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ABSTRACT 

We study the radiation generated by electric currents in (1) infinite cylinders 

with longitudinal flow, (2) infinite cylinders with solenoidal flow, and (3) infinite 

planes. In each case we work out four specific examples, for which the retarded 

fields can be calculated exactly, and we derive a “Larmor-like” formula for the 

power radiated, in the limit of infinitesimal cross-section. We then consider 

sinusoidal currents with finite cross-section, and discover that for certain special 

frequencies the external fields are zero and there is no radiation. We relate our 

results to the work of Goedecke and others, and conclude with some remarks on 

the radiation reaction in these configurations. 
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1. INTRODUCTION 

When a point charge accelerates, it radiates. The power radiated is given by 

the Larmor formula1 

1 2e2 2 p=- 
47rcg 3c3 a ’ (1) 

where e is the charge, & is its acceleration, and c is the speed of light. Surprisingly, 

however, it is possible for an eztended charge to accelerate without radiating. 

For example, a nonrotating uniformly charged spherical shell (radius R) will not 

radiate if its center oscillates sinusoidally at a frequency2 such that 

sin(wR/c) = 0 , 

which is to say 

wi=jr(c/R), j=O,1,2 ,... . (2) 

In fact, any superposition of such oscillations is radiationless;3 if the position of 

the center of the sphere is given by 

t’(t) = 2 [iij COS(Wjt) + ij SiIl(Wjt)] , 

j=O 

for constant vectors Zj and Cj, the sphere will not radiate. Since any periodic 

function can be expanded in such a Fourier series, it follows that the sphere does 

not radiate as long as its motion has period 2R/c (the time it takes light to 

cross a diameter). Similarly, a spherical shell which rotates sinusoidally about a 

diameter will not radiate if its frequency is such that4 

jl(wR/c) = 0 (4 

where jl(z) is the first-order spherical Bessel function. 
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We would like to study the phenomenon of radiationless motion in greater 

detail. Unfortunately, there are very few nontrivial localized configurations for 

which one can calculate the electromagnetic fields exactly. In this paper, there- 

fore, we examine three special classes of nonlocalized currents: infinite cylindrical 

“pipes” with longitudinal flow (Section 2); infinite solenoids (Section 3); and infi- 

nite planes which carry uniform surface currents (Section 4). For each geometry 

we first analyse the case of infinitesimal cross-section, working out four specific 

examples and deriving a “Larmor” formula for the power radiated. We then 

consider sinusoidal currents with finite cross-section, obtaining an infinite set 

of frequencies which do not radiate. In Section 5 we show that our results are 

consistent with Goedecke’s general criterion for radiationless motion,5 and in 

Section 6 we conclude with some remarks about the radiation reaction force in 

these configurations. 

2. THE INFINITE PIPE 

Suppose an infinite straight wire, lying along the z axis, carries a time- 

dependent current I(t). W e assume that the wire is electrically neutral,’ so 

the scalar potential is zero, while the retarded vector potential is given by7 

O” I@ - dc) dz 
P 

(5) 
-00 

where (see Fig. 1) 

p=&G2 . (6) 

Since i has only one component, we’ll write A’= AS. The fields, then, are 

@r,t) = -g = -g & ; ii(r,t) = a x li= -g 4. (7) 
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The Poynting vector is 

s’(r,t)=;(zx13)-; ?g ( )(G+ (8) 

and hence the energy per unit time passing out through a cylinder of radius r 

and length -L is _ 

p,(t) = &da’= -; (;) (g) 27rrL. 6-J) 

To get the total power radiated we take the limit of P, as r --) 00. However, 

there is a delicate point here: because of the retardation, as we go farther and 

farther from the wire (at a given time t), we are sampling fields that left the wire 

at earlier and earlier times. If we want the energy that left the wire at a fixed 

time to, we must “follow the fields out” to infinity - that is, we want the limit 

of P,. with to = t - r/c (rather than t itself) held constant. Thus the power per 

unit length radiated from the wire at time to is given by 

P = i JL% Pr (to + f) , with to held constant . 00) 

Example I.* Suppose a constant current IO is turned on abruptly at time t = 0: 

I(t) = 
{ 

0, t<o 

IO, t>o - 

For t > r/c (i.e. to > 0) only points on the wire out to 

a)(r, t) = d(d)2 - r2 

4 

(11) 



contribute, and we have 

&=% ln(S-E) ; 
r 

@r,t) = -!g A!.& & ; i+,t)=gO $4; p2$. 
0 

Example 2. If the current increases linearly, 

w = 1 
0, t<o at , t>o * 

We find (for t > r/c): 

A(r, t) = y 
(t - ~~/c) 

dFq2 
0 

&=~[tln(E$?)-~] ; 

Ezample 3. If the current is a sudden burst at t = 0, 

W) = Qo s(t) , 

then (for t > r/c): 

A(r, t) = F 
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Example 4. For a sinusoidal current, 

I(t) = IO sin(wt) , 

the results are as follows:’ 

A(r, t) = Mg / O” sin w(t - p/c) dp 

r dP 

= -9 [sin(w (F) + cos(wt)Jo ( y)] , 

where JO and NO are the Bessel and Neumann functions of order zero; 

IZ(r, t) = f!$!f [cos(wt) No (fff) - sin(w ( y)] 2 ; 

(12) 

(13) 

g(r,t) = -c [sin(wt)Nr (F) +cos(wt)~r (y)] ,j ; (15) 

and 10 

P= 9 [l+ sin(2wto)l . (16) 

If all we are interested in is the total power radiated, there is no need to 

calculate the fields exactly; what we require are the “radiation fields” - the 

terms in I? and B’ which go like l/fi at large distances from the wire. l1 To 

pick out the radiation term in the vector potential, we make the substitution 

u= (p-?-)/c (17) 

in Eq. (5): 

O” I(&) - 21) NQ)=~o fidq+d”. / (18) 
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Recall that 

to = t - r/c (19) 

is to be held constant as we send r + 00. Expanding the radical,12 we obtain a 

series of the form 

$( )+g& I+-$( )+- - 
The first term is the one we want: 

&&,t) = E 
0 

Since the only time-dependence in Arad is carried by to, it follows that 

&ad(r,t) = -E jcto& u, du , 

0 

(20) 

(21) 

(22) 

where the dot denotes differentiation. Arad depends on r both explicitly (through 

the l/&- in front of the integral) and implicitly (through to), so there are two 

terms in ilA ,4/L+. However, the first goes like r-3/2, so 

&,(r, t) = l.2 2~rc du=i(iX&d), (23) 

and the power radiated, per unit length, is 

p = g wO)]2 , 
where 

(25) 

Equation (24) is the analog, in this geometry, to the Larmor formula - 

or rather, to the Lienard formula, since no nonrelativistic approximation has 
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been invoked. The reader is invited to check Eq. (24) for each of the examples 

considered earlier. Notice that a steady current (i = 0) does not radiate (of 

course); evidently this is the only radiationless case, just as constant velocity is 

the only radiationless motion for a point charge. 

Suppose now that our infinite wire has a nonzero radius R, and the current 

I(t) is uniformly distributed over its surface, so that the surface current density 

is 

K(t) = 2 . 

The vector potential is 

2A 00 

i(r,t) = E9 
Jl 

K(t - p/d &R d$ 
, 

P 
0 -00 

where (see Fig. 2) 

and 

[=.\/R2+r2-2Rrcosq5. 

Consider a sinusoidal current, 

I(t) = II-J sin(wt) . 
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(26) 

(27) 

(28) 

(29) 

(30) 



The z-integral is performed as before:g 

2r 00 

(31) 

= -gJ[si.(Yt)No ($) +cos(wt)Jo ($)I &j. 
0 

The &integral can also be evaluated exactly:13 

A(r,t) = -FJo (G) [sin(w (5) +cos(wt)Jo (F)] . (32) 

Apart from an overall constant factor of Jo(wR/c) - which reduces to 1 in the 

limit R -+ 0 - this is exactly what we found in Example 4 for the wire of zero 

radius! The fields will be multiplied by the same factor, and the power radiated 

at time to can be read from Eq. (16): 

P=* [Jo(f$)]2[I+sin(2wt,)l . (33) 

(The same result holds for a current I(t) = IO cos(wt), except that the plus sign 

becomes a minus sign.) Evidently the wire will not radiate if the current is 

sinusoidal with a frequency w such that (wR/c) is a zero of JO(Z): 

Wj = xj(c/R) , j = 1,2,3,. . . , where Jo(Xi) = 0 . (34 

Notice that for these special frequencies the fields are precisely zero everywhere 

outside the wire. There is, as it were, perfect destructive interference in all 
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directions. Because the fields obey the Superposition Principle, it follows that 

any current of the form 

I(t) = g [Uj COS(Ujt) + bj Sill(tdjt)] , (35) 
j=l 

with wj given by Eq; (34), will generate no external fields, and produce no 

radiation. 

This raises an intriguing mathematical question: what is the most general 

function I(t) that can be expanded in such a “Fourier-like” series? It is not a 

true Fourier series, of course, because the frequencies wj are not integer multiples 

of a fundamental, but rather are proportional to the zeros of JO(Z). Nevertheless, 

it turns out that the functions {cos wit, sin wit} are complete 14 on the interval 

(-R/c, R/c): any well-behaved function on this interval can be written in the 

form (35). (In a related paper 15 we show how to determine the coefficients aj 

and bj, for a given function.) Unlike a Fourier series, however, the extension 

outside this interval does not generate a periodic function. For example, the step 

function 

I(t) = 
-1, for -R/c < t < 0 

+l, for 0 < t < R/c ’ (36) 

expanded according to (35), extrapolates as shown in Fig. 3. What this means 

is that a nonradiating current can be anything whatever, on an interval of length 

T = 2R/c (th e t ime it takes light to cross a diameter), provided I(t) has just the 

right matching form [given by (35)] f or all earlier and later times - in fact, the 

electric and magnetic fields outside the pipe will vanish identically.16 
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3. THE INFINITE SOLENOID 

Suppose now that the current flows around the pipe, rather than along it. 

The surface current density is 

k(t) = K(t) p . (37) 

In this case the vector potential is given by 

qr, t) = z @  -dc) dzR@  = K(t - “‘I 
P 

cos # dz dq5 , 
P 

0 -00 
(38) 

where (see Fig. 2) 

p=j/W  and e=j/R2+r2-2Rrcos+. (39) 

This time [writing i(r, t) = A(r, t)c$], we have 

Et(r,t) = -g 4 ; @ r,t) = ; & (rA).S ; (40) 

(41) 

As before, the power radiated per unit length is 

P = i rli% Pr (to + 5) , with to held constant . (42) 

Once again, we begin with the limiting case R + 0 - physically, this repre- 

sents a string of infinitesimal magnetic dipoles. Expanding the integrand to first 
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order in R, and performing the 4 integral, we find 

It(t - @TT/c) + K(t - @-Tqc) 
c(r2 + 22) (9 + 22)W 

dz . (43) 

In terms of the magnetic dipole moment per unit length, 

M(t) = rR2 K(t) , 

then, 

A(r,t) = z 
ti(t - p/c) + M(t - P/C) dp 

CP P2 1 @=7 
= ET.!& [-y] ,f”,, . 

r 

Exmnple 1. Suppose the current is turned on abruptly at time t = 0: 

M(t) = 
0, t<o 
MO, t>o - 

Then 

A&(t) = MO b(t) , 

and (for t > r/c) 

A(r,t) = EM0 

where, as before, 

dp POMO ct =-- 
27r rzo ’ 

a= d( ) ct 2 - r2 . 
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It follows that 

@I, t) = @$ $ fj ; EQr,t)=F$; p+! z t3’ 
( ) 

21 
0 0 0 

Example 2. If the current increases linearly with time: 

M(t) = { 
0, t<o 
at , t>o ’ 

we find (for t > r/c) 

A(r,t) = (z) ; ; ,?f(r,t) = - (z) 5 4; 

i?(r,t) = - (Y) & 2 ; p = !s!$ f . 
0 

Exumple 3. If the current consists of a sudden burst at t = 0: 

M(t) = W(t) , 

then (for t > r/c) 

[r2 +2(Ct)21 9 ; p _ 9 POP2 1 

4 64x$’ 

Example 4. For a sinusoidal current, 

M(t) = MO sin(&) , (46) 

the results are as follows:17 

A(r,t) = -“‘2” [sin(wt)N (y) + ax(d) J1 (y)] ; (47) 
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Z(r, t) = p”~~u2 [cos(wt)Nl (y) - sin(d) J1 (y)] 4 ; (48) 

Z(r,t) = -po$w2 [sin(w (y) + cos(wt)Jo (p)] 2 ; (49) 

P = P”~~w3 [l - sin(2wto)l . (50) 

These results are strikingly similar to those for the infinite wire carrying a lon- 

gitudinal sinusoidal current, with the roles of ,?? and B’ reversed.18 

To obtain the “Larmor” formula for the power radiated in this configuration, 

we proceed as before. Let 

u = (P - r)/c , (51) 

and remember that 

to = t - r/c (54 

is to be held constant as r + 00. Expanding the integrand in (45), and keeping 

only the term in l/fi, we find 

A&, t) = f% 1 
27r +rr 

0 

It follows that 

&&r,t) = - po 
27rc&G 

3 O” xr(t, - u) 
J + 

du = i (; x &,,) , 

0 

(53) 

(54 

(55) 
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and the power radiated at time to is, as before, 

I’ = E [Q(to)]’ , (56) 

where in this case 

Yt%(t -u) 
Q(t)=;/ + du. 

0 
(57) 

Equation (56) is th e analog to the Larmor formula for radiation from an infinitely 

long solenoid of infinitesimal diameter. The reader is invited to check that it 

reproduces the final results in Examples l-4. Notice that a steady current (k = 

0) does not radiate (of course); nor (surprisingly) does a current which increases 

linearly (A2 = 0) for all time.l’ 

Suppose now that our infinite solenoid has a nonzero radius R, and carries a 

sinusoidal surface current: 

K(t) = g ( > sin(wt) . 

Putting this into Eq. (38), and performing the z-integral:’ 

-A(r,t) = g 
sin w(t - p/c) 

dm- dp cod d4 

(58) 

(59) 

= --s/ [sin(w ($) +cos(wt)Jo ($)I cos$ dq+. 

0 

This integral can be done exactly;20 the result is 

A(r,t) = -g Jl (q) [sin(wt)Nl (5> + cos(wt) 51 (s)] . (60) 

Apart from an overall constant factor (2c/wR) Jl(wR/c) - which reduces to 1 in 
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the limit R + 0 - this is identical to the corresponding result for the solenoid of 

infinitesimal radius [Eq. (47)]. The fields are likewise multiplied by this factor, 

and we may read the power radiated, at time to, from Eq. (50): 

P = 7 [% 51 (c)]211-sin(2wte)] . (61) 

(The same result holds for M(t) = M ocos(wt), except that the minus sign be- 

comes a plus sign.) Evidently the solenoid will not radiate if the current is 

sinusoidal with a frequency such that (wR/c) is a zero of 51 (z) : 

Wj=Xj(c/R) , j=O,1,2 ,... , where Jl(Xj) ~0. (62) 

(Note that z = 0 is a zero of Jl(z) - we’ll call it Xc.) At these special frequencies 

the fields are precisely zero everywhere outside the solenoid. It follows that any 

current of the form 

M(t) = 2 [uj cos(wjt) + bj sin(wjt)] , (63) 
j=O 

with wj given by Eq. (62), will generate no external fields and produce no 

radiation. 

Once again, this raises an interesting mathematical question: what is the 

most general function M(t) that can be expanded in such a “Fourier-like” series? 

As before, it turns out that the functions {cos(wjt), sin(wjt)} are complete14 

on the interval (-R/c, R/c): any well-behaved function on this interval can be 

written in the form (63). In a related paper15 we show how to evaluate the 

coefficients oj and bj, and examine the behavior of the series outside the interval 

(-R/c, R/c).~~ 
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4. THE INFINITE PLANE 

Suppose the y-z plane carries a time-dependent surface current 

k(t) = K(t) $ . (64 

The plane is electrically neutral, so the scalar potential is zero, and the vector 

potential at a distance z from the plane is given by 

mJqt - P/C) 
co 

&,t) = E & 
J 

2mdr = fi & 
P 2 / 

K(t - P/C> dp , (65) 
0 z 

where (see Fig. 4) 

p=dZX 

The fields are 

Iqx,t) = -g & ; Z(x,t) = -2 g . 

(As before, we write A’= A&.) The Poynting vector is 

S&t) = ---& at l ("A) (2) 2 

(66) 

(67) 

(68) 

and the energy per unit time passing through a surface of area a at a height x 

above the plane is 

J%(t) = ---& at l (“A) (g) a. (69) 

The same energy, of course, passes through a symmetrically located area below 
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the plane, so the total power radiated per unit area, at time to is 

P = i $ri.r Pz (tO + T> , with to held constant . (70) 

Exumple 1. Suppose a constant current KO is turned on abruptly at time t = 0: 

K(t) = 
0, t<o 
Ko, t>o * 

For t > z/c, we find 

A(x, t) = 9 (ct-x) ; d(x,t)=-C”OKO” 5; 
2 

Exumple 2. If the current increases linearly, 

w = 
{ 

0, t<o 
art , t>o ’ 

then, for t > x/c 

A(x,t)=y(ct-x)‘; @x,t)=-y(ct-x)&; 

i&t) = y (ct - x)fi ; p = 7 (“to)2 . 

Example 3. If 

K(t) = P s(t) , 

then 

A(x,t)=yB(ct-x); i(x,t)=-$%(ct-x)2; 

iqx, t) = F qct - x)6 ; P = + [b(to)]” . 

(The latter is of formal interest, at best, since the square of a delta-function is 

undefined.) 
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Exumple 4. To obtain the vector potential for a sinusoidal current, we are obliged 

to turn the current off at some time in the distant past: 

w = 
KO sin(wt), t > -T 
o 

, t<---T ’ 

Then 

A(x,t) = F [cos(wT) - cosw(t - x/c)] . (72) 

(71) 

Because the cutoff appears only as an additive constant, it does not affect the 

fields: 

@x,t) = -!!!p sin w(t - x/c) & ; 

2(x, t) = 9 sinw(t - s/c)6 ; 

p = porn 
2 

sin2 (wto) . 

(73) 

(74 

To derive the “Larmor” formula for radiation from a plane, we make the 

usual substitution 

u= (p-x)/c (75) 

and remember that 

to = t - x/c (76) 

will be held constant as x + 00. In terms of these variables, Eq. (65) becomes 



It follows that 

,!?(s,t) = -y & 
O”a 

J 
dt [K(to - u)] du . 

0 

Now 

; K(tB - u) = & K(to - u) = --& K(t,, - u) . (78) 

The integral can now be done, and we are left with the surprisingly simple 

result 22 

&x,t) = -y K(to) 2 . (79) 

Similarly, 

g(x, t) = F K(to) jj = f (; x 2) . 

Thus the Poynting vector is 

%t) = y [K(to)]’ i? , 

and the power radiated, per unit area, is 

P = y [K(to)12 . 

(80) 

(81) 

(82) 

This is the “Larmor” formula for radiation from an infinite plane. Notice that 

- unlike the spherical and cylindrical cases - we never had to take the limit 

(x + oo with to held constant); Eqs. (77), (79), (80), and (81) are exact, and the 

same power (82) p asses through every surface, on its way out to infinity. The 

reader is invited to check these formulas against the results in Examples l-4. 
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Consider now a pair of planes, one at z = R and one at x = -R, each carrying 

a surface current K(t)/2. (Th 1s is the analog to the spherical shell, the pipe, and 

the solenoid of nonzero radius.) We simply replace K(to), in Eqs. (79) and (80), 

by f [K(to + R/c) + K(to - R/c)]. I n p t ar icu ar, if the current is sinusoidal, 1 

K(t) = KO sin(wt) , (83) 

we find that 

q&t) = -!!g+ cos q 

( ) 

sin(wt0) S ; 

Z(x,t) = 9 cos q 
( ) 

sin(wt0) 0 ; 

p = I-L&% 
2 

sin2(wto) . 

(84 

These results are identical to those for a single plane (Example 4), except for the 

factors of cos(wR/c). (For a current K(t) = K 0 cos(wt) the sines in (84) and (85) 

are simply replaced by cosines.) Evidently the double plane will not radiate if 

the current is sinusoidal with a frequency such that (wR/c) is a zero of cos Z: 

Wj= (I+f) K(i) , j=O,1,2 ,... . (86) 

In fact, for these special frequencies the ezterior fields are precisely zero. It follows 

that any current of the form 

K(t) = 2 [uj cos(wjt) + bj sin(wjt)] , 
j=O 

with wj given by Eq. (86)) will generate no fields, and produce no radiation. 

As we know from Fourier analysis, any well-behaved function on the interval 

21 



(-R/c, R/c) can be written in the form (87), with the familiar procedure for 

evaluating the coefficients. Outside this interval the series is periodic, with alter- 

nat ing signs. 23 

5. GOEDECKE’S CONDITION 

Some time ago, Goedecke5 derived a stunningly simple test for the absence 

of radiation. Goedecke’s criterion amounts to the condition that the Fourier 

transform of the current density 

Jp(k) = --$ / ei(tYzv)jp(x) d4x (88) 

vanish whenever its argument is lightlike: 

J’l(k) = 0 when k”k, = 0 . (89) 

In this section we check that our results are consistent with Goedecke’s condition. 

For the “pipe” configuration, with an axially symmetric sinusoidal current 

flowing in the z-direction, we have25 

P(x) = ( 0, 0, 0, j(r) eiWt . 
> (90) 

The Fourier transform is 

J’(k) = (0, 0, 0, J(k)) , 

where 

/ 
ei(-k’Ct+i.r’) j(,) eiWt dt &. . 

(91) 

(92) 
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In cylindrical coordinates, 

is?= kZrcos++ kytsin4+ k,z , and d3r = rdrdqSdz . (93) 

Carrying out the t, 4, and z integrals, we obtain 

J(k) = 27r6(k0 - w/c) 6(k,) /j(r) Jo(k,r) rdr , 

0 
(94 

where k, = 
4 

kz + ki is the radial component of i, and k, is its z-component. 

Because of the delta-functions, Jp(k) is automatically zero except when k, = 0 

and k” = w/c; if kc” is lightlike, this leaves k, = w/c. So Goedecke’s condition 

reduces in this case to 

Tj(r) Jo(q)rdr=O. 

0 

In particular, if the current is confined to the surface of the pipe, so that 

j(r) = F&jj I0 S(r - R) , (96) 

there will be no radiation provided 

(95) 

(97) 

which is precisely what we found before [Eq. (34)].26 
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For the “solenoid” configuration we have 

jp(x) = (0, - sin4, cos f$, 0) j(r) eiWt , 

and the Fourier transform is 

J“(k) = (0, -k,, kz, 0) J(k) , 

where 

J(k) = F 6(k” - w/c) 6(k,) Tj(r) Jl(k,r) rdr . 
r 

0 

In this case, then, Goedecke’s condition reduces to the constraint 

ij(r) Jl(q)rdr=O. 
0 

If the current is confined to the surface of the solenoid, so that 

.m = * Mo 6(r- R) 

then there is no radiation provided 

(98) 

(99) 

(100) 

(101) 

(102) 

confirming our previous result [Eq. (64)].27 
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For the “plane” configuration, we have 

j”“(z) = (0, 0, 0, j(z) eiw’) , 

so that 

JV) = (0, 0, 0, J(k)) , 

with 

J(k) = 27r6(k0 - w/c) 6(k,) 6(Ic,) 7 j(z) eikzz da: . 
--oo 

In this case Goedecke’s condition reduces to 

co 

J 
j(z) eiwzic da: = 0 . 

-CCl 

If the current is confined to two parallel planes, so that 

j(z) = : [S(z + R) + S(z - R)] , 

there will be no radiation if 

(104 

(105) 

(106) 

(107) 

(108) 

(109) 

confirming Eq. (86). 28 
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6. RADIATION REACTION 

Ordinarily, the emission of radiation is accompanied by a “radiation reaction” 

- a recoil force attributable to the fields acting back on the source. Indeed, one 

would suppose that the work done against this radiative recoil force (by whatever 

agency it is that moves the charge) must equal the energy radiated, for which it is 

ultimately responsible. By the same token, if there is no radiation, there should 

be no radiation reaction. However, the connection between emission of radiation 

and the radiation reaction force is a subtle one, as we can see by comparing the 

Larmor formula for the power radiated from a point charge’ 

1 2e2 2 p=- 
47rEfJ 3c3 a 

with the Abraham-Lorentz formula for the radiation reaction on such a charge 29 

Frad = 1 2”” (I . 
4m-J 3c3 

Observe that the particle radiates whenever it accelerates, but it experiences a 

radiation reaction force only when its acceleration changes. The explanation for 

this apparent violation of conservation of energy is that the nearby fields function 

as a %eservoir,” in which energy can be stored, so that work done against the 

radiation reaction need not show up directly in the form of radiation. 3o Never- 

theless, for periodic motion it is certainly the case that the work done against the 

radiation reaction force in one full cycle must equal the energy radiated during 

one fuZZ cycle, since the energy stored in the nearby fields is the same at the end 

of the interval as at the beginning. 
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For example, in the hollow pipe configuration the power necessary to drive a 

current I(t) is given by31 

Pd = -IEL , W) 

where E is the electric field at the surface of the pipe, and L is the length of 

the segment. Referring to our results in Section 2 [see Eq. (32)] for a current 

I(t) = IO sin(wt), we find that the driving power per unit length is 

pd = P&W TJo ($) sin(wt) [sin(wt)Je ($) -cos(wt)No ($)I . (111) 

This is plainly not equal to the power radiated [Eq. (33)], but the work done per 

unit length in one full cycle 

2s/w 

w= J 
pd & = !!!?$ 

[Jo (?)I2 
0 

(112) 

does equal the total energy radiated. Similarly, for the hollow solenoid the power 

needed to drive a surface current K(t) is 

Pd = -2rRKEL, 013) 

and we find, for the current in Eq. (58): 

pd = ruoMo2w 
R2 Jl c sin&t) (wR) ’ [sin(wt)Jr ($) -cos(wt)Nl (f$)] . (114) 

Again, this differs from the power radiated [Eq. (61)], but both yield the same 
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energy when integrated over a full cycle: 

W = PO;? [Jl (?)I2 . (115) 

Finally, for the parallel planes, the power required to sustain a surface current 

K(t) is 

Pd = -KEa , (116) 

where a is the area of the section in question. For the sinusoidal current KO sin(wt), 

the driving power per unit area [see Eq. (84)] is 

p 
d (117) 

which is not the same as the power radiated [Eq. (85)], but they both yield the 

same energy in one full cycle: 32 

w= woK:c 
W (118) 
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FIGURE CAPTIONS 

1. The infinite straight wire; geometry for Eq. (5). 

2. The infinite pipe of radius R; geometry for Eq. (27). 

3. “Fourier-like” expansion [Eq. (35)] of the step function [Eq. (36)]. Hori- 

zontal (time) axis in units of R/c. The coefficients are 

aj=O, bj= 4 ~ (-Xj)k 
rJl(Xi) k=O [(2k+ 1)!!12 ’ 

4. The infinite plane; geometry for Eq. (65). 
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