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ABSTRACT 

The “measurement problem” of contemporary physics is in our view 
an artifact of its philosophical and mathematical underpinnings. We 
describe a new philosophical view of theory formation, rooted in 
Wittgenstein, and Bishop’s and Martin-Liif’s constructivity, which 
obviates such discussions. We present an unfinished, but very encour- 
aging, theory which is compatible with this philosophical framework. 
The theory is based on the concepts of counting and combinatorics 
in the framework provided by the combinatorial hierarchy, a unique 
hierarchy of bit strings which interact by an operation called discrimi- 
nation. Measurement criteria incorporate c, ti and mp or (not u and”) 
G. The resulting theory is discrete throughout, contains no infinities, 
and, as far as we have developed it, is in agreement with quantum 
mechanical and cosmological fact. 

PARTICIPATING IN A RESEARCH PROGRAM 

Physics is an ongoing research program. A research program”’ contains 
two non-separable parts: Theory and Measurement (Experiment). A research 
program is in equilibrium when it forms an ongoing (complete) practice. In equilib- 
rium there is stability both between knowledge of meaning and knowledge of facts 
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and between theory [in our sense] and measurement. As Goodman’“’ has said 
“A rule is amended if it yields an inference we are unwilling to accept; an inference 
is rejected if it violates a rule we are unwilling to amend.” Only when these 
conditions are satisfied do we have a complete practice, - a research program. 

A research program is constituted by a theory part, providing knowledge of 
meaning, and a computational part, providing knowledge of fact. There is a certain 
order in which a research program is to be formulated. To engage in a research 
program one has first to formulate the mathematical part of the theory constituting 
the formal criteria of the theory. These criteria express the information needed 
to compute facts. However, this is only a part of the theory. Also, one has to 
formulate the a-formal (measurement) criteria. Only now is the theory complete; 
it shows what to do when one uses the criteria in order to measure facts. A 
research program shows equilibrium between measurement facts and criteria used. 
If this is the case, then the research program is in corroborative equilibrium, to 
use Popper’s terminology. Failure of the research program reflects falsification of 
the task at hand: the formulation of a correct theory. 

To formulate a theory is to create the criteria. This is done in virtue of 
judgments. A judgment can be understood either as an act of knowledge or as 
an object of knowledge. It is important to note that one formulates the criteria 
of the theory. To formulate a criterion is to engage in an act of knowledge. An 
act of judgment is complete only when the expression which is the output of 
the act is coded. Thus coded criteria express judgments (rules). The criteria are 
necessarily correct as such and an incorrectly (ill-) f ormed criterion is meaningless. 
A criterion is ill-formed if it does not express the information needed to compute 
a fact. The formulated (well-formed) criteria are, when used, used as objects of 
knowledge: objects are constructions. Thus a theory in the sense we use the notion 
is a theory of constructions. A theory of constructions is complete in the sense 
that the information necessary in order to compute facts (e.g. by computer) is 
completely provided by the theory. 

Existing quantum mechanics, having an additional “measurement theory” 
which has never been formulated in a satisfactory way, is, in the words of Wheeler 
a law without law.@] . The task we confront is to formulate a complete quantum 
theory incorporating measurement. A complete quantum theory must take the 
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form of a theory of constructions. For us the notion of computation replaces the 
old dichotomy of Quantum Theory and an additional Measurement Theory. 

In the context we establish the “measurement problem” does not have a 
separate locus. The overall success of the program, or any specific application 
of it under specific circumstances, can be thought of as a “measurement”. The 
specific problems that arise when some version of quantum theory is embedded 
in an a priori space-time continuum simply do not arise for us. There is no de- 
marcation between “participator” and the research program itself. Objectivity is 
achieved by the explicit recognition of the engagement of the participator, along 
the lines suggested by WheelerL31, in the research program which constructs both 
the mathematics used and the connection between the theory and laboratory ex- 
periment. The philosophical position adopted has been discussed by one of us 

14 (CG) elsewhere . 

The mathematical expressions such as 0,1, +z,=, . . . which we introduce 
stand for primitive recursive functions; when combined they form programs which 
give the information needed for their own evaluation’61 . We regard combined 
(well-formed) mathematical expressions as programs. They are programs which 
give information concerning their own evaluation. When engaged in formulating 
a theory (of constructions) we are to formulate (evaluate, recover) the person pro- 
gram. By a person program is to be understood the formulated theory which 
functions like an instruction manual. The person program provides the informa- 
tion concerning what to do in order to engage in measurements. We are to provide 
instructions concerning what to do in order to terminate the task expressed by 
the program. By engaging in formulating the theory in order to recover the rules 
one eualuates a program and provides the necessary information a human (using a 
person program), or when transformed, a computer (using a computer program) 
needs in order to participate in terminating the computational tasks of relativis- 
tic quantum mechanics. By evaluating such programs one can show that the 
mathematical expressions (programs) used are self-explanatory (complete) vis-a- 
vis meaning. In this way we ground our theory in the constructive mathematics 
of Bishop Is’ and certain ideas of Martin-Liif[” . 

We present here a research program whose aim is to yield a complete rel- 
ativistic quantum theory characterized by unique discrete and indivisible events 
which are globally correlated but cannot be used to transmit supraluminal signals. 
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2. CONSTRUCTING A BIT STRING UNIVERSE 

We introduce natural numbers n by the usual rule that n + 1 is the suc- 
cessor of n and that “1” as a natural number has no precursor (cf. Ref. 5 for a 
rigorous primitive recursive definition of the natural numbers and the successor 
operation). Including the symbol “0” by bitwise Uexclusive or” (+2), we have 
strings 9(NU) = (..., &,:...)Nu, where bi E 0,l and n E [1,2, . . . . NU], which 
combine by “XOR” Sa @  Sb z (..., 6: +z bb,, . ..)Nu when the symbols uOn, Ulnare 
bits, and by Sa $ Sb - (..., (bt - 6:)“, . . . )NU when they are integers. We call ei- 
ther operation discrimination. Calling the null string 0~ - (O,O, . . . . O)N, for a, b, c 
distinct we have the symmetric relation for any discrimination Sa@ Sb $ SC = ON. 
We also define the anti-null string 1~ = (l,l, . . . . . 1)~ and the Ubarn operation 
sa(N) E lN @  Sa(N). 

The basic algorithm for our construction (Program Universe) generates a 
growing universe of bit strings U(SU, NU), where SU specifies the number of 
strings and NU the length at each stage of the construction. All strings are 
different by construction and are called U[i], i E 1,2, . . . . SU. The program starts 
by invoking the operator R which provides either the output r = 0 or the output 
r = 1 with equal probability to assign U[l] := R,U[2] := R, and setting SU := 
2, NU := 1. Here and below we use the conventional computer notation: u:=n 
means value replacement. Manthey”’ gives an explicit construction of R using 
the primitive operation “flip-bit”, a construction which relies solely on the non- 
determinism born of unsynchronized communication over a shared memory. We 
then invoke the operation PICK which selects any one of the SU unique strings 
currently in the universe with probability l/SU; it can be constructed from R. 

Entering at PICK, we take-& := PICK; S2 := PICK; S12 := Sl @  S2. If 
Sr2 = ONU, we have had the bad luck to pick the same string twice, and revert to 
picking Sz until we pass this test. We then ask if Sr2 is already in the universe. 
If it is not we adjoin it U := U U S12, SU := SU + 1 and return to PICK. If 
Sr2 is already in the universe we go to TICK. This simply adjoins a bit (via R), 
arbitrarily* chosen for each string, to the growing end of each string, U := UIIR, 

* When we use the terms “arbitrary” or Uarbitrarily” in what follows, we mean “not 
due to any finite, locally specified algorithm”. These arbitrary numbers are to be 
contrasted to the “random” numbers encountered in a continuum context which no 
global or local algorithm will suffice to specify. We are indebted to David McGoveran 
for these definitions. 
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NU := NU + 1, and returns us to PICK; here “11” denotes string concatenation. 
It follows that any TICK arises from one of two possibilities: So @  Sb @  SC = ONU, 
which we call an elementary S-event, or So $ Sb CB SC @  Sd = ONU which we call an 
elementary a-event. These events are identified below as the unique and indivisible 
events of quantum theory. . 

The discrimination operation on a set of strings has the important property 
of closure, first noted in our context by John AmsonIQ1 . Given two distinct (in 
this context linearly independent or 1.i.) non-null strings a, b, the set {a, b, a @  b} 
closes under discrimination since any two will yield the third. We call this a 
discriminately closed subset (DCsS), and by observing that the singleton sets {a}, 
{b} are closed, we see that two 1.i. strings generate 3 DCsS’s. Given a third 1.i. 
string c, we can generate {c}, (b, c, b $ c}, { c,a,c@a), and {a,b,c,a@b,b@c,c@ 
a, a @  b @  c} as well. In fact, given j 1.i. strings, we can generate 2j - 1 DCsS’s 
because this is the number of ways we can choose j distinct things one, two,... up 
to j at a time. 

In order to construct the combinatorial hierarchy”01 from the DCsS formed 
from strings we invoke”‘] a mapping operation which requires that each set of 
strings composing the DCsS’s of the lower level be the only eigenvectors of a 
non-singular square matrix of bits which is 1.i. of all the other mapping matrices 
at that level. These matrices are then rearranged as strings and the process is 
repeated. In this way one generates the sequence (2 =F+ 22 - 1 = 3), (3 + 23 - 1 = 
7)) (7 =+ 27 - 1 = 127), (127 =+ 212’ - 1 N 1.7 x 1038) mapped by the sequence 
(2 =+ 22 = 4), (4 =+ 42 = 16), (16 + 162 = 256), (256 =+ 2562). The process 
terminates because there are only 2562 = 6.5536 x lo4 1.i. matrices available to 
map the fourth level, which are many too few to map the 2127 - 1 = 1.7016... x 1O38 
D-CsS’s of that level. If one starts with strings of length 3 or 4, the construction 
terminates at the second level; these two possibilities are contained in the initial 
sequence. Strings of length 5 or greater give DCsS which cannot be mapped. 
Hence the combinatorial hierarchy with four levels is unique, a point discussed in 
more detail by John Amson[Ql. 

The numerical result gives immediately two of the basic scale constants of 
physics, since the elements in play at level 3 define the cardinal 3 + 7 + 127 = 
137 N hc/e2 and level 4 the cardinal 212’ + 136 = 1.7016... x 1O38 N hc/Gmz. This 
connection to physics is not compelling for most people who encounter the scheme 

5 



for the first time. The theory presented here is the latest attempt of manyl”] to 
convert this initial insight into a rigorous physical theory. 

It can be shownl’ll that Program Universe necessarily generates some repre- 
sentation of the basis strings for the combinatorial hierarchy in the initial strings 
of length NL 2 139 which are unchanged by subsequent TICKS and which by 
discriminate closure generate precisely 212’ + 136 unique strings of that length 
representing all elements of the combinatorial hierarchy. Hence, once this closure 
has been achieved, for any string in the universe of length NU = NL + N we can 
call the initial part of the string of length NL the label and the remainder of the 
string, of length N, the address. Clearly the number of address strings and the 
length of each string for each label will continue to grow. We call this property of 
the program label invariance. 

We do not envisage this computer program as a “big computer in the sky” 
which by some means we might be able to access directly. We use the program 
primarily to insure that all formal criteria used in our construction can in practice 
lead to computable facts. 

2. SCATTERING THEORY 

At this point we introduce the basic counter parudigm on which we will found 
our u-formal measurement criteria - the third of our four steps in constructing a 
research program according to the schema discussed above. We start from any 
unique macroscopic (laboratory or natural) event called the “firing of a counte?. 
Our paradigm is: any elementary event, under circumstances which it is the 
tusk of experimental particle physics to specify and investigate, con lead to the 
firing of a counter. 

The way in which we connect our bit string universe to the physical param- 
eters encountered in scattering theory and employed in laboratory practice is to 
use the label strings to define quantum numbers which are conserved in events, 
and address strings to define relativistic velocities associated with these quantum 
numbers. Consider first the quantum numbers we can define for strings of even 
length nl. For simplicity we consider only strings of length two and four, and 
concatenations of them. We define our quantum numbers in such a way that the 
operation S(n) = 1, @S(n) changes the sign of all quantum numbers, and that the 
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strings 0, and 1, have the value zero for all quantum numbers. Then for strings 
of length 2 written as (bl b2) we can have the quantum number go = bl - b2, which 
takes on the values O;ztl, and for strings of length four written as (bsbdbsbe) we 
can have the three quantum numbers q1 = b3 - bq + bs - be, g2 = b3 + bq - bg - be 
and q3 = b3 - b4 -‘bE + be, which take on the values 0, fl, f2. We identify’ the 
“bar” operation that changes the sign of all quantum numbers as the operator 
that in conventional theory changes the quantum numbers for a “particle” into 
those for the corresponding “anti-particle”. It is then possible to identify the label 
discriminations involved in elementary events as related to a situation in which all 
quantum numbers add to zero: qa + qb + qe = 0 for S-events and qa + qb + qC + qd = 0 
for 4-events. Once we have established a contezt dependent “direction” for the 
“flow” between TICK-separated events, these elementary possibilities will allow 
us to consider also the situation in which by changing a particle to an anti-particle 
(which will include reversing its velocity- see below) the quantum numbers will be 
conservedinprocessessuchasu+b~~,b+c-,Si,c+u--,~,andu+b-,~+~, 
a + c -+ 6 + d, a + d + 8 + E. Thus our theory allows us to define “crossing” in a 
manner familiar from the Feynman diagrams of S-matrix theory. 

In order for this to work, we must, as already noted, define velocities in 
such a way that the “bar” operation reverses their sign, which turns out to be 
easy. For any address string A’“(N) in the ensemble labeled by LW(nc) we first 
define the parameter kw = Cr=,bE, which has the advantage of making our the- 
ory independent of the specific order in which the bits occur in the strings, and 
then the parameter & = % - 1 which is a signed rational fraction in the set 
[-1, -9, . . . . +T, +l]. This definition meets the requirement that velocities 
reverse sign under the “bar” operation. It has the further consequence that the 
dimensional unit in terms of which velocities are related to laboratory measure- 
ment can be taken to be the limiting velocity c. Because of label invariance, we 
can also associate some numerical parameter m,,, with each unique label; the pa- 
rameters m,,, need not be unique! Any elementary 3-event is then specified by six 
numerical parameters m a,mb,mc,/&,Pb,&. we define r2 = r2p2 + 1 and six new 
parameters E, = m,,,7,,, called “energies” and pW = 7&,,mw called “momenta”, 
which makes Ei - p: = mf independent of p. Hence our S-event can also be 
described by &, I$,, EC, pa, Pb, pc. We further assume that all masses m, 2 0 and 

that 7= +& making all energies positive. 
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The problem we now encounter is that the values of p defined by discrim- 
ination do not in themselves define the kinematics of four-momentum conserving 
classical relativistic particulate “collisions” in 3+1 dimensional energy-momentum 
space. However we are constructing a finite particle number quantum scattering 
theory, and not cltisical particle-kinematics. The continuum version of such a 
theory has recently been presented”” . It was found that in order to obtain a 
theory which guarantees unitarity, clustering, Lorentz invariance and the proper 
connection to the non-relativistic Faddeev equations, it was necessary to abandon 
the conventional 4-momentum notation $ = (E,p), +a . $K, = E,Eb - papbcos6,b 
and use instead unit d-velocities G = (7,7/J with-< * a = 1; the masses are then 
parameters rather than dynamical variables. Clearly this is consistent with the 
way masses have been assigned to labels above. Then we can associate a four- 
vector F with a four-velocity u’ and a parameter M by defining @  = Mii with 
P’. F = M2 independent of the velocity. Then our elementary events can be com- 
pletely described internally in terms of the parameters M$ = ($a + +b) . (& + $b) 
(and cyclic); we define “angles” algebraically via the algebra of the trigonometric 
functions without geometrical implications, as is appropriate in a digital theory. 

In a theory of this type only the scalar parameters &b are allowed to go 
“off shell” (i.e. Mzb # m:), and mass is defined by 3-momentum conservation: 
maga -I- mbr.&b + Mabgab = 0 with the magnitude of pGb set equal to the magnitude 
of PC = s - 1 as specified by the discrimination which causes the event. This keeps 
all angles physical and tells us that Mzb-(m,+mb)2 is bounded by 2m,mb[7,7b(lf 
Pa&) - 11. This way of meeting the “off-shell” problem allows 3-momentum to 
be conserved, and define mass, whatever values of the velocities result from the 
discriminations causing individual events. 

Starting from the fact that in the absence of further information the 
probability of a string with k = g(l + /3) “1" ‘s correspond to the value p is 
N! /2N([;(1 + @I!)([$(1 - ,@I!) ‘t 1 can be shown that a “particle” (i.e. an en- 
semble of address strings whose label string specifies a mass and set of quantum 
numbers) in two situations connected by discrimination will have a range of en- 
ergies centered on E = ymc2 and E’ respectively is strongly peaked about the 
situation with E = E’. We represent this situation, the product of two proba- 
bilities normalized to unity when E = E’, by IE-.$l+Vr. Here q is a positive 
quantity which becomes arbitrarily small when the length of the address strings 
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is large. This allows us to arrive at the “propagator” G* = * representing 
the probability amplitude for a “particle” making such a an “off-shell” transi- 
tion; Here the fi is introduced to keep tract of the ordering context referring to 
whether the “particle” is “outgoing” or “incoming”. Summing over values allowed 
by 3-momentum conservation in the (“asymptotic”) context of a large sequence of 
TICK’s then tells us that 4;momentum will be conserved. This is how we describe 
a “particle” getting from here to there in a macroscopic context. Note that our 
basic concepts are only discrete events and statistics; for us through chance, events 
and the void sufice. 

We now can envisage a macroscopic situation in which two particles with 
masses m, and mb start from 4-momenta fit, $:and end with $?, ?j which satisfy 
the kinematic constraints for free particle scattering. We call this a (two-particle 
elastic) scattering event, and ask how to compute the probability amplitude for 
its occurrence. Consider the case when there are two intermediate elementary 
3-events in one of which particle a changes its 4-momentum from @  to $j and an 
off-shell particle with mass j.& appears, while in the second this particle disappears 

‘b and particle b changes its 4-momentum from Pi to P . Because of our conservation 3 
laws and boundary conditions, Ei = Et+Ei = Ei+E; = Ef, and the energy of the 

off-shell particle cab = 4: pab + (p_, - pa) is also the inverse propagator. Assume 
that the probability of the first 3-event is g,, and of the second gb (numbers we will 
eventually have to compute). Then since we must multiply the probabilities for 
the initial and the final events, including the production and disappearance of the 
propagator - since we must consider all possibilities consistent with our boundary 
conditions - the scattering amplitude for this process is t;FlbOm = g&b/(&, + (p_, - 
pb)2). We have thus derived the familiar “Born approximation” in an unfamiliar N_ 
way. From here on we can follow the development of the finite particle number 
relativistic and unitary quantum scattering theory 1121. 

3. ELEMENTARY PARTICLE QUANTUM THEORY 

For any string with /3 = fl it can be shown that producing an address 
string with any other value by an event has zero probability, so assigning zero 
mass to such strings will insure that this does not change. In particular we assign 
zero mass to the anti-null string, which changes particle to antiparticle, or via 
crossing allows a particle to pass through an event without changing its quan- 
tum numbers. When we consider only levels 1,2, and 3 this label will occur with 
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probabilityl/l37, so for this situation our Born amplitude becomes &$&, the 
amplitude for Rutherford scattering (with e2/tic = l/137). Our integral equations 
sum a very large number of such scatterings and produce, macroscopically, “tra- 
jectories” which would be called classically the paths of a particle in a Coulomb 
field. The poles in these equations define bound states which, in first approxima- 
tion have the spectrum of the Bohr atom. Thus our theory makes clear contact 
with familiar laboratory experience. At level 4 the anti-null label which occurs 
with probability 1/(2127 + 136) gives us, by the same argument, a correct quantum 
mechanical description of Newtonian gravitational scattering for elementary par- 
ticles, as needed to explain interference effects between cold neutron beams which 
follow different gravitational paths. 

It remains to connect one particular dichotomous quantum number (“spin”) 
to the momentum-space, and space-time description. We first consider a part of the 
label specified by the n = 2 strings (blb2) and define the quantum 
number 2h, = bl - b2 which has the value f) for (10) and (01) respectively, 
and is otherwise zero. We call the remaining quantum numbers qh. By consid- 
ering label and address strings separately we can define, in addition to the “bar” 
operation AS”‘(h,, qh; /3) = Sw(-h,, -qh; -p) the three operators HSw(h,, qh; /?) 

= SW(-hn,;P), QSw(hzmP) = Sw(hz,-gh;P), and VSW(hz,qh;P) = 
Sw(h,, qh; -/3). which do the same job for us as P, C and T in the conventional 
theory. 

We can now connect the sign of h, to the sign of p by considering a particular 
class of labeled ensembles, which we call “f-particles”, for which at the moment 
only these two parameters are significant. Referring f* to h, = ke, we define 
f*(p) by the obvious requirements that 

Hf+(P) = f-(P), Hf-(P) = f+(P); V+(P) = f+(-PL Vf-(a = f-W 

This specifies only two distinct situations, which define the relative sign of h, and 
p as desired. 

We now extend our discussion to 3-momentum space by replacing /3 by /3 in 
the above expressions making any scattering of such a particle context dependent 
in terms of the ezternul (eg laboratory specified) direction of p, which our previous 
discussion of 3-momentum conservation allows us to do. We now can give the 
variable h a vector significance by tying it to this direction in the following way. 
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Suppose that there is some direction P in our laboratory and define the direction 
/3 by requiring that pa P = [/?I = & and under this circumstance define j(&, /3) as 

?+(Wz). zf -- - we now scatter this f-particle from any system to some new direction 
and velocity p’, we are only allowed to define it by the two ensembles j+(p’) and 
j- (p’). Unless we do this carefully, we will give either an absolute significance 
to 2 or to j*, which our invariance principles do not allow. The situation in 
fact requires us to make a coherent definition of &’ in terms of the velocities 
and momenta involved. Once we have done this, we have arrived at a covariant 
definition of ‘helicity” or “spin” in our relativistic scattering theory. Since the 
technical details of working through this familiar problem are complicated, and 
have recently been reinvestigated in the context of our covariant finite particle 
number scattering theory’191 we refer the reader to this treatment. 

Consider the situation in which two counters a distance L f AL apart with 
no intervening material fire sequentially with a time interval 2’ f AZ’ and (after 
background subtraction) we are insured that a particle of mass m entered the first 
counter and emerged from the second. In our bit string universe this defines a 
labeled velocity ensemble with velocity parameter ,0 = L/T and velocity uncer- 
tainty A/3//3 = d(AL/Z’)2 + (AT/T)2, in which the strings grow from bit length 
Ni to bit length Nf consistent with these parameters. If we now think of a bit 
“1" in any one string added in the interval Nf - Ni = N as a step in the direction 
that the particle moved and a bit “0” as a step in the opposite direction, the 
ensemble can be thought of as a biased random walk of N steps of some length 
A! with probability p = $(l + ,O) o moving in the direction of the particle motion f 
and q = i(l - /3) in the opposite direction. We can see this by taking the number 
of “1" ‘s equal to k and defining 2k = N(l + /3) as before, and recognizing that 
the binomial distribution we already derived is precisely the distribution for a 
random walk so defined, an idea we arrived at from Stein’s work”41 We introduce 
Planck’s constant into our theory, and hence fix our distance scale, by taking the 
step length !. = h/E. 

Since L = ,BcT = N@f? and, if each step takes a time bt, T = Nbt, the time 
per step is 6t = e/c. We now define the number of steps n which it takes the peak 
of the random walk distribution to move one step length, which is n = l//3&. 
If the probability distribution is non-uniform along the length (which will always 
result if we look at the details of the spatial and time resolution of the counters), 
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this distribution will therefore have a coherence Zength X = nl = l/&z = h/p for a 
pattern moving with velocity PC. From our scattering theory it now follows that 
the most probable point at which a scattering will occur will have this periodicity; 
we now have the two periodicities of relativistic deBroglie “waves”, with the correct 
phase and group velocities. From this double slit interference and all the usual 
consequences of non-relativistic quantum mechanics follow in due coursel”]. 

In our extended treatmentl”] we can now show that levels 1, 2 and 3 with 
1,2, and 6 conserved quantum numbers give us the quantum number structure of 
(1) chiral massless neutrinos, (2) electrons, positrons and vector quanta, and (3) 
neutrons and protons with the associated mesons Ucomposedn of three quarks or a 
quark-antiquark pair respectively. These quarks have two flavors and three colors, 
as do the associated gluons. Thus we have quantum number consistency with 
the first generation of the “standard model”. This pattern repeats in subsequent 
generations which, by a combinatorial argument should only be weakly coupled to 
each other. We do not have space here to go into details. 

Returning to the general structure, our connection of “velocity” to bit 
strings brought in the dimensional constant c. Our elementary events allowed 
us to connect our label-invariant parameters to mass ratios via 3-momentum 
conservation. Our scattering theory gave us Coulomb and Newtonian gravita- 
tional scattering correctly to order (l/137) and tied our bit string universe and 
quantum events to macroscopic measurement. The mass unit is fixed as the 
proton mass by the relation hc/GmP 2 = [212' + 1361 x [l + 0(1/137)]. Since 
our masses are defined by momentum conservation, we have no place in our 
theory for a separate “gravitational mass”. Since we have now seen how c, ti 
and mp (or G) enter our theory, our dimensional connection to the practice of 
physics is fixed; from ‘now on we must compute everything else. In particular, we 
take over[l’l the Parker-Rhodes calculationllsl for the proton-electron mass ratio 
mp/me = 1377r/[(3/14)[1 + (2/7) + (2/7)2](4/5)] = 1836.151497... in comparison 
with the experimental value of 1836.1515 f 0.0005. 

5. CONCLUSIONS 

The idea of a theory as a theory of constructions is valid independent of the 
“information content” of the theory. In order for a research program to succeed, 
it must create complete understanding in the way we have developed the theory. 
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Whatever “machineryn is formulated as a theory of constructions, the participator 
idea implicit in the theory structure is necessary in order to understand. 

In this paper we have proved that by starting from bit strings generated by 
program universe and labeled by the 2 127 + 136 strings provided by any representa- 
tion of the four-level combinutokl hierarchy one gets an S-matrix theory with the 
usual C, P, T properties, CPT and crossing invariance, manifest covariance, uni- 
tarity and clustering. Arbitrary choice and non-locality provide the supraluminal 
correlations experimentally demonstrated in EPR experiments without allowing 
supraluminal transmission of information. As is true for any quantum mechanical 
theory, ours stands because of the outcome of Aspect’s and similar experiments, 
and would have to fall if these are rejected. We claim to have arrived at an objective 
quantum mechanics with all the needed properties. 
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