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ABSTRACT 
F - v 

_ At the Stanford Linear Accelerator Center (SLAC) a new type of electron- 
positron collider (the SLC) is being built. In contrast to colliding beam storage 
rings, this machine will be built in multiple inclined planes. This makes the place- 
ment of magnets difficult to control with conventional surveying techniques. The 
geometry of the beam line is explained to provide the background necessary to 
understand the transformations between the various coordinate systems implied. 
These calculations are used to provide layout information to the surveyor. The 
steps from the magnet support to the final smoothing surveys are explained along 
with the associated calculations. 

INTRODUCTION 

The Stanford Linear Accelerator Center (SLAC) is a national research lab- 
oratory operated by Stanford University for the Department of Energy. The 
major objective of this facility is to conduct basic research in elementary parti- 
cle physics. To continue this research, it has become desirable to increase the 
interaction energies of the accelerated electrons and positrons produced by the 
Linear Accelerator (Linac). For this reason a $113 million project called the Stan- 
ford Linear Collider (SLC) has been funded by DOE. This machine will provide 
center-of-mass energies in the range of 100 GeV. To reach this goal while utilizing 
SLAC’s existing Linac, a new type of machine which is radically different from 
traditional colliding beam storage rings was designed (SLC Group 1981). The 
1000 SLC bending magnets will steer accelerated electron and positron bunches 
around two arcs so that they face one another. The bunches are then focused 
and allowed to interact at a single interaction region. The beam size after it has 
traveled through approximately 1.4 km of bending and focusing magnets will be 
on the order of 2 square microns at the collision point. 

- 

Two of the major restrictions in the design phase of the SLC were the topog- 
raphy and the boundaries of the site. The area available for the tunnels of the 
collider is about 1.2 km by 1.2 km and contains several large hills. These hills 
make it impossible to build a set of collider arcs which lie in a common plane. 
Instead a system of bending magnets which lie in multiple inclined planes was 
designed to steer the beam not only around the two 1.4 km arcs, but also up 
and down grades of up to 10%. That is, groups of 20 bending magnets lying in 
a pitched and rolled plane are used to guide the beam. This group of magnets 
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makes up what is called an achromat (Fischer 1984). Having pitched and rolled 
magnets makes it very difficult to separate the six degrees of freedom of each 
magnet into horizontal and vertical components. In addition, traditional survey- 
ing equipment measures with respect to gravity and not in inclined planes. This 
makes the computations for placement and adjustment of the 1000 arc magnets 
complex. 

One must first study the geometry of the SLC magnets and beam line to 
understand the difficulties in surveying it. The alignment tolerances which must 
be meet for proper machine performance are a prime consideration when planning 
for the survey. Manufacturing inconsistencies in magngts an_d supports make it 
necessary to perform transformations between ideal beam line coordinates and 
actualKcoordinates in providing layout data to the surveyor. Finally, all the 
computations and specifications are coupled with a knowledge of the available 
instrumentation to design a survey which meets the requirements of the machine. 
This paper will explain some of these calculations and preparations necessary to 
perform a survey on a machine like the SLC. 

BEAM COORDINATE SYSTEMS 

The geometry of the SLC arcs is defined by a beam transport simulation 
program named TRANSPORT (B rown 1973). This program utilizes two coordi- 
nate systems; the absolute reference system and the beam-following system. The 
three rotations and three shifts to transform the absolute system to the beam- 
following system provide layout information for the beam line. This information 
is used with the geometry of an achromat and the bend magnets to compute 
coordinates for the magnets. 

Figure 1. 

- 

The absolute reference system is a right hand coordinate system with its 
origin at Linac station lOO+OO (see Figure 1). All survey coordinates for the 
arcs are expressed in this reference frame while any local system like the beam- 
following system has a known relationship to it. The Y-axis of the absolute 
coordinate system is defined as the direction of gravity at station lOO+OO with 
positive up. The Z-axis is in the vertical plane of the Linac and perpendicular 
to gravity. Positive 2 is in the direction of the beam line. The X-axis which 
completes the right hand system, is perpendicular to the Y-axis and the beam 
line. 
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The beam-following coordinate system is used to describe the orientation of 
the beam at any point along the arcs. This system remains tangent to the beam 
line with its positive z-z&s pointing downstream. The system is rotated so that 
the positive z-axis always points outwards of the bending arc and lies in the 
plane of the current achromat. The positive y-axis is oriented to complete the 
right handed system of the local coordinate system. 

To bring the absolute coordinate system into coincidence with the local sys- 
tem, three shifts (Z;, Xi, Yi) are first executed. This moves the origin to the 
point of interest along the beam line. Three sequential rotations are then applied 
which make the axes of the shifted absolute system parallel to those of the beam 
following system. These three rotation angles are defindd as EJlows: 

yaw (0) a rotation around the Y-axis of the shifted 
absolute coordinate system 

pitch (4) a rotation around the once rotated X-axis 
roll ($J) a rotation angle around the twice rotated 

Z-axis. 

These are sequential rotation angles which must be applied in the order specified. 
Their signs are determined using the right hand rule. With these six transfor- 
mation parameters the beam-following system is defined and will be called the 
zi, xi, yi coordinate system. 

The complete orientation matrix corresponding to the above rotations is 
formed from three single rotation matrices (Moffitt 1980): 

with 

_ The product matrix is 

cos 4 cos 8 cos fj sin 8 -sin+ 

R= sin$sin4cos6-cos$sin6 sin$sin4sin6+cos11,cosfl sin$cos4 

cos$sinbcos0+sin$sin8 cos1C,sin~sinfl-sin$cos8 costc,cos~ 1 . 

3 



The total transformation equation is as follows: 

Since & is orthogonal, the inverse transformation can be written as follows: 

- -- 
-i=Rfzi+ki . ‘- - * X (2) 

The six parameters to perform this transformation are given by TRANS- 
PORT at the beginning and end of drift spaces and magnets along the beam. 
The constant shift vector ki contains the actual beam coordinates at these points 
because the origin of the beam-following system lies on the beam line. However, 
this is not true for points on the arc magnets which are offset from the beam. 

MAGNET AND ACHROMAT GEOMETRY 

The bending magnets of the SLC are combined function magnets. They have 
magnetic properties of dipoles, quadrupoles and sextupoles. They are made 
by stacking and welding together 1,560 e-shaped laminations to form magnets 
approximately 2.5 meters long. The finished magnet is actually stacked in an arc 
with a sagitta of 2.75 mm. This makes it possible for the magnet to bend the 
beam through a radius which is the same as that of the magnet. 

The magnets are connected in a sausage-link fashion to form the arcs of the 
SLC. Figure 2 shows a typical two magnet section made up of one focus and one 
defocus magnet. It should be pointed out that the beam path is not a simple 
arc. It is made up of a series of curves connected by straight lines. The curves 
are the result of the effective bending length of a magnet. The magnetic fields 
actually extend beyond the physical limits of the magnet, therefore.the magnetic 
length is longer than the length of the magnet iron. These bends are connected 
with straight lines where no magnetic fields affect the beam’s path. The straight 
sections, therefore are tangent to both the preceding and following bending arcs. 
This pattern of bend and drift sections is repeated 20 times to form an achromat. 

- 

An achromat is a section in the arc where the outgoing beam has the same 
shape as the incoming one. The distortions caused by the combined function 
magnets are cancelled by the time a particle bunch has traversed a complete 
achromat. Therefore, achromats are stacked one after the other down the beam 
line until the electron and positrons have been turned to face one another. Each 
of the 20 bending magnets lie in a common plane and seem to trace out an arc on 
this surface. When this achromat plane is rolled the effect is to steer the beam 
up and over a slope as well as along an arc. Twenty-three achromats per arc are 
strung together to guide the beam up and down the grades while maintaining a 
coherent particle bunch. Each one of these achromat planes is rolled and pitched 
differently to achieve this. Therefore, the roll and pitch of the magnets with 
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Figure 2. 
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respect to the absolute coordinate system change continuously as one proceeds 
down the beam. These angles vary regularly within an achromat as well as 
between them. This can be seen by looking at the sequential rotations needed 
to move the absolute system to the beam-following system. The only common 
section of beam line between differentially rolled achromats is the linear drift 
section between the end magnet of the preceding achromat and the beginning 
magnet of the current achromat. 

This is an appropriate place to point out that TRANSPORT provides layout 
coordinates and rotation angles at the beginning and end of the drift sections. 
These points are also the beginning and end of the magnetic arcs which have a 
known bending radius. However, the magnetic arcs do not have a common radius 
point due to the drift section between them. This makes it somewhat difficult 
to make computations between magnets. Therefore, additional coordinates are 
given at the midpoints of bending arcs and drift sections. In this paper the center 
of the drift section will be referred to as the vertex point. 

ALIGNMENT TOLERANCES 

The most important point in aligning a machine like the SLC is smoothness 
within an achromat. No kinks or sudden changes of direction are permissible if 
the arcs are to function properly. The alignment tolerances reflect this need by 
placing tight restrictions on magnet to magnet alignment accuracies (Friedsam 
1984). These tolerances are presented below. 

- 
1. Two magnets within an achromat must point at each other with an angular 

accuracy of .O4 mrad. 

2. TWO magnets must point toward each other in the sixi and siyi planes to 
within 0.1 mm. 
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3. The distance between two magnets must be adjusted with an accuracy of 
0.5 mm. 

4. Roll must be set to within 1.0 mrad of its ideal value. 

It can be seen that it is necessary to take into account any small manu- 
facturing imperfections while calculating coordinates to place magnets to these 
tolerances. 

PREPOSITIONING OF SUPPORT SYSTEMS 

The alignment of the magnets in the tunnel will-involve three steps, In 
the first step, the bolt locations to mount support pedestals are surveyed and 
drilled. To compute the position of the vertex point projected onto the floor, 
TRANSPORT coordinates and rotations for the beam-following system at the 
vertex are used. The pedestals will be set so that they are perpendicular to the 
pitched floor, but plumbed in the transverse direction. That is, their pitch will 
be equal to that of the beam line at that point while roll will be adjusted to zero. 
Since the pedestal is pitched the location of the vertex point cannot be directly 
plumbed to the floor. A vector which represents the pedestal must be intersected 
with the floor to find the exact location of the center of the base. 

To obtain an exact set of coordinates of the projected vertex point one would 
have to measure the actual 3-dimensional location of the tunnel floor. This, 

i however, is impractical so calculations are based on ideal floor locations. This 
seems to be a reasonable assumption because the tolerance for bolt placement is 
f1.0 cm while floor uncertainties will amount to approximately 0.5 cm errors in 
the 2, X location of the points. 

The computations are made by taking each pedestal as a rigid body with its 
own coordinate system. This system is equivalent to the beam-following system 
at the vertex point except that it is not rolled. By representing the pedestal 
with the yi-axis it is possible to give the ideal floor point the coordinates of 
%i=O, Xi= 0 and yi = beam height above the floor at the vertex point. Then 
Equation (2) can be applied with just yaw and pitch values inserted into the 
rotation matrix. When this is done, projected coordinates of the vertex are 
obtained in the absolute coordinate system. These coordinates can then be laid 
out from control points measured in a tunnel traverse. 

After the pedestals are bolted down, step 2 of the alignment procedure can 
begin. Jn this step the pedestal position is refined to the 3 mm level and then 
it is grouted in place. The magnet adjustment system is then positioned so that 
the magnets can be mounted to within .5 mm of their ideal position. For both 
parts of step 2, the vertex point is used as the control point for positioning. A 
jig which sets yaw by registering on a previously positioned pedestal and has a 
target representing the vertex point will be used. 

- 
For part one of step 2, the vertex point will be represented by intersecting 

laser beams projected through KERN E2 theodolite telescopes. These instru- 
ments will occupy control points with coordinates known in the absolute system. 
By knowing instrument heights and backsighting other control points, both hor- 
izontal and vertical angles to the vertex point can be calculated and set on two 
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instruments. Since the vertex point has known coordinates it is easy to calculate 
these angles. The accuracy of locating the point at this time will be f3 mm. 

Part two of step 2 will involve the same calculations as part one, except 
that now the procedure is changed slightly. Here the -actual position of the 
vertex is measured through leveling and intersection. Its true coordinates are 
then compared with the ideal position and offsets calculated. The adjustment 
system on top of the pedestal is then used to move the vertex target to its 
ideal location. These motions will be controlled with dial gages connected into 
a computer feedback loop. This prevents mistakes in making the adjustments. 
The new position of the- vertex is then measured and _the pEocedure is repeated 
if necessary to achieve the desired .5 mm level. This method can only be used 
as-long as the vertex is visible. As soon as the magnets are mounted the vertex 
point and beam line are obscured. 

FINAL POSITIONING OF THE MAGNETS 

The final positioning of the magnets is step 3 of the alignment process. At 
this point the magnets have been mounted on the support pedestal and the beam 
line is no longer accessible. The two major goals here are to smooth the magnets 
into an arc and make them face one another to the final tolerances. However, 
the alignment process is much more difficult in this case than in the previous two 
steps, because coordinates on the magnets are not provided by TRANSPORT. 
They must be calculated by the surveyor according to the locations of the magnet 
fiducial points in relation to the beam line. The three rotational elements yaw, 
pitch and roll must also be controlled. The yaw and pitch are set by moving 
fiducial points at each end of the magnet to their proper 3-dimensional positions. 
This unfortunately does not set the roll of the midplane of symmetry of the 
magnet. Therefore, it is necessary to calculate a roll about the beam line for 
one fiducial point on the magnet. Finally, corrections for the actual magnet 
lengths and longitudinal twists caused by welding and handling must be taken 
into account. 

To start these calculations, one must first look at a simple case, Assume that 
a magnet fiducial point is located directly above point A in Figure 2. This of 
course is impossible because the magnet iron ends at point B. However, this is 
a convenient place to start because TRANSPORT coordinates are provided for 
the point on the beam line below the fiducial mark. The orientation angles of the 
local coordinate system are also given. This makes the computation of the needed 
coordinates obvious. One must only know the coordinates of the fiducial point in 
the beam-following system. This can be done by building fixtures which locate 
the mark in a known position with respect to the magnet’s magnetic center line. 
Then Equation (2) can be applied directly to obtain TRANSPORT coordinates 
of the desired point. However, this point only exists in space because it is located 

- at the end of the magnetic bend arc but not on the magnet iron. 

To find coordinates on the actual magnet iron, the local coordinate system 
must be translated along the beam line to a point beneath the fiducial mark. 
By referring to Figure 3 one can see how this would be done. First the local 
system 4~1~: at point B is rotated through a yaw angle cy: to orient it to the 
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Figure 3. 

qxiyi system. The rotated system is then shifted by 6zi and 6xi so that it origin 
coincides with the origin of the beam-following system at point A. In doing 
this the z~x~y~ coordinates of the fiducial mark which are set through fixturing 
are transformed into beam-following coordinates. The controlling equation is as 
follows: 

The angle Q  can be calculated by using the radius of the curve provided by 
TRANSPORT and either the measured length of the arc or the chord. After the 
sixiyi coordinates are computed, Equation (2) is again applied to find TRANS- 
PORT coordinates of the fiducial mark above point B. This calculation can be 
done for any point along the bending arc of one magnet if a chord or arc length 
is measured from a point with known TRANSPORT coordinates. In the case of 
the SLC magnets, one end will be held fixed and all calculations will begin at 
this point. The actual chord length between the fixed end and the fiducial mark 
on the floating end will be measured in the laboratory. 

These, however, will not be the final coordinates of the fiducial marks since 
the magnet maybe manufactured with a twist around its magnetic axis. If this 
is true the z~x~y~ system must undergo an additional rotation to compensate for 
the twist. This is necessary because the coordinates of the fiducial mark are 
known only in a system which is rolled with respect to the z:xiyi system. To do 
this Equation (3) must be modified to include a roll (7) about the tangent to the 
beam line. This would result in the following equation: z [I [ COB a sin a! co8 7 sin a! sin 7 

X = -sina cosacos7 cosa!sin7 
- 

Yi 0 -sin7 cos 7 

gi=&*+c s 

] [gi+ [ -R2;:sa)] (4) 

Equation (2) is then applied to these results to find the needed coordinates. It 
should be pointed out that a total of five sequential rotations are needed to 
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translate the position of the fiducial point in a magnet coordinate system to the 
absolute system of TRANSPORT. 

Now that these coordinates are found, a roll value ($‘) with respect to gravity 
must be calculated. However, this is not a simple matter because of the five 
sequential rotations needed to transform the above coordinate systems. For 
this reason it is easiest to go back to point A where reference coordinates and 
rotations are provided by TRANSPORT. One may think that the problem is 
easy at this point because a roll value is provided. This is not the case though 
because the roll given is a sequential roll. It is not measured on a plane which 
is parallel to gravity, but about a twice rotated Zaxis: Therefore, this number 
cannot accurately be used to set roll with an inclinometer which uses gravity ss 
a reference. 

One must understand how the inclinometer works, to solve this problem. In 
the case of the SLC, a type of inclinometer (Schaevitz 1978) which is not affected 
by tilts transverse to the direction of measurement is utilized. This means that 
it can be used on a magnet which is both pitched and rolled, to measure a roll 
angle with respect to gravity. It will not measure the compound angle formed 
by the pitch and roll angles. To do this accurately and quickly it must be easy 
to orient the inclinometer in a convenient direction which is repeatable for every 
setup. In this case, it is easiest to orient in the direction of the xi-axis of the 
beam-following coordinate system; i.e. perpendicular to the beam line. 

As was said above, the TRANSPORT roll angle is an angle measured about 
a twice rotated axis and is not the roll to be set with respect to gravity. The 
measured roll is a projection of the TRANSPORT roll on to the plane formed 
by the gravity vector and the xi-axis. The formula to calculate the correct 
roll at point A can be found by using the fact that the rotation matrix for a 
given orientation of the beam-following coordinate system is unique, but the 
combination of sequential rotations is not. In other words, the values of the 
nine elements of the rotation matrix are fixed but these nine numbers can be 
calculated from several different sequential rotations. This makes it possible to 
equate corresponding elements of different sequential rotation matrices which 
define a given orientation. In this case the roll must be calculated in a system 
which has been yawed but not pitched. To do this, the sequence of rotations is 
changed to yaw, roll then pitch. This gives the following rotation matrix M: 

cos 4’ cos e - sin tjS sin $J’ sin e cos f$’ sin e + sin 4’ sin $’ cos e - sin 4 cos $’ 

- cos $’ sin e cos $1 cos e sin +!J’ 

sin 4’ cos e + cos 4 sin $+ sin e sin 4’ sin e - cos 4’ sin $J’ co8 8 cos qs cos ?+v 1 . 
It should be noted that 4’ is not equal to the TRANSPORT pitch for the same 
reason that $J’ is not equal to 9. Now the rn23 element can be equated to the 
~3 element of the TRANSPORT rotation matrix B. This gives the following 
formula for +‘: 

$! = sin-’ (sin $ co8 4) . (5) 

In the worst case, the difference between the TRANSPORT roll and $J’ is 0.9 
mrad. This is a significant amount and must be taken into account. A correction 
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for the earth’s curvature could also be applied to $‘, but it was found to be 
insignificant in this case. 

This is fine for any point along the beam line that has given TRANSPORT 
coordinates, but the case where there are five rotations must still be calculated. 
The same procedure as above can be applied to the t23 element of the total 
rotation matrix T for the twisted magnet at point B. This T matrix is formed 
by multiplying E by @’ of Equation (4): 

T=&J . (6) 
The resulting formula for $’ is: 

c - 

$’ = sin-’ (-sinr$sina!cos7+sin$cos~cosa!cos7-cos$cosr$sin7) . (7) 

This completes the calculations necessary to find ideal coordinates of fiducial 
marks and roll values to be set on the magnet. 

CONCLUSION 

The coordinate systems of the beam design program, TRANSPORT, were 
explained along with the associated geometry. This made it possible to un- 
derstand the tolerances for final magnet placement. The steps involved in the 
surveys of the magnet support systems and the mounted magnets were also ex- 
plained. It was shown that the calculations necessary to prepare these surveys 
involved coordinate transformations with up to five sequential rotations. These 
types of computations are not usually encountered in conventional surveys but 
are necessary here because of the complex 3-D geometry of the SLC beam line. 

ACKNOWLEDGMENTS 

The authors would like to thank Rainer Pitthan, Matt Pietryka and Mark 
Haman for their assistance in preparing this paper. 

REFERENCES 

Brown, K.L., Carey, D.C., Iselin, Ch., and Rothacker, F., TRANSPORT, A Com- 
puter Program for Designing Charged Particle Beam Transport Systems, SLAC-91 
(1973 Rev.), NAL 91 and CERN 80-04. 

Fischer, G., SLC-Arcs, in: Stanford Linear Collider Design Handbook, Stanford, 
1984, pp. 3-3 + 3-72. 

Friedsam, H., Oren, W., Pietryka, M., Pitthan, R., and Ruland, R., SLC- 
Alignment Handbook, in: Stanford Linear Collider Design Handbook, Stanford, 
1984, pp. 8-3 + 8-85. 

Moffitt, F.H. and Mikhail, E.M., 1980, Photogrammetry, 3rd ed., New York, 
- N.Y.: Harper & Row Publishers, Inc., Appendix A. 

Schaevitz Engineering, Technical Bulletin /SOAA, Pennsauken, New Jersey, 1978. 

SLAC Linear Collider Conceptual Design Report, SLAC Report 229, 1981. 

10 


