
SLAC-PUB-3565 
January 1985 
(N) 

THERE IS NO I/O LIKE NO I/O * 

T.Y. Johnston 

Stanford Linear Accelerator Center 
P. 0. Box 4349 

Stanford, California 94305 

ABSTRACT 

On most computer systems the most common cause of performance 

degradation is I/O contention. This paper will examine some efforts 

that can be taken in a VM environment to reduce I/O or its effect at 

both the global and local levels. 

Invited talk presented at Candle Users Group, 

Los Angeles, California, February 21 & 22, 1985 

*Work supported by the Department of Energy, contract DE-AC03-76SF00515. 



Page 2 

OVERVIEW 

From the time that most systems are IPLed until they are shutdown 

almost all tasks spend most of their time waiting for I/O. Cray 

Research on the XMP has solved this problem for many applications with 

th&r.gigabyte per second solid state device. IBM has hardly addressed 

this problem. When one looks at the improvements in CPU performance 

versus I/O service times over the last decade CPU performance has 

improved much more than has I/O service time. (As used here I/O service 

time is a combination of data transfer time, seek time, rotational 

latency, and interference.) Today's system is fundamentally more I/O 

bound than the one of a decade ago. I will discuss at three different 

levels some considerations for improving the I/O performance. 

1. CP system wide considerations. What can be done to system I/O 

to improve performance? 

2. A few things that can be done at the CMS level to improve 

performance. 

3. Some considerations at the application level to reduce‘I/O. 

SOME CONSIDERATIONS 

YOU CAN'T TUNE IT, IF YOU CAN'T MEASURE IT! 

VM, as delivered by IBM, comes with insufficient measurement tools. 

To be able to do even a reasonable job of tuning your system or an 

application you must obtain tools. There are now several vendors who 

arelproviding tools to assist in the task. My installation has found 

that we have to build many of our own tools in addition to using those 



Page 3 

supplied by vendors. Hopefully, this situation will improve in the 

future as more products come into the market place. 

As an example of one need, when trying to tune I/O one of the most 

important data elements is the number of SIOs done by-an operation. 

There is -no-- standard CP command to give you this information, even 

though CP maintains SIO counts in both the RDEVBLOK and the VDEVBLOK. 

We have added query commands to CP to obtain this information. If you 

don't want to do a system modification, people with class C or E 

privileges can get this information by having an EXEC that uses the CP 

LOCATE and the CP DCP commands. 

My discussion is oriented towards a medium to large system where 

there are 50 to 300 or more connected users. In this environment the 

system is the predominent cause of I/O on a volume. No user, with the 

exception of a data base manager, has any significant effect. Thus you 

are looking at CP paging, swapping, and directory space; CMS S and Y 

disk; and any special applications such as a data base manager. One can 

dedicate volumes for such space, but one should not reduce the number of 

arms servicing the data to get it on dedicated volumes. For example, if 

YOU use two dedicated volumes for CP paging on 2 channels you can 

support a paging rate of about 90 I/OS per second. On the other hand 

eight 200 cylinder areas on eight volumes on four channels can support 

about 360 I/OS per second. 

SYSTEM WIDE CONSIDERATIONS ___- 

Some things to consider system wide: 

1. If you have any solid state devices use them for paging. 



Page 4 

2. Put your other high activity data areas on 3380s. 

3. Spread high activity areas over channels and arms. 

4. If using AA4 3380s spread activity over internal paths. 

5. HP0 3.4 swapping should be-spread over al-f channeis. Any data 
- 
co-resident on a volume with swapping should be very low 

activity (e.g. CP source). Don't put any user's 191 disk on a 

swapping volume. 

6. The CP directory on many systems is a very busy data area. The 

directory is searched linearly. A bypass that helps is to put 

frequently linked disks such as the S and Y in a directory 

entry which comes at the front of the directory. For those 

that have a sorted directory (such as created by DIRMAINT) SLAC 

has created a mod (which is on the Waterloo tape) which finds 

any directory entry with one I/O. 

CMS CONSIDERATIONS 

Most of the considerations for CMS (without doing system 

modifications) are in the areas of disk blocking, minimizing seeks, and 

minimizing contention. Some things to look at: 

1. Consider the recently announced IBM 3880 model 23 and 

supporting VM software which allows minidisks (such as the S 

and Y disks) to be cached. This can markedly improve S and Y 

disk performance. 

2. Ensure that both the S and the Y disk are separate from other 

high utilization disks. 



Page 5 

3. Ensure that all disks which have significant activity use 4K 

blocks. In fact it can be argued that all mini disks on 3380 

should be blocked 4K. Occasionally a disk with lots of small 

files will require- slightly more space- at 4K" but that is 

probably the five percentile case. If you use smaller blocks, 

every file that fits in one block at 4K and doesn't fit in one 

block on the smaller blocksize requires a minimum of three I/OS 

instead of one (2 or more for the data blocks and 1 for the 

index block). 

4. Create the S and Y disks by copying all modules, execs , and 

XEDIT macros to the disk first (so as to clump them together 

and minimize seeks). 

5. If you make changes to the S and Y disk without recreating 

them, then periodically rebuild the S and Y disk by copying to 

another address and copying back. If these disks are not 

rebuilt then the blocks of a file can be spread all over the 

disk. At SLAC we discovered that the Fortran compiler (the 

principal language at SLAC) was spread over 15 cylinders. 

6. Wherever possible use DCSSs rather than modules for products 

such as VS FORTRAN. The paging system is more efficient than 

the CMS file system and only the required pages are read in 

rather than the entire module. 

7. Put other local codes into DCSSs if possible. At SLAC we have a 

standard set of nucleus extensions for highly used CMS 

components that are NUCXLOADed for all virtual machines. These 



Page 6 

reside in a DCSS allowing one copy in the paging space to 

satisfy the community. 

8. Make certain that S and Y disks match the saved system so that 

people do not get private-copies of the directories. If you 

follow a policy of updating either of these disks on the fly, 

then you need to establish procedures that keep the disks and 

saved systems in synch. 

APPLICATION CONSIDERATIONS 

Under CMS fixed length records can be handled much more efficiently 

than variable length records. Let me give an example: We have a query 

command that XEDITs a file in order to provide the command response. 

- Some users were having trouble because of the size of the file. We 

reasoned that we could reduce the amount of memory required to edit the 

file by changing the lrecl from 80 to 25. When we did this, the file 

took the same amount of memory and the I/OS to read the 3500 records 

.went from 6 to 23! We found that in the first case the default XEDIT 

WIDTH equalled the record length and consequently XEDIT read in 15 

blocks at a time. In the second case only one block at a time was read 

in by XEDIT as it scattered the records through memory 80 bytes apart. 

The CMS file system allows the reading and writing of multiple fixed 

length records in a single call to the file system, allows you to read 

or write one record at a time, and requires you to read or write only 

one variable record at a time. 

The following table summarizes various cases: 



3554 Record File with Various Strategies 

RECFM LRECL Number Blocks Width Number I/OS 

FB 80 -70 80 -6- - 

- -- VB 80 69 80 70 

FB 25 22 80 23 

VB 25 22 25 23 

FB 25 22 25 3 

Page 7 

From this it can be seen that applications with records all about the 

same size get significantly better performance using fixed block records 

rather than variable. Make certain tht you specify a blocksize close to 

- 32k (that value can go to 64K if you are not using OSSIM). 

In the case of FORTRAN one should make sure that all large data 

files are written using unformatted I/O, mode 4, and close to 32K 

blocksize. Each FORTRAN 'block' appears to CMS as a variable length 

record of length blocksize. Thus CMS will read the record in one I/O 

even though it spans seven disk blocks (assuming the blocks are on the 

same cylinder). 

Don't use EXECs to manipulate large amounts of data. EXECIO only 

reads one block at a time. 

The interface between applications programs and the spooling system 

is also inefficient. Although, you will not save real I/OS you will 

save significant mumbers of virtual I/OS and significant CPU time if you 

write print files to disk (particularly as FB files) and then use the 

PRINT command to print them. 



I 

Page 8 

SUMMARY 

I have given some hints and ideas about improving system 

performance by reducing I/O. The most important thing that anyone can 

do in their own installation-to improve performance isto:" 

a. Install measurement tools in your system. 

b. Learn how your system runs. 

C. Improve it. 

d. Measure to make sure that you did improve it. 

e. Repeat the process. 

- . 


