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ABSTRACT 

The two-loop contributions to the induced cosmological constant are com- 

puted in a matterless Einstein theory of gravity expanded about a Minkowski 

background with no cosmological term present in the classical action. The 

regularization-independent cancellation of the contribution to one-loop order 

is found not to occur to two-loop order. 
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Introduction 

The cosmological constant problem is one of the more tenacious problems of 

modern quantum field theory. In order to account for the observed vanishingly 

small value one is required, in a perturbative quantum theory-of gravity, to fine 

tune the classical cosmological constant (A) against an infinite set of countert- 

erms. Ideally, one would prefer a theory in which there was a symmetry that 

insured the vanishing of all orders of corrections to the cosmological constant. 

Another possibility would be a prescription to identify the ground state or back- 

ground field about which a perturbative theory would give a zero cosmological 

constant to all orders. The first calculation of the one-loop counterterms in a 

theory with no classical cosmological term in the action was performed by ‘t 

Hooft and Veltman’l’ using dimensional regularization and the background field 

method. They found no contribution to this order because all of the contributing 

diagrams are quartically divergent and hence are set equal to zero within the 

context of dimensional regularization. A similar calculation was done later by 

M. Mueller, Ia1 who found that the diagrams that contribute to the cosmological 

constant vanish even when no regularization method is specified. This occurs 

because the coefficients of the divergent loop integrals sum to zero; in fact, this 

cancellation occurs for arbitrary space-time dimensionality. The present letter 

uses the arbitrary-dimension unregulated quantization procedure of ,M. Mueller. 

This procedure differs from the formulation of ‘t Hooft and Veltman in that it 

takes into account the dependence of the measure on the fluctuating metric. 
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Quantization -- 

One begins with the action’““1 

where hpy and h,, are defined by 

h”‘” = 9’/2 gP , 9 = Pet sJ 

h,v = sd2 gpu , hpy h,, = &Y P 

conventions are (+ - - -) for the metric and /c2 = 32zG. This prescription 

for defining hpy , common to this paper and all of its references, is called the 

background field method because one expands 

and 

where qrv is the classical Minkowski background field about which quantum 

fluctuations are considered. Quantization proceeds by choosing a gauge-fixing 

term, 
1 

IGF = 3 
J 

dnx Fa qap Fp ; Fa=c3,hpa, 

This produces a corresponding Faddeev-Popov ghost term, 

- 
I Fp = 

/ 
dnx (-hp” a, c; a, ca + ~3, c; t3, h”a cp) , 

where c and c* are ghost fields. There is an extra term in the quantum action 

that is not present in dimensionally regularized background field quantum gravity 
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(RBQG). Th’ t 1s erm comes from the integral of the product of field configurations 

(the measure) in the path integral. For any quantum field theory, the measure 

must be gauge invariant. “Gauge invariance” in quantum gravity means general 

co-ordinate invariance. In gravity, the measure does not transform properly, 

and hence it must be multiplied by a compensating Zerm in 5rder to preserve 

co-ordinate- invariance. The new compensated measure is 

n [h(x)]-‘n+1’/2 fi dhr”(x) . 
z PLlY 

In RBQG, there is no contribution from this new measure compensating term, 

as its presence induces a P(0) term, whose momentum transform produces a 

contribution that is quartically divergent in four space-time dimensions and is set 

to zero by the rules of dimensional regularization. In regularization independent 

gravity it is essential to include this term. The compensating product can be 

exponentiated, producing a new term in the action, 

IM=f 
/ 

dnx A’ hW A’ 6.. 
cr Y v 

where the A are (n + 1) new auxiliary fields obeying Bose statistics. 

Results 

By expanding hp” as prescribed by the rules above, the Feynman rules can 

be written down directly (see Table 1). Using them, the one-loop contributions 

are readily found and are shown in Table 2.“’ 

Note that the coefficients of the one-loop integrals sum to zero so it is not 

wessary to perform the integrals themselves. This compelling result inspired the 

author to calculate the diagrams to two-loop order. The symbolic manipulation 

program REDUCE 3 was used to calculate the eight diagrams that contribute. 
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There are a total of 26 diagrams to two-loop (O(n’)) order, but 18 vanish by 

virtue of the one loop result. This involved about 25 hours of computer time on 

the IBM 3081 at SLAC in order to contract and combine approximately eleven 

million terms. The results are shown in Table 3. 

It is clear that there is- no complete cancellation of the kind found in the 

one-loop result, as the leading terms for n + 0 and n + oo have non-zero 

coefficients, and hence the total amplitude for arbitrary space-time dimension is 

non-zero by analyticity. If the total amplitude is factored by integrands, there 

is no common root shared by all of the coefficients, so the amplitude does not 

even pass through zero. Although disappointing, it is not surprising, as there 

is no underlying reason why they should sum to zero. It is an extremely rigid 

constraint to require that the contributions to the cosmological constant vanish 

for every point in the phase space of the loop integrals. 

There is an additional subtlety involved in this calculation that is not relevant 

to the one-loop cosmological constant problem. In a two-loop calculation, it is 

possible to have sub-divergences, hence requiring a prescription for subtractions. 

In this particular problem, one-loop corrections occur to internal graviton, ghost, 

and auxiliary field lines. These all produce non-zero coefficients multiplied by 

different divergent integrals. This makes it necessary to choose a regularization 

scheme so as to be able to evaluate these integrals and perform appropriate sub- 

tractions. This defeats the original idea of a regularization-independent result. 

The auxiliary-field quantizaiton method fails to eliminate these one-loop diver- 

gences in the same fashion as it eliminated the one-loop cosmological constant 

divergences. Technically, this occurs because the external momenta of the diver- 

gent sub-diagrams are non-zero, whereas in the one-loop cosmological constant 

calculation the incoming momentum was fixed at zero, producing the necessary 

cancellations. A further difficulty exists in that it is not consistent to use dimen- 

sional regularization to regularize sub-graphs in a process that is divergent by 

six powers of momentum, because the entire process would automatically be set 

equal to zero by dimensional regularization. 
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The computer program was checked by calculating the one-loop corrections 

to the cosmological constant and to the graviton propagator and comparing them 

to the literature. i2’s’41 Further calculations being considered by the author include 

using the computer programs developed here to calculate the four-point graviton 

scattering amplitude to one-loop order within the contex! of dimensional regu- 

larization and the application of supergravity to results already obtained by the 

method of this letter. 
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TABLE 1 

Feynman Rules 

a14 groviton 
Q2P2 

F - m 

w D 
alP13a2P2(P) 

P 
= $5 (aala2 Q/h/32 + rla& V@la2 - ?lalpl qa2P2) 

c* ghost 
-- -+--C 
a P P 

Gap(p) = -y 

ouxiliory 
a,i field P,j A;?(P) = it)ap 6ij 

/P(C) / 
flP 

y’ 3 
‘RP2 

\ 
.\a(~*) 

---< 

cc 

P - 

PA 
8 
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3-Graviton V&text 

+ symm. (5) 

4-Graviton V&text 

p4 
pPl,a2P2,aAa4P4 

4 bl,P2,P3,P4) = ; K2 (2p3”‘d’ 

x 
[ 

1 qa2a9 qP3a4 +34i32 

n-2 rl 
a2a8 vP2P2 qa4P4 

I 

_ p3 . p4 

K 

qa--a @4P2 qa2aa qPaBl + 2+34 qa4a8 @P2 qa2P1 

> 

1 -- 
n-2 ’ ( 

a1as h/h a2a4 
’ q q 

PI@2 + 2 ala9 ,,/&p2 
rl 

- 

+symm. (23) 
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5-Graviton Vertex t 

val-~l,**-Ps (Pl,. . . ,p5) = - f K3 { pzl& 5 

-- a2a4 p4p2 
' ' 

a05 qP5P~ + zqa2a5 +% qa3P2 qa4P4 

- 2p4 . P5 qala4 @da6 qh& qa3P2 qa2Pl + ,.,alab ,+$S tlaSP2 ,,aZa4 ,,pIPl 
> 

1 -- 
n-2 rl ala5 ,.fb~S qcd2,.,a2h,,a4P4 + ,,c*la4,f4~lva2aS ,,&$S tl(18P2 

+ symm. (119) 

* In Reference [2], the graviton-auxiliary field vertex has a factor of 4 in the 
denominator which should be a 2. This does not affect the auxiliary field loop 
result as that diagram has a symmetry factor of f which is not included in the 
result, hence the two mistakes cancel. 

t Symmetrization of the pure graviton vertices is done by permuting the index 
numbers in all possible ways. For a n?’ vertex, this produces (n+2)! permutations. 
Also, every CY~, & appearing in a given term is symmetrized as follows 

V . . . . at/%, . . . 
3,495 

z l yj;gtPt,-. + vii$tat,...} _ 
2 1 

Closed Ghost Loops induce a factor of -1. Greek indices denote space-time, 
Izrtin indices denote auxiliary fields. Parentheses about a pair of indices denote 
symmetrization. All momenta are defined as incoming. 
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TABLE 2 

- 

--c3 f (n - 1) nqc(” / dnp 

/- \ 
-4 ’ \ 1 -/ 

I+’ dnp 
I 

-0 - f (n + 1) qccu / dnp 
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TABLE 3 

- -a -p’o c 3 

-- --- 3 - ghost #f low 

5 
\ \ 3 P; 

/ / 

F - s 

- iqrv!G3 N(N + 1) 
2(P + k)2 

1 0 5 it]/.& 
3 (N-2)(N2-I) 

2Nk2 

C-1) iqdc3 (-Np2 - 4k - p - k2 - 3p2) 
2Np2 (p + k)2 

0 
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1 0 s irlrvu3 {(n- l)(-2n3 1 n2 + lOn+16) 

x (k4 + 2k2 (k . p) + 2p2(k . p) + p”) 

+ (-4n4 + n3 + 21n2 + 42n - 96) k2p2 

+(-2n4 + 2n3 + 12n2- 24n +48) (k . p)“} 

/8p2k2 n(n -2)(p+k)2 

1 0 ii 
irlccvK3 (p2 + k2) 3(n - 1) (2n3 - n2 - 6n - 8) 

2p2k2 (n - 2) 

1 
0 4 irlpv n3 {(p-k)2(n3 - 9n2 + 6n + 20) 

+ (pm k)p2(2n3 - 6n2 + 4n - 8) 

+ 2(p. k)k2n(n - 1)2 + p4(n3 - n2 - 8) 

+ p2k2(2n3 - 20) + k4(n - l)(n’ - n2 - %a - 4) 

/(n - 2)) /(n - 2)2 8p2k2(p + k)2 

1 0 s itlrv u3 {( -n3 + 2n2 - n + 4)p2k2 

+ 2(n - 2)(n - l)(k ~p)~ -(n - 1)k4} /(p2k4n) 

These results are integrands. The integration s d”p dnk is assumed. The symmet- 

ti integration substitution s 0 d”k (p,k),(p,k)v 
(p,$)=~((p,k).(p,k)) j- dnpdnk is used for shplifications~ 

Symmetry and ghost factors are enclosed in parentheses at the front of each 
amplitude. n = number of space-time dimensions. 
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