O 

ox=0 e(x) = (2.25) 
ox<0 

,-lz<O 

For fixed E the sum in Ap, is cutoff by the 8 functions and is finite. Thus 

the sum over the F = 0 term, involving {n} , vanishes identically. The remaining 

term has thresholds at ET = (2~/L)~(n - F)2. Therefore when F is an integer, 

one of the thresholds is at E = 0 and the continuum extend6 down to the origin. 
. 

It is in just this situation that we expect the edge or threshold behavior of the 

continuum to contribute to the sum rule. It is also easy to see that for integer F 

the continuum density of states, Ap,(E) is identically zero for any fixed E # 0. 
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To show that the relative phase is constant in this case and that the imaginary 

part of A(%, F) vanishes along the continuum cut, compute its energy derivative: 

WW) = -1 O” c (n-F) 
ax2 4 -w [x2 + (n - F)2]3/2 ’ 

(2.26) 

This expression is convergent and unambiguous. Since F is an integer, the sum 

label can be shifted by F and for non-zero z the derivative vanishes. Since (2.19) 

fixes the value at infinity, we have 

A(%, F) = -F z#O. 

Using our previous formulae for the integer F case, we find 

Ap(E) = -F6(E) 

and for E near the lowest threshold (which is at zero) 

J&E) -N E-F. 

(2.27) 

(2.28) 

(2.29) 

and the contribution from the tip of the continuum is 

I,=F. (2.30) 

It is straightforward to interpret this result. There are F (=integer) states 

, at threshold. They are not isolated because the continuum extend6 to E = 0 

(unless a “partial” wave expansion is made in the y eigenmodes in which case 

all are isolated save one). This result also obtains from the Apt, contribution by 

explicitly evaluating the sum. 
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Therefore for integer F we find 

6R(o+) = 6&O + iq) = -rF . (2.31) 

Since there are no isolated bound states, ni - ni = 0, and the low energy form 

of the index is 

T.ndex(qo) = -& 
/ 

&&JR(E) dE = -F . 

f 

The sum rule is satisfied since 

1 
2Ai f 

-&.tdR(E) = -F , 

r-ml 

(2.32) 

(2.33) 

and the high energy form for the index becomes 

Index(i&) = 5 [b&o) - bR(m)] - F = -F . (2.34) 

From this equation we clearly see the interplay between the physics operating 

at high and low energies. The “anomaly” removes F states (in the relative 

spectrum) at infinite energies; these states do not disappear- there is an equal 

surplus of states at E = 0. These are the zero modes of definite chirality. 

Thus when F is an integer there is no structure in the continuum; the spec- 

, trum moves rigidly. This is the magic of the compactification that occurs when 

the flux F is an integer. Recall that we still have to examine both F+ and F- 

and subtract to obtain the final sum rule. Before doing this let us first discuss 

the caSe of non-integer F. 
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F # Integer: 

For these values of F, we write 

F = [F] + (F) 9 (2.35) 

where [F] is the integer part of F and (F) is its positive fractional part. For 

a non-zero value of (F), all the thresholds are also non-zero. The edge of the 

continuum does not contribute, i.e. Ic = 0. We also expect that the density of 

states will not be trivial and indeed 

Apt = i 2 8 (E(L/27r)2 - (n - F)2) d 
A=-w 

dE G(E) 

where 

6:(E) = tan-’ F 

E(L/2:);-- (n - F)2 > ' 

and 

JR(E) = 2 B(E - Es) b;(E) 
rb=--00 

(2.36) 

(2.37) 

(2.38) 

where ET = (2r(n - F)/L)2 . The quantity 6~(0+) that arises from the lower 

limit of the phase space integral has a precise definition, but from the above, it 

is formally 

a&+) = 2 mE3 - (2.39) 
n=-00 

From (2.29) we can evaluate the integral of the density of states up to a large 

energy E = I’ = M2 (M > (F/L)). In the notation of (2.24) 

M’ 

/ 
Ap,(E) dE = -$ 

cow 

C/{ 
n-F}dE. 

ET 
-W 

ET 

(2.40) 

The interchange of sum and integral is legitimate since M2 is finite and the sum 
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is cutoff. In Appendix B we compute the above in two ways: fixing M large and 

taking the limit and by c-function regularization. Both yield the same result: 

M’ 

M1~YW I 
Ap,(E) dE = - (F) + f (F) f 0 

ET 

= 0 (F) = 0. 

From this result and (1.30) we find 

bR(o+) 
A 

= -[F] - f 

(2.41) 

(2.42) 

and hence 

Index(i%) = ni - n$ = -[F] - k . (2.43) 

The reader should not yet worry about the one-half, we still have to compute 

the difference in (2.17) . This result could also be obtained “naively” from the 

bound state contribution 

- F) - c(n + F)] 6(E) 
(2.44) 

I = ; (-1 - 2(F]) 6(E) 

but the reader should feel uneasy about such manipulations. 

Now we can collect results and write 

. Index(i&) = 5 [6~(0) - &R(oo)] - UAnomaly” . (2.45) 

This is the expression given in the literature for the index of an operator defined 

on a space with boundary. The Atiyah-Patodi-Singer 
31,Q invariant or spectral 
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asymmetry for (i& ) is now recognized as the index plus the anomaly: 

rlo = A 1 [bR(o) - 6R(m)] = (F) - ; (2.46) 

This is periodic and jumps discontinuously for integer F. 

There is an important feature of (2.41) that should be made at this point. 

The integral of the density of states as M goes to infinity is independent of L, 

the width of the strip. Even though the density of states depends on this scale, 

the total integral, i.e. the total number of (relative) states in the continuum is 

scale independent. This remarkable feature has far reaching consequences which 

we postpone discussing until the treatment of the vortex problem. 

Now we can complete the evaluation of the sum rule for the strip problem 

by combining the results for F = F* . One must distinguish three cases: i) F+ 

and F- non-integer, ii) one is integral, iii) both are integral. In all of these cases 

the anomaly and the phase shift at infinite energies are 

A=(F+ - F-) = total flux (2.47) 

and 

i bR(m + iv) = -A - 

Case i: 

From eqn (2.20) and (2.41) one gets 

b [6&o+) - &+)I = (F’) - (F-) 

7 

Case ii: 

Index(iJ8) = nk - ni = IF-1 - IF+] . 

(2.48) 

(2.49) 

Suppose F+ is an integer and F- is not. The edge of the continuum contributes 
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and using (2.20), (2.31), (2.32), and (2.41) we find 

1 [6R(o+) -a&‘)] = (F-) - 5 7r 
(2.50) 

Index(iJP) = [F-J + f -F+ . 

The one-half arises because one of the “zero modes”, the one corresponding to 

n = F+ is not a bound state. It is an unbound resonance whose wave function 

is continuum normalizable and approaches a constant at plus infinity. This cor- 

re6pOnd6 to the anomalous Levinson’s theorem that has been studied in Ref. 7 . 

In the mathematical expression for the index there is a term h(0)/2, where h(O) 

is the number of harmonic spinors on the boundary. Q’31 This term is added to 

compensate for the fraction l/2 arising from the anomalous Levinson’s theorem. 

Case iii: 

From eqn (2.31) and (2.32) one gets 

1 [6R(o+)-6R(oo)]=o 
7r (2.51) 

Index(@)= (F--F+)= -A. 

Let us now turn to the second example. 

B) Joe’s Bar- The Vortex: 

In this section we will study the problem of fermions interacting with a gauge 

vortex. 32 This problem has been investigated by Kiskis, ref. 25, with special 

, emphasis on the low energy aspects, namely the zero modes. In his paper, Kiskis 

took the anomaly structure and the high energy behavior from the well known 

diagrammatic results. More recently, this problem has been studied in relation 

to the index theorems (Ref. 9). 
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Here we propose to study this problem using the sum rule exposing the 

physic6 of both the high and low energy aspects of the problem. Again we are 

trying to understand the behavior of the relative spectrum at the intermedi- 

ate energy scales as well. This problem offers an unusual mathematical setting 

because of the long range nature of the gauge fields. 

We take the background gauge field to be (in polar coordinates) 

A, = +v T A(t) . 

In (1.12) the operator L reads 

a ia %-;%+A(r) . 

(2.52) 

(2.53) 

The restriction of A(r) to be spherically symmetric can be relaxed without mod- 

ifying our conclusions.’ Since the total angular momentum operator (z = 

-V/W + @s/2)) commutes with the Dirac operator, the wave functions can 

be written as 

where 

J=L+; e=o ,fl ,f2 ,... 

9 In this basis we can write for every J 
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(2.55) 

(2.56) 



where 

tiJ = t <+A. (2.57) 

For a regular vortex configuration, the potential satisfies 

A(r) w 0 44 
F 

--- 
r+O r-+00 r 

(2.58) 

and 

F Jbu = QLU B(r) 
/ 

B(r) rdt = F . (2.59) 

From (2.56) and (2.58) we see that at short distance6 the fermions interact with 

the magnetic field, whereas at long distances (we assume that the vortex has a 

radius of order J.J) the interaction is with the long range gauge field. This long 

range part causes a shift in the effective angular momentum (J + J - F). 

The zero modes can be found easily; they satisfy 

[; i’#J(r)] tDr(‘) = o 

whose solutions are 

(2.60) 

(2.61) 

or 

ti+ --XP (+]hk’)d+ ++~~~ zLimF, (2.62) 

9 T--r00 

Regularity at the origin requires J < 0 for $L and J > 0 for ++ . For negative J 

the solutions for +- are normalizable in the measure dr for IJI + F < -f while 

for positive J $+ is normalizable if J - F < -i. 
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The long range nature of the gauge field introduces very strong infrared 

problems. All the usual theorems of scattering theory are highly suspect in 

the presence of such long range potentials.” Therefore we shall proceed in a 

rather unconventional manner. We shall “imbed” the radial half-line problem 

onto the full line and recover the problem of interest by a simple and tame 

limiting procedure. This device may be new (but we doubt it) and of interest 

in other applications. We will regulate the long and short distance behavior of 

the differential equation by modifying the effective potential for distances smaller 

than a, where a < p and for distances larger than R, where R B ~1. 

The imbedding potential for this problem is chosen to be (a > 0) 

Jla -oo<r<a 

dJ(r> = (J + NrW a<r<R CR 29 4 (2.63) 

\ (J-WR R<r<oo 

That is, each partial wave is imbedded into a full one-dimensional problem on 

the line. We shall demonstrate that the vortex case is recovered smoothly in the 

limit that (1) a goes to zero (recall A(0) = 0), and (2) R goes to infinity. In fact, 

by studying the limiting process in some detail, physical insight can be extracted 

that is relevant to the physics of the vortex. The imbedding will introduce a 

length scale in the problem. This will allow us to track the behavior of the 

density of states as the cut-offs reach their physical values. 

Another advantage of this formulation is that it introduces a “gap” in the 

spectrum, and the zero modes have an exponential fall-off (for F > J) for r > R, 

and are continuous across a and R. This procedures binds zero modes (for $+ 
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for example) for every J > 0 satisfying 0 < J 5 F . In the original problem 

some of these states are resonances in the continuum, however we must and will 

recover all the known results in the limits. As a payoff of this procedure we will 

be able to expose clearly the physics of the anomaly. We can now carry-over 

certain results from the strip problem. In particular, we find using (2.13) for 

each one dimensional problem for the partial wave J: 

AJ(z) = f (J - FUR Jla 
z + (J - F)2/R2 -&TPp 1 (2.64) 

A(@‘) = c AJ(~) J=t+; e=o,*1 ,f2 )... 
J 

Again we see that the sum over J is conditionally convergent, but we can calculate 

unambiguously the quantity 

WzJ) = -A =2 O” 
c 

1 
8F 2 ~=-w [z2 + v - r)2)13’2 ’ 

where 

z2 =zR2 f=F-;. 

Following our previous arguments (see also Appendix A) we find 

lim aA(z’F) = -1 
dF A@, F) +-F 

z+oo z-+00 

(2.65) 

(2.66) 

and therefore 

, 
1 

5z f 
-&&JR(E) dE = -F bR(oo i-iv) = -rF . (2.67) 

r-+w 

Indeed it can be seen that A(z,F = 0) vanishes identically since there is a 

cancellation among all the partial waves. For F = 0 there is no anomaly. We 
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also compute the quantity (again see Appendix A) 

aA(z,F) 1 =a- v - f> v+ :, 
aa9 4 [22 + (e - f)2]3/2 - (22 + (e + ;)2]3/2 1 (2.68) 

It is easy to demonstrate the following properties of the above expression: 

aA (2, F) - n. -0; 
2’-+w 

and for any z2 # 0, 

WGF) = 0 
3x2 

F = half integer 

or F = integer 

The relative density of states is evaluated as before. It reads 

A@) = APb(E) + AP@) 

&‘b(E) = ; 2 [@ - f) - @  + f)] 6(E) 
f=-00 

Apt(E) = -$ 
and where the curly bracket is now defined as 

(2.69) 

(2.70) 

(2.71) 

For every fixed E it is easily seen that x(4! + i} vanishes identically (the 6 

functions cut off the sum, the sum index can be shifted and the terms cancel 

pairwise. Therefore there is automatically no dependence on the cut-ofl a. The 

passage to the limit a + 0 is trivial. This is because the gauge field is regular 

at the origin, and very near r - 0 the fermions only feel the centrifugal barrier 

as in the free problem. 
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The same can be seen from Ap,(E) for the case f = integer. For such values 

of f the continuum extends to zero, and we expect a contribution from the edge 

of the continuum. There are no isolated bound states at E = 0. From Eq. (2.68) 

and (2.69) for integer f 

A(z, F) = A(oo, F) = -F z#O. 

Also (similar to Eq. (2.28) and (2.29)) 

JR(E) z EmF (E - 0) 

(2.72) 

(2.73) 

and 

I, = F Index(iq)) = -F . (2.74) 

But when f is integer F (= f + f) is a half integer. This half integer in the 

index (ijD> is again a realization of the anomalous Levinson’s theorem. The 

wavefunction for e = f app roaches a constant for r > R and corresponds to a 

resonant continuum state. In the physical vortex problem (R + oo) the norm of 

this state diverges linearly with the length of the system. 

For f # integer we write f = [f] + (f) (0 < (f) < 1). Integrating the 

continuum density of states from threshold up to a large energy M, and passing 

to the limit M2 * 00 we find (using the results of Appendix B) 

M~-wo 

/ 
Ape(E) dE = i i6Rb’ + i’?) - hR(o+)] = - (f) + ; . 

0 

(2.75) 

Collecting results and using the sum rule (1.24) or (1.25) , one finally achieves 

Index(@) = ni - ni = -[f] - 1 . (2.76) 
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This is seen to be the correct relative number of bound states from the analy- 

sis following (2.62) with the Upotential” (2.63). This result can again be obtained 

“naively” by carrying out the sum in Apb(E) in (2.70) for R finite and f not an 

integer. 

The interpretation of the above analysis is the following. The gauge field 

removes F states at infinity (of one chirality relative to the other), and (ng-ni) 

states “spill over” the threshold and become bound states; however (f) - $ states 

remain in the continuum. 

Our next step is to study the limit R + oo to recover the physical problem. 

In (2.70) the continuum contribution to the density of states vanishes as R ---) 00, 

however the integral from threshold to infinity is independent of R and given by 

(2.73). 

From (2.70) for Ape(E) we see that as R + 00 every threshold approaches 

E = 0, and the origin becomes an accumulation point. 

to repeat the evaluations using the contour e of Figure 1 

behavior in this limit. 

The reader may wish 

which has a smoother 

The fact that for E # 0 the density of continuum states vanishes can also be 

seen from the fact that for z # 0, 

aA ___) 0 , 
az2 R+oo 

A(%, F) R-W -F . 
+ 

(2.77) 

Therefore in the limit R + oo we find 

Ap(E) = -F6(E) . (2.78) 

There are F states at E = 0 (threshold). This is the result found by Kiskis. 25 . 

The interpretation of this effect is simple, and yet it is the magic of the anomaly. 
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As R becomes large, the density of continuum states becomes peaked near 

the lowest threshold. There are (- (f) + e) states in a region of order (l/R’) 

near the lowest threshold (ET - (f)2 /R2); as R2 -+ CO the continuum density 

of states approaches a J-function at E = 0 with total integral (- (f) + i). In 
addition it is uanishingly small for finite E # 0 in this limit. 

Suppose we consider the contour of Fig. 1 in the case c > 1/R2. We can 

write the total contribution from the continuum states as 

co 

/ 
Apc(E)dE = ; [h(=) -&Z(c)]+ i [6&) - bR(O)] = - (f) + f . (2.79) 

ET 

and from (2.77) in the same limit 

b&o) - &l(c) = o * (2.80) 

Hence 

A [6R(c) - bR(o)] - - (f) + $ . ?r 
(2.81) 

Clearly the total contribution from the continuum then comes from a small region 

O(l/R2) near threshold. As R -+ 00 these continuum states all move to the 

bound state poles at E = 0 (since in this limit all the thresholds collapse to zero). 

Therefore the total number of states at E = 0 in the limit is 

N= -[f] - I - (f) +; = -F . (2.82) 

This is precisely the total number of states removed at infinite energy (via the 

phase shifts). When the limit R -+ oo is taken, there are no energy scales 
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left in the problem; therefore any deficit of states at infinite energy has to be 

compensated by an excess of states at zero energies. These are the “zero modes” 

induced by the anomaly. In this manner the high and low energy aspects of the 

anomaly are reconciled. 

In the absence of any mass scale (chiral symmetry) the relative density of 

states behaves as an incompressible fluid. The anomaly “pushes on” states at 

infinite energy and these states “spill out” at zero energy. After the theory is 

regulated, the states above the regulator scale are missed in the counting even 

after this scale is taken to infinity. Therefore there is an imbalance of chiral states 

at low energies. 

3. Relation to Other Treatments 

Before proceeding to a brief discussion of perturbation theory, we would like 

to compare our results with other approaches to this problem. 

Fujikawa12 was the first to point out that anomalies arise from a non-trivial 

change in the fermionic measure under a chiral transformation. This change 

is reflected in the existence of a Jacobian of the transformation. Fujikawa has 

shown that the regulated Jacobian is 

which can be seen to be the heat kernel regularization of our eq. (1.9). We can 

write the above as 
00 

J dE A@) CEIMa . 
0 

(3.2) 
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Using the sum rule, we find the result 

.J=F P-3) 

given by the circle at infinity. The Jacobian is counting only states at zero en- 

ergy, and in the continuum up to M 2. Hence it counts only those states pushed 

from infinity in the limit of M2 going to infinity. Note also that Fujikawa’s heat 

kernel regularization gives the same result as the two methods discussed in Ap- 

pendix B, as must be the case. In the next section we also establish contact 

with the beautiful work of Dolgov and Zakharov I’ , Coleman and Grossman” 

and Frishman et al. l5 These authors used unitarity (Coleman, Grossman) and 

dispersion relations (Dolgov et al.; Frishman et al.) to show that the anomaly 

implies the existence of singularities at zero four momentum. The present ex- 

amples and our formalism reproduce these results in a non-perturbative fashion, 

thereby establishing a simple bridge between high and low energy. 

4. (3 + 1) Dimensions 

A) Perturbation Theory: 

At this point the learned reader may ask what is the relation between our re- 

sults and the well-known results from perturbation theory, namely the “triangle 

diagram” ’ in 3 + 1 dimensions. To answer this question, we will choose to keep 

gauge invariance and introduce a Pauli-Villars regulator of mass M and compute 

the usual matrix elements of $ and J5 between the vacuum and a state with 

two real photons of momentum k’ and k2 (q = k’ + k2): 

(OIJ;lk;, k;) = PaB(k’, k2) Z caPv6 k;ks” F(q2) + . . . 

(44 
(OIJ’lk;, k;) = T@(k’, k2) S ccrpT6 k:k; m A(*‘) , 



where m is the mass of the fundamental fermions, and the dots refer to terms 

that vanish when contracted with qP . Therefore we write the analog of Eq. (1.6) 

as 

q/P+ = 2m T@(q, m2) - zrnm 2M T@(q, M2) 
+ 

and in terms of the invariant amplitudes F (g2) and A (q2) we have 

(4.2) 

q2F(q2) = 2m2 A(q2,m2) - 2M2 A(g2,M2) . 

It is easy to calculate A(q2,m2) for on-shell photons (see Ref. 1): 

1 1-Z 

A(q2, m2) 
1 

lm2 - Q2XYl * 
0 0 

(4.3) 

(4.4 

where A = numerical constant. The statement of the anomaly is that 

$rn- M2 A(q2,M2) E A . 
4 (4.5) 

However it is interesting to delay taking the limit A4 + 00. Let us first analyze 

the imaginary part of F(q2) in (4.3), following the spirit of Dolgov et al., 14 

Coleman et al.‘” and Frishman et al.” : 

Im F(g2) = 2 
m2 
7I.m A(q2, m2) - YIm A(g2,M2) . (4.6) 

The imaginary part (absorptive) of F(q2) g’ Ives the discontinuity across the two- 

particle cut. It corresponds to the amplitude for creating a fermion-antifermion 
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state (of opposite chirality in the m + 0 limit). The contribution from a(q2) 

cancels between the two terms on the r.h.s. of (4.6). A short computation yields 

m2 FIm A(q2, ml) = I(q2, m2) s 
m2 
Q’ G2 - 4m2) ln 

l-JiZ?p 

1+&=mp 1 . (4.7) 

The remarkable property of Eq. (4.7) is that 

W  

/ 
I(*‘, m2) dq2 = c = constant , (4.8) 

4ma 

where the constant c is independent of the mass m. Therefore as M 3 00 

1(q2,M2) becomes a distribution peaked at infinite q2, while in the m -+ 0 limit, 

the chiral limit, 1(q2, m2) becomes cS(q2). This is the same behavior of the densi- 

ties of states found in our examples. In our examples and formalism the variable 

E corresponds to q 2. The fact that the limit of M -+ oo in (4.5) corresponds to 

states being removed from infinite q2; in the chiral limit, these states appear at 

!I2 = 0. This is the “anomaly pole”, again a low energy manifestation of physics 

taking place at infinite energies. 

B) Generalized Discussion: 

The results of the first section are not restricted to a particular dimension. Since 

the result was based on analyticity, the relative chirality phase is still given by 

$w + iq) =&II A(Z) . (4.9) 

Now the results of perturbation theory can be reconciled with the discussion of 

the earlier sections. In order to see this explicitly we borrow the result of Brown 
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et.al.(Ref. 27) for the Abelian theory in (3 + 1) dimensions: 

,llw A(m) = -& / &zFF . (4.10) 

This result is obtained from the expansion of the fermion propagator in the 

background field up to the appropriate order in the field strengths. After the 

trace is performed over Dirac matrices (with 75) and the limit of large m taken, 

only the triangle diagram survives. Finally 

The interpretation of this result is again based on the removal of states at infinite 

energy by the background field. The threshold singularity indicates that these 

states are compensated by an enhancement of states at threshold. 

We conjecture that this behavior will not be changed in perturbation theory 

since the states have been pushed to the extremes of the energy scale. For 

finite mass a “reasonable” perturbation can only distort the relative density of 

states locally without changing the number of states regionally. In the limit they 

all are pinned to the energy boundary anyway. Then the sum could not have 

changed. Perhaps this picture provides a physical basis for and helps to clarify 

the remarkable non-renormalization theorem of Adler and Bardeen.34 
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5. Charge in (2 + 1) Dimensions 

A) Vacuum Charge and Parity Anomaly: 

Recently a very interesting new anomaly has been discovered in S-space-l-time 

dimensions. The presence of this anomaly was pointed out by the authors of 

Ref. 18,19,20. There the vacuum charge and currents induced by b.f. were 

computed. lg The induced current turns out to be of abnormal purity. As in the 

axial anomaly case, it was also realized that there is a conflict between gauge 

invariance and parity. 2o Insisting on gauge invariance leads to parity breaking. 

The effective action for the gauge fields is seen to have a topological muss 

term 19,20,35 which breaks parity. 

It was also suggested that the vacuum charge arises from the presence of 

“zero modes” in the spectrum of the Dirac Hamiltonian. 22 However in Ref. 19 

it was obtained from the (1 + 1)-d imensional anomaly. Again we find the same 

puzzle, high or low energy? 

We propose to study the same theory as looked at in Ref. 19 but only the 

Abelian case. We will study time-independent background fields in the Weyl 

A0 = 0 gauge. The Dirac equation is 

[ 
i+4) + iT.(-s - iIT) + m 

I 
$(z,t) = 0 . 

Separating the time variable and choosing a representation such as: 

W  = Ul a2 = 62 P = 70 = Q3 

it follows that 

i;r+.(J - ix)+prn t,b=H$=Eqb. 
I 

(5.1) 

(5.2) 

(5.3) 
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The necessity of the mass in (SJ), (5.3)will become apparent shortly. However 

it may also be argued that it is needed to define the “zero” of energy. In the 

presence of long range fields, there are severe infrared problems. A mass is needed 

to tame these ambiguities and to separate the positive and negative parts of the 

spectrum. When this mass term vanishes p anticommutes with the Hamiltonian 

(4.3) and the spectrum is symmetric about zero energy. The mass breaks this 

symmetry. 

Equation (5.3)with (52)makes the physics of the vacuum charge very clear, 

indeed now the piece i??(b-ix) in H is the l+l dimensional Dirac operator ig 

studied in Sections 1 and 2. Therefore the “zero modes” of i4) became the bound 

states of H (some of them may be continuum resonant states). Take the example 

of the vortex case studied in Section 2. For positive flux the “‘zero modes” only 

have upper component, are eigenstates of parity 70 with eigenvalue +l therefore 

are solutions of (5.3)with energy +m. For negative flux the situation is the 

opposite. Only these threshold states can have definite “parity” (eigenstates of 

70). Therefore an excess of “parity” (+) over “parity” (-) states induces breaking 

of parity in the same sense as an excess of chirality (+) over (-) states (or vice 

versa) breaks chiral symmetry. These “zero modes” induce a local charge density 

that is “localized” (the states fall off algebraically) near the vortex, see (2.61) 

and (2.62) . The background field treats positive and negative energy eigenstates 

differently. For positive flux, positive energy states are attracted to the vortex 

(some of them bind to it) and negative energy states are repelled (the opposite 

for negative flux). A polarization cloud is formed, and this is the origin of the 

charge density. 

The vacuum charge is related to this asymmetry in the Dirac spectrum,3o and 



the quantity q - the Atiyah-Patodi-Singer invariant.3’ We will closely follow our 

previous work, Ref. 7, in which the fundamental gauge invariant quantity B(E) 

was introduced. This together with the derived quantity G,(E) , have a very 

natural and intuitive meaning. In BB we found that the ground state charge was 

given in terms of the relative phase shifts at infinite energies36 when spectral flow 

cannot occur. We write 

Q = -f jmlp(E) - p(-E)] dE = - jmp,da(E) dE 
0 0 

and 
W 

V = 2 J PoddcE) dE 

0 

where 

Podd(E) = & G,(E + iv) 

1 = 
f -&&B(E) 

(54 

(5.5) 

B(E) = det E 
L-1 

The fundamental quantity B(E) measures the asymmetry in the spectrum. The 

quantity &dd is the odd part of the density of states of the Dirae Hamiltonian 

(5.3). 

Regulators are not necessary in (5.4) since the background fields only move 

a finite number of states. Indeed we can relate the quantity G, in (5.5) to JR(Z) 

and A(t) defined in the previous sections, after recognizing that Eq. (5.3) can 
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be written as (this corresponds to the tc constant case on BB) 

H =iJD+mas 

where 4) is the Dirac operator studied in the first sections. Therefore 

G, = m Tr 03 m 
H2 _ E2 = m2 _ E2 ‘trn2 - E2) 

(5.6) 

where A(z) was introduced in (1.16). We can now use all the results from the 

previous section, and will return to a reexamination of the vortex problem of 

Section 2 when f # integer,while keeping the cut-off R finite, and then taking 

the physical limit at the end of the computation. In this way we will clearly 

expose the high and low energy physics. 

For this problem A(z, F) is given by Eq. (2.61). Writing Podd(E) in terms 

of p;dd and pFdd the bound states and continuum contribution respectively and 

writing above thresholds 

B(E) = IB(E)I c?‘(E) . (5.8) 

We find for positive energy 

pzdd(E) = & &6(E) . (5-g) 

Below thresholds we find using (5.5) and (5.7) 

pidd (E > 0) = i sign(m) A(0) 6(E - Iml) 

(5.10) 

= f sign(m) Index(@) 6(E - Iml) 

where Index(iJP) is given by (2.73). From the equations (5.5), (5.7) and using 
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(2.67) we find 

pFdd(E > 0) = mAp,(E2 - m2) . (5.11) 

The dimensions are reconciled by noting that the left side is the density per E 

whereas the p on the right side is the density per E2. 

The ground state charge is given by (5.2), (5.9) and (5.10) 

Q= -f sign(m) Index(@) - $ [6(w + iv) - a(0 + iv)] . (5.12) 

Clearly the threshold phase shift a(0 + iv) must cancel the bound state contribu- 

tion since it is precisely the number of states that “spilled over” the thresholds. 

To be convinced of this fact, notice that Eq. (5.12) can be written in the form 

(see Ref. 3) 

pZdd(E > 0) 
=-- 

2; e(f-f,E) -e(l+;,E) 1 (5.13) 

with the definition 

e(j, E) = 8 (E2 - m2 -j2/R2) & tan-’ (s)[E2 - m2 -j2/R2]‘12) . 

(5.14) 

For E > 0 there are thresholds at [m2 + j2/R2]1/2. The tan-‘(x) terms are 

the phase shifts above these thresholds. From this result it is straightforward to 

check that 6(0 + iv) is the same as the term in brackets in Eq. (2.67), namely 

’ the number of bound states. 

Therefore we are left with only the 6(oo) term in (5.12) . This phase shift is 

related to the 1 + 1 dimensional anomaly as follows: 
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Continue E to the imaginary axis E = +iw, and by using previous results 

we find 

G c=m a0 
z 

(5.15) 
r=ma+wa 

and since 

A(4 F -__)-- 
z 2-w 2 

then 

(5.16) 

And from the above and their relation to B(E), is easy to see that 

with Bo a constant. Continuing to E + iv, the positive energy cut is approached 

from above and the negative cut from below. Hence 

B (E + iv) E~w Bo e-irF8ign(m) . (5.18) 
+ 

Therefore from (5.8) 

6(oo+iq) = --AF sign(m) . 

in agreement with (1.37) . Finally the high energy form for the charge is 

Q = g sign(m) . 

(5.19) 

(5.20) 

This is the result of Ref. 19. However we see here that it arises from the phase 

shifts at infinite energy. The number of bound states at E = Irnl is given by 
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N = If] + 1 ( recall the Index of (@) and equations (2.76) and (2.82) ). And 

there are (f) - i states in the continuum (positive and negative). As the cut-off 

R is taken to infinity, all these continuum states accumulate at E = jrnj and as 

in the physical vortex problem, there are F states at E = ztlml. Some of these 

are bound states, others 

integer. 

are resonant states, hence the number need not be an 

In the same spirit as (2.81), Eq. (5.4) b ecomes for large R ( R2 Z% l/e ). 

1 
Q = isign ([f] + 1) + &o) - ~b)l* (5.21) 

Now for very large R, we have shown that the phase is constant for all energies 

larger than c. Hence in this limit we can write 

& IV) - W)] = $ [6(O) - S(c)] 
(5.22) 

= $ign(m) ((f) - i) . 

The charge evaluated from the low energy part of the spectrum then becomes 

Q = ~sign(m) {[f] + (I) + 5) (5.23) 

in agreement with the high energy result (5.20) . 
1 

These extra states appear because the anomaly removes states at infinity,and 

as a consequence ‘enhances’ one value of parity relative to the other at threshold. 

Parity is broken when the theory is regulated. From the expression for Q and, 
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as usual, invoking Lorentz covariance, 19 

(J”) - sign(m) cj‘“J’ Fyp + . . . (5.24) 

The dots stand for higher derivative terms. Expression (5.24) shows the abnormal 

parity (Hall current) and gives rise to the mass term in the effective action for 

the gauge fields.35 The sign(m) factor determines whether these states are in 

the positive or negative continuum, i.e. whether they are empty or filled. This 

factor plays the same role as the 3~; of the soliton case in 1 + 1 dimensions. 

B) Spectral Flow: 

Now we can generalize the problem to the situation in which the mass term has 

a compact (localized) variation in space m - m(r). Following BB we construct 

the spectral asymmetry for this problem as 

rl= rim + (V - )Im) 9 (5.25) 

where qm is the index for the problem with a constant m. This amounts to 

isolating the phase at infinite energy completely. The index qm contains &l the 

information about the high energy aspects of the problem. The quantity (q -Q,,) 

is an even integer (or zero). It depends on the local variation of m(r) and contains 

the information about spectral flow- i.e. the energy levels that cross zero in the 

process of deforming the mass from the constant m to the final m(r). 
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6. Discussion and Conclusions 

We have studied the physics of axial and parity anomalies in Abelian theories 

from a simple perspective. Our approach consists in studying the relative density 

of states of different chirality-(or parity in (2 + 1) dimensions). 

We find that the gauge field induces a phase shift in states of one chirality with 

respect to the opposite chirality at infinite energy (or alternatively read intrinsic 

parity respectively). The refatiuc phase shift is given by the anomaly. The number 

of states is conserved. A deficit of states at infinite energy is compensated for 

by an excess of states in the finite part of the spectrum. When the theory is 

regulated only the excess of states remain, and chiral symmetry is broken. 

For long-range fields, when there are no other energy scales in the fermion 

spectrum, these states appear at zero energy (energy here stands for the eigen- 

values of the Dirac operator). In this case the relative density of states behaves 

like an incompressible fluid. 

These states at zero energy (“zero modes”) have definite chirality. When reg- 

ulators are introduced, they suppress the counting of states above the regulator 

scale. Even as the regulators are taken to infinity, the states removed at infinite 

energy (by the gauge fields) are missed in the counting. A net number of states 

of one chirality with respect to the other is found. Chiral symmetry is broken. 

The same physics is seen to happen in (2 + 1) dimensions with static back- 

ground fields. This time the symmetry that is broken is parity. The ground state 

charge arises from states that are phase-shifted at infinite energy. This charge 

can be expressed as this phase shift which is in turn determined completely by 

the chiral anomaly in (1 + 1) dimensions. 
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Again the relative number of states (of opposite parity) lost at infinity are 

found at threshold (for long-range fields) which is now at an energy of E = hlrnl 

(m = mass of the fermions). These states are localized near the spatial region 

in which the magnetic field is concentrated, thus creating a polarization cloud 

and giving rise to the vacuum charge. Each of these states is an eigenstate of 

(intrinsic) parity. A formulation of spectral flow was briefly discussed. 

As a payoff, our simple formulation can offer a physical re-interpretation of 

some well-known mathematical indices. We find that the expression for the index 

of the Dirac operator is related to an extension of Levinson’s theorem (or to the 

conservation of states). This index was shown to be given by relative phase shifts 

(of opposite chirality states) at threshold. 

We have also made contact with the perturbative treatment of the axial 

anomaly in (3 + 1) d imensions, where an analysis of the absorptive parts of 

amplitudes yielded the same qualitative physics as in the (1 + l)- dimensional 

examples. We also showed that the relative phase-shift at infinite energy is 

completely determined by the anomaly expression. 
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APPENDIX A 

We want to compute the sum in Eq. (2.18) in the text. For this we use an 

equation given in Bateman ” and by taking an appropriate derivative we find 

8 A (2, F) 
8F 

= -1- 4az~kcw(2nkF)K1(2?rkz) . 
k=l 

(A4 

This equation can also be obtained directly by taking a suitable Bessel transform 

of each term and summing. Integrating (A.1) in F from zero to F we find A(z, F) 

as given in (2.15) : 

A@, F) = -F - 2z 2 sin(27rFk)K1(2?rkz) . 
k=l 

From this it follows that 

$ = 2?r e ksin(2*rrkF)Ko(2nkz) . 
k-l 

(A-2) 

(A-3) 

In the above expressions, Kc(w) and K ( ) 1 w are the modified Bessel functions. 

The expression for db~(E)/dE can be obtained by analytically continuing z2 + 

-E - iv in the above expressions, and computing the imaginary part according 

to eqns. (1.20) and (1.29) in the text. 

From the asymptotic expansions for the modified Bessel functions we can 

bound the sum 

lA(z, F) + FI 5 cfie-2rz (A-4) 

with c being a numerical constant. 
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APPENDIX B 

In this appendix we give the details leading to Eq. (2.38) in the text using 

two alternative methods. 

1. Computing the integral in the limit M2 + oo using the expression (2.41) 

in terms of the phase shifts (2.37) we can write 

Ml+00 

/ 
Ap,(R) dE = i ,/irn- + 

ET 

where 

M=M k 
( ) 

U*=(MfF] 

W ) 

(B-2) 

VW 

K*= ~2--((nfF)~ 
4 (B.4 

and [I’] is the integer part of P. Evaluating the expression for (B.l) at the upper 

limits K*, we achieve 

u.L.=b Esin(y) -Fsin-l(y)] . (B.5) 

For M ---) 00 only the large values of n contribute to (B.5). Therefore we can 

replace the sums in the above expression by integrals. 
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Hence 

A- 
sin-‘(z) dx - 

/ 
sin-’ (2) dz . 

(1-W M 

(B.6) 

where A* = (U* - F)/M. The lower limits in (B.6) go to zero at M + 00. Now 

(B.6) becomes 

(B.7) 

In the limit, the integrand is approximately a constant in (A+, A-) (sin-l(z) N 

7r/2) therefore the expression in (B.5) yields 

U.L. = f 2 {(M+F]-[M-F]-2F). (B-8) 

The evaluaton of (B.l) in the lower limits k = 0 is straightforward. It gives 

L.L. = -i ; 

1 

&(n-~)-E++F) 
0 1 1 (B.9) 

= -f {-2[F] - 1+ (M + F] - [M -F]} . 

Combining (B.8) and (B.9) we find Eq. (2.41) . Notice that the dependence of 

’ (B.8) and (B.9) on U* is because of the sharp cut-off. However this dependence 

cancels in the final answer. 

2. Using c-function regularization. Let us define the regularized continuum 

53 



contribution Ap( E, s) by 

O” (n - F)k-‘(E)o (k2(E)) AP@G) = -& c 
-CO E k(E) 

with 

2-(n-F)2. 

(B.10) 

(B.ll) 

Then we are interested in ,Ll+ Jom Ap(E,s) dE. With this regularization we 

can safely interchange the integral over E and the sum over n. For every n the 

integral over E is 

Co 
I A$(E,s) dE = - 

(n-F) O” 
2x 

I 

k-‘dk 
k2 + (n - F)2 . 

(B.12) 

0 -00 

Therefore (for non-integer F) 

00 
lim 

e+o+ / 
Ap,(E,s) dE = -5 Jly+ e sign(n - F)ln - FI-’ . (B.13) 

0 n=-00 

Now the series is convergent and we can shift the integer part of F. Separating 

the positive, negative and n = 0 terms in (B.13) the sum in (B.13) can be written 

as 

00 
Cl n + 1 - (F) I-’ - E In + (F) I-” = c(s, 1 - (F)) - s(s> (F)) (B.14) 

0 0 

where < is Riemann’s c function. Using #IAT+ ~(8, a) = (i - a) we find 

00 

#!!f$ / 
ApJE,s)dE=-(F)+;. (B.15) 

b 
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FIGURE CAPTIONS 

1. The contours of integration in the &plane for computing the index. When 

there is a gap, use the solid curve C. When the gap is small or zero, use the 

dashed curve e. 
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