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ABSTRACT 

We formulate a functional approach to scalar quantum field theory in n+l 

dimensional de Sitter spacetime and solve the functional Schrgdinger equation 

for the conformally and minimally coupled scalar fields in both the k=O and 

k=l gauges. We show that there is a natural initial condition, the requirement 

that the field energy remain finite as the scale factor a becomes small, which 

specifies a unique, time-dependent, de Sitter vacuum state. This initial condition 

is closely related to Hawking’s prescription of including in the functional integral 

only those field configurations which are regular on the Euclidean section. The 

Green’s functions constructed using this initial condition are explicitly shown to 

be the analytic continuation of those derived using the Euclidean path integral 

formalism and the regularity (boundary) condition. These Green’s functions are 

used to study the Hawking effect and the restoration of continuous symmetries. In 

particular we study the restoration of a broken O(2) symmetry of a a4 theory. We 

argue that spontaneously broken continuous symmetries are always dynamically 

restored in de Sitter spacetime. 
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1. Int reduction 

Quantum field theory in nontrivial backgrounds has served as a particularly 

useful semiclassical approximation to the quantum theory of gravity. Scalar field 

theory in de Sitter space is a system that has come under much-scrutiny, not only 

because de Sitter space is a space of high symmetry, and hence exact solutions 

for the free field theory can be written down - but also because it is a space 

of constant nonzero curvature, and thus field theory in a de Sitter background 

is not a trivial rewriting of Minkowski field theory. In this paper we will study 

scalar quantum field theory in a de Sitter background in some detail. We shall 

be particularly interested in the vacuum state. 

It has been suggested that the vacuum of field theory in de Sitter space de- 

pends on a parameter whose value is determined by an “extra” requirement.’ We 

will show that this is the case, for each mode of the vacuum, in both de Sitter 

and Minkowski space only if no boundary/initial condition is used to specify the 

state. If an initial condition is used then the vacuum states are completely deter- 

mined up to an arbitrary, unphysical phase. We will also suggest a particularly 

natural initial condition. 

A recurring theme in attempts to study the quantization of gravity (partic- 

ularly at the semiclassical level) has been the connection between quantum field 

theory in certain nontrivial gravitational backgrounds and at finite temperature. 

This connection is suggested by the periodicity in imaginary time of the Green’s 

function in the gravitational background, or by the relation, usually ascribed to 

systems in thermal equilibrium, satisfied by the Bogoliubov coefficients between 
- - 

basis states at different times. The archetypical example of this phenomenon is 

the thermal spectrum of Hawking radiation found when scalar quantum field the- . 
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or-y is studied in the background of a Schwarzschild black hole.2 Field theory in 

de Sitter space is another system which exhibits similar behavior.3 Of course, any 

semiclassical theory-&e., a quantum field interacting with a classical source- 

will have inconsistencies, and the ultimate explanation ef this effect will proba- 

-bly require some understanding of the quantum theory of gravity. However, its 

importance should not be understated, as this has led Hawking to suggest that 

quantum mechanics might need to be modified if we want to quantize gravity.4’5 

We shall analyze the Hawking effect in de Sitter space and extend the DeWitt- 

Unruh construct of a particle detector. Motivated by the analogy between non- 

trivial backgrounds and finite temperature, we study symmetry restoration in de 

Sitter space. Surprisingly, we find that spontaneously broken continuous symme- 

tries are dynamically restored --in any number of spacetime dimensions, leading 

us to believe that this analogy may not be quite complete. 

De Sitter space has recently figured prominently in the application of field 

theory to the early universe.6 Banks, Fischler and Susskind’ have perturbatively 

solved the Wheeler-Dewitt equation for the inflationary universe. They have 

found that to the lowest order in which the matter (scalar) field enters the cal- 

culation, the wavefunction of the universe factorizes into a part that describes 

the gravitational dynamics, and a part that describes the matter dynamics; the 

matter part is exactly the same as the wavefunction of a scalar field propagating 

in a de Sitter background. So, at least to this order, the semiclassical approxi- 

mation of quantum field theory in a nontrivial background seems to be a good 

approximation to the complete theory. 
- - 

In Section 2, we review the de Sitter solution of the n+l dimensional Ein- 

stein equations. In Section 3, we develop the functional Schredinger approach 
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to field theory by analyzing the conformally coupled scalar field in spatially flat 

(k=O) coordinates; our analysis is semiclassical in that the dynamics of the back- 

ground metric are predetermined. We calculate the Feynman Green’s function 

and use it in Section 4 to analyze the Hawking effect in n+l dimensional de Sit- 

ter spacetime by considering a conformally coupled scalar field interacting with 

a comoving detector. We establish a criterion by which one can decide if a given 

transition probability is thermal. In Section 5, we discuss the minimally cou- 

pled scalar field in k=O de Sitter spacetime. We solve the functional Schr6dinger 

equation in n+l dimensions for the vacuum wavefunctional and calculate the 

Green’s function. We analyze the 3+1 dimensional case in some detail. We note 

that the equal time Green’s function is time dependent; in particular, the coinci- 

dence limit of the massless Green’s function depends linearly on time. We show 

that the massless Green’s function --in any number of dimensions-depends log- 

arithmically on the separation (for large physical separation). This behavior is 

analogous to that of the scalar field Green’s function in flat spacetime in l+l 

dimensions; 8 thus it suggests that it is impossible to break a continuous sym- 

metry globally in n+l dimensional de Sitter spacetime. In Sections 6 and 7, we 

repeat the above analysis for a scalar field in k=+l de Sitter coordinates. In 

Section 8, we evaluate the Green’s functions using the path integral formalism 

with the boundary condition of Hawking, i.e., integrating over those field con- 

figurations which are regular on the .Euclidean section of n+l dimensional de 

Sitter space (in k=+l coordinates), an n+l dimensional sphere. In Section 9 we 

discuss how the requirements of finiteness of the field energy as the scale factor 

- w 0 and that of regularity on the Euclidean section might be considered to be 

different aspects of the same “boundary” condition that uniquely specifies the 
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vacuum wavefunctional, in k=+l coordinates. We analyze symmetry restoration 

in more detail in Section 10, where we compute the Gaussian fluctuations about 

a state of broken U(1) symmetry and show that these fluctuations restore the 

symmetry. However, the correlations die out very slowly, as a_n inverse power of 

proper distance ra(t), where r is coordinate distance. Physically, this calculation 

suggests that the scalar field expectation value wanders slowly as a function of 

position on a scale set by the scale factor. A local observer would always claim 

to be in a broken symmetry phase.of the theory. Although we only exhibit ex- 

plicit solutions in k=+l and k=O coordinates, we expect this phenomenon to be 

coordinate independent. 

The Appendices contain technical details of the calculation. In Appendix E 

we examine the behavior of the equal time Green’s function of the minimally 

coupled scalar field for large and small spatial separation. We see that as the 

mass of the field goes to zero, there is an infinite contribution which appears both 

in the infrared and the ultraviolet and can be interpreted as being the zero mode 

on the n-sphere. 

2. Technical Preliminaries 

De Sitter spacetime is the unique, maximally symmetric, negative spacetime 

curvature (i.e. positive Ricci scalar) solution to Einstein’s equations with a cos- 

mological constant and without matter. To solve Einstein’s equations we need to 

make a choice of gauge. The conventional choice is the synchronous gauge where 

the metric is taken to be of the form: 

( 1 0 

gpv = 0 -a2(t)$j(zi) > 
(2.1) 
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(Greek indices assume values from 0 to n, Latin indices from 1 to n ). The 

requirements of spatial homogeneity and isotropy restrict gij(z’) to be the metric 

for an n-dimensional maximally symmetric space. We can then reduce Einstein’s 

equations to an equation of evolution for the scales factor g(t), which for an 

_empty,spatially homogeneous and isotropic universe with a cosmological constant 

becomes: 

(b)2 = -k - &a2 (2.2) 

where k is the sign of the spatial curvature, which can assume the values fl 

or 0, and K is the constant spacetime curvature, to which we might assign the 

values Ah2 or 0; h is a real constant. n is related to the Ricci scalar by tc = 

-R/n(n+ 1). De Sitter spacetime is the (essentially unique) K = -h2 solution of 

this evolution equation.g It is conventionally viewed as being an n+l dimensional 

hyperboloid embedded in n+2 dimensional Minkowski space. lo As is well-known, 

there is still some “gauge” freedom --i.e. different ways of aligning the de Sitter 

time axis with the embedding Minkowski space time axis. This exhibits itself in 

three different “de Sitter” solutions which correspond to three different ways of 

laying a coordinate system on the hyperboloid (i.e., three different ways of slicing 

spacetime into space and time).g”0 These form one parameter families. There 

is also a static de Sitter coordinate system. We list the solutions of (2.2) which 

have real Lorentzian sections. 



tc=O rc=+h2 

k=O 

(c= -h2 

&ht 

de Sitter 

1 

Minkowski 

- 

k = +1 

k= -1 

cosh(ht)/h 

de Sitter - Lanczos 

sinh( ht) /h t sin(ht)/h 

de Sitter - hyperbolic Minkowski - hyperbolic Anti de Sitter 

We first consider the mathematically simplest case: the solution correspond- 

ing to k=O in which the spatial hypersurfaces are flat. This allows us to use 

a Fourier expansion as opposed to an expansion in spherical harmonics. The 

scale factor is then of the form a(t) = e -Iht We examine the expanding solution; . 

some remarks about the contracting solution will be made later on. In these 

coordinates, the metric becomes 

diag (1, -e2h’&j) (2.3) 

which is not static; also, the coordinate system has a horizon and only covers 

half the hyperboloid.g”0 The Hubble constant H = &/a = h. We can introduce 

a new time variable, conformal time 

- - 

-ht 1 &-TLe-- 
h ha(t) 

(2.4 

which puts the metric in a conformally flat form: gPV = (l/h2iv?)qrV @runs from 
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-oo in the far past to 0 in the far future). For the contracting solution we define 

eht 1 
g= - -= 

h ha(t) 
W) 

so zC E [0, oo] and H = ci/a = -h. 

When the metric is of the form (2.3), the embedding space coordinates are: 

z. = sinh(ht) h ht-2 
h + g IZI 

.z. = eht,. I a P-6) 

G&+1 = 
cosh( ht) h ht-2 

h 
- ?e IzI . 

The distance between two points on the hyperboloid is the square root of: 

a2 = 
eh(t+t ‘) 

h2 ce [ 
-ht _ ,-ht’ 2 ) - h2(Z- i?)‘] 

= & [(T- F’)2 - (6 Z’)2] . 
P-7) 

The geodesics in de Sitter spacetime are the intersections of the hyperboloid 

with planes through the origin. The de Sitter group in n+l dimensions is just the 

homogeneous Lorentz group in n+2 dimensions SO(n+l,l), i.e., those Lorentz 

transformations in the n+2 dimensional Minkowski embedding space which do 

not move the hyperboloid around. The group SO(n+l,l) has (n+2)(n+1)/2 

generators which correspond to the following symmetries of the line element: n 

spatial translations, 1 dilatation, n(n-1)/2 spatial rotations and n boosts. 

- A We then consider the de Sitter solution in the gauge corresponding to k=+l 

(Lanczos). The spatial hypersurfaces are now n-spheres; hence we will have 
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to expand in generalized spherical harmonics. The scale factor is of the f&m 

a(t) = cosh(ht)/h, so de Sitter space is an n-sphere, of radius a(t), that first 

contracts and then expands; the Hubble “constant.” H = b/a = htanh(ht). In 

these coordinates the metric is: 

diag 1, - coshh2z(ht) (1, sin2 0,(1, sin2 6,-,(*. s))) 
> 

where B1 E [0,27r), Bi E [0, x) i # 1. This coordinate system covers the hyper- 

boloid. *” Conformal time can be defined by: 

sec2i: = cosh2(ht) = h2a2; (2-g) 

it assumes values from -n/2 to 7r/2. The metric is then in the conformally flat 

form 

$ diag (1, -(l , sin2B,(1, sin2t9,-1(...)))). (2.10) 

When the metric is of the form (2.8), the embedding space coordinates are 

given by: 

zo = i sinh(ht) 

z1 = ; cosh(ht) cos(8,) 

(2.11) 

zi = i cosh(ht) sin(&) sin(&-1) * * * sin(8,+2-i) cos(B,+l-i) 

. . . 
- - 

G&+1 = i cosh(ht) sin(8,) sin(e,-1) + - - sin(82) sin(81) . 

. 
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i 
The distance between two points R, a’ is the square root, of: 

a2 = 2cosh(ht) cosh(ht ‘) _ 
h2 

1 + sinh(ht) sinh(ht’) + cos7 
,cosh(ht) cosh(ht ‘) I 

2 
= h2 cos(F) cos(q 

[- cos(L T’) + cos-y] 

(2.12) 

where 7 is the angle between n and n’, given in 2+1 dimensions (for example) 

by the familiar formula 

cos7=cosB2cos8~+sinB2sinB~cos(t+ -0:). (2.13) 

In this (k=+l) gauge, de Sitter space has a Euclidean extension in which 

the metric is definite. It is convenient to implement this analytic continuation 

by introducing the periodic real coordinate &+I, with period 7r (see Figure 3), 

defined by 

e ,,+I E tE = iht + f + mr, (2.14) 

where tE is Euclidean “time” and m an integer. In these coordinates the metric 

is: 

1 -- h2 diag (1, sin’B,+r(l, sin2B,(1, sin2Bn-r(...)))) = -jljSp’) (2.15) 

where St”,+‘) is the metric on S( n-C1), the n+l dimensional unit sphere. The 

- e&bedding space coordinates ZpE are given by (2.11) with (sinh(ht),cosh(ht)) 

replaced by (ices &+I, sin @,+I) and Z.O = i.20~. The square of the distance be- 
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. 
tween two points flE, fib becomes: 

0% = -$ [l - cos7,+r] (2.16) 

where: 

COS m+1 = cos lln+l cos 8 ‘,+1 + sin On+1 sin 8 k+r cos 7. (2.17) 

An implicit assumption of all of our calculations is that the scalar field’s 

contribution to the stress energy can be neglected as compared to the contribution 

from the cosmological constant. In other words, we assume that the addition of 

a scalar field (to de Sitter spacetime) does not radically modify the background 

geometry. 

3. The Spatially Flat Metric: A. The Conformally Coupled Field 

De Sitter spacetime is conformally flat, so a suitably resealed, conformally 

coupled scalar field does not recognize as special the length scale set by the cur- 

vature of the spacetime in which it lives (this resealing symmetry is actually 

broken by the conformal anomaly but this is not relevant at the level to which 

we calculate). It is thus a trivial matter of resealing variables to get the de Sit- 

ter two-point functions from the corresponding Minkowski two-point functions. 

Because this case is simple, though, it is instructive to use it as a first example 

of our more generally applicable methods. In this section we will solve the func- 

tional Schrbdinger equation for the evolution of a conformally coupled field; the 

resulting wavefunction will provide the Green’s function of this field. 
- - 

We shall deal with the massless scalar field so that the equation of motion is 

conformally invariant. The solution of the massive conformally coupled case can . 
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i be obtained from that of the massive minimally coupled case, solved in Section 

5, by means of a suitable redefinition of the mass. The action for the massless 

case is: 

where l(x) is the Lagrangian density, 4(x) is a complex scalar field, gccV = 

diag(1, -a2(t)&j)r a(t) = eht, and 

( (n-1) = 
4n (3.2) 

to make the resulting Klein-Gordon equation conformally invariant. In de Sitter 

space we have R = n(n + l)h2. Then the action becomes: . 

-s(n-l)(n+l)h2/0/2 . 1 (3.3) 
We can rewrite this in terms of a dimensionless field x = ay$: 

4i12 lVx12 2--- 
2a 1 (34 

where we have integrated by parts once and dropped a surface term (this affects 

only the phase of the resulting Schr6dinger wavefunction). Let us now introduce 

conformal time r (see (2.4))) by dF= u-l(t) dt; then: 

S = (3.5) 

where the dot now means a derivative with respect to conformal time. 
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Fourier expanding, 

x(Z) = / +$ x(L)eis*z, 

we can rewrite the action as: 

s = &d”kzk = dr---- 
I 

dnk 

J [ 

~#)>i(-k’, _ k2x(c)x(-z) 

(Wn (27r)n 2 2 I 

or in terms of the real and imaginary parts of x (= x1 + ixz), 

ii(g)>ii(Z) _ k2xi(Z)xi(Z) 
2 2 1 

(3.6) 

(3.7) 

(34 

where i runs over 1,2. 

In the following development we will treat the real and imaginary parts of x 

as independent real variables, which we denote generically as x. The action for 

x is: 

We recognize that x is a quantum mechanical variable with the Hamiltonian 

density 

& = 

where p is conjugate to x. .The functional SchrGdinger equation 

becomes: 
- - 

(3.10) 

(3.11) 

(3.12) 



I 

We will look for solutions of the form 

(3.13) 

Equating coefficients of x0 and x2 to 0, we see that we needsolve the pair of 

equations: 

* f -;9 +z x0 
9 

(3.14) 

if - f2 + k2 = 0. (3.15) 

The first equation determines g in terms of f. To find f, substitute f = -$ 

into the second equation to reduce it to: 

ii+k2R=0 (3.16) 

which has as solution: 

R(F) = cleikT+ c2emik’i: (3.17) 

(3.18) 

so the vacuum wavefunctional depends on infinitely many undetermined con- 

stants, one for each mode (demanding de Sitter invariance effectively makes these 

constants mode independent). This is the same as what we would have found 

ifiat spacetime. This problem is not noticed in the conventional method for 

determining f (separation of variables) because separating variables (even at one 
. 
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time) effectively imposes an initial condition by requiring that i vanish at a par-- 

titular time. One can then show that all higher temporal derivatives of f need 

vanish at this point; hence f is a constant. The requirement of normalizability 

of the wavefunction then fixes the sign. 

If this wavefunction is to describe a harmonic oscillator with a time indepen- 

dent frequency, as it must, and is to be normalizable, then we need to choose 

cz = 0. We may impose an initial condition by requiring that far in the past 

(r- -oo or a --+ 0) the wavefunction be in the harmonic oscillator (Gaussian) 

ground state (we cannot determine the constant for the zero mode since f van- 

ishes; however we may choose it to have the same value as for the other modes; 

this will also be done for the other examples we consider). Then we have for the 

vacuum wavefunction for mode k: 

*k&&r) = ($k) = i 
0 

114 
e-f kTe-; kxa . (3.19) 

This is normalized so (OklOk) = s \kk:qkodx = 1. The complete vacuum wave- 

functional is given by: 

90 = (x10) = n (XlOk) = n *k,- 
k k 

(3.20) 

We can easily evaluate the equal time Green’s function in momentum space: 

(oklX2(k,~) IOk) = &. (3.21) 

. This is time independent, so the wavefunctional does not spread in field space 
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(in fact, 
n-l 

loI 42 lo) = (4r) i jJ?i. ) (n - 1) 
. 

(3.22) 

where IE,, is an ultraviolet proper momentum cutoff). Returning to position space 

we have: -. 

(3.23) 

Here u(t) I?!- 3’1 is just the proper distance, so we have found the Minkowskian 

Green’s function suitably modified to take account of the conformal factor relat- 

ing the de Sitter and Minkowski line elements (the l+l dimensional massless case 

needs to be treated more carefully since it is logarithmically infrared divergent, 

as in flat spacetime ). To find the Green’s function for %onequaln times, we 

need the propagator of the functional SchrGdinger equation. We can write: 

(Tx(i: k)x(?, k)) = - J d x X’XX’S’;O(X,~)Gkd(X,X’;%‘)%o(X’,~’) d (3.24) 

where Gi is the SchrGdinger propagator. The SchrGdinger equation is just that 

of a harmonic oscillator; hence the propagator is: 11 

G;(x, x’;??) = 
[2x~s~nk?11’2exp [ 

2si~kpk~(x2 + x’2) - 2xX4 , 

(3.25) 

where F = r- r’. Performing the Gaussian integrals in (3.24) we find 

- - 
(OkI rx(c k)x(?, k) IOk) = &em”‘, (3.26) 

which again shows that the system is conformally trivial. We can now Fourier 
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i transform to recover: 

J dnleeiE(‘eP’) (TX& k)x(rl, k)) Gv 
(3.27) . , 

[I& 2”12 - ;F - 42]=$ ; 

or in our original coordinates (2.3): 

WA 
m@,z’)wn = 4?r9 (eh(t+q)y [I?- 3’12 _ ge-ht _ e-ht’ _ i42]3+ * 

(3.28) 

In the flat space limit (h + 0) we recover the usual Green’s function: 

(n% wt ‘9 s’,) = vi?) 
4*% [IZ - q2 - (t - to - i3”]9 * (3.29) 

For the exponentially contracting case, f is again given by (3.18). We can require 

that the wavefunction approach a harmonic oscillator as a + 0 (or c + 00, which 

is in the far future); then it is given by (3.19). 

4. The Spatially Flat Metric: B. The Hawking 
Effect for the Conformally Coupled Scalar Field 

Now that we have the Green’s functions for a conformally coupled scalar field 

in a de Sitter background we can analyze what an idealized, comoving DeWitt- 

Unruh detector,12 interacting with this field, will see: Following DeWitt,12 we 
- 

assume a coupling of the form Lint = m(r)~$(x(r)) between the detector and the 

scalar field along the detector’s trajectory, where m(r) is the monopole moment 
. 
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operator of the detector and x(r) is the detector’s trajectory. First order pertur- 

bation theory then gives the transition probability per unit time for the detector 

to go from an energy level Ei to an energy level Ej as: 

Pi-Lj zz Im(O)jil’ Td(t - t ‘)eBi(Ej-Ei)(t-t’) (01 $(x(t))d(x(t 1)) 10) , (4-l) 
-00 

where (01 +(x(t))rj(x(t ‘)) IO) = (01 Tq5(t,Z)qS(t ‘,Z’) IO) for t > t ‘. To be able to 

talk about equilibrium thermodynamics we need to work in a coordinate system 

in which gee is time independent (so we have a time independent scale of energy); 

hence we use the coordinates (2.3). Defining AE = Ei - Ei, T = t - t ‘, we have: 

Pi+j = 
,-i(AE)r 

{sinh( $ _ i6)}n-l * (4.2) 

To evaluate 
+CO 

I(AE) = J dr 
e-i(AE)r 

-W 
{sinh( F - ;e)}n-l ’ (4.3) 

we note that the integrand has poles on the imaginary r axis at r = y + ic, 

where n is an integer. So we can choose a contour C, as illustrated in Figure 1, 

and use the method of residues to get: 

I(AE) = 2rr(-l)n(i)n+1(AE)n-2e-AE2*/h 
1+ (-l)ne-AE2r/h , (44 

so 
- - 

Pi+j = P(AE) = c(n) WE) 
n-2e-AE2rlh 

1+ (-1) ne-AE2m,h lm(‘)ji129 (4.5) 
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where 

c(n) = 
hn+lr(Efi) 

2nTy ’ (4.6) 

We would now like to show that this transition probability is exactly the same 

as would have been gotten if the scalar field were in equilibrium with a thermal 

bath at some temperature T in flat spacetime. In the usual examples treated, e.g., 

the massless scalar field in Rindler coordinates (or interacting with a uniformly 

accelerated detector) in 3+1 dimensions, l3 the appearance of a “Planck factor” 

in the transition probability is taken to mean that the detector is in thermal 

equilibrium at some temperature T. This argument is, however, incomplete, as 

can easily be seen either by looking at the massive scalar field (in an arbitrary 

number of dimensions ), where the transition probability is a Bessel function, or 

by looking at the massless case in some other number of dimensions. For both 

of these cases one can show that the transition probability is thermal. We now 

establish a criterion by which one can decide whether a transition probability 

is thermal or not. The states of a system in thermal equilibrium satisfy the 

principle of detailed balance, i.e., if the probability of being in the i’” state is 

n: then $$ = OVJi. Now we can relate % to the transition probability per unit a3 

time between states by % = ci Pj+inj - c> Pi-+jni. A thermally populated 

set of states also satisfies Tlj = nie +(JG-Ei) where p is the inverse temperature. 

Hence a system in thermal equilibrium with a heat bath will satisfy 

C( 
' Pj-+i 

- eP(Ej-Ei)pi-,j) = 0, 

i 

and vice versa. 
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i In the conformally coupled case we had P(AE) given by (4.5) and it is easy to 

see that this form satisfies P(-AE) = P(AE)eAE2r/h so p = 27r/h or T = h/&r. 

So it seems that a conformally coupled scalar field in the n+l dimensional de 

Sitter spacetime vacuum behaves like a scalar field in Minkows_ki spacetime at a - 

temperature T = h/% where h=H is the Hubble constant, in these coordinates. 

5. The Spatially Flat Metric: C. The Minimally Coupled Field 

We repeat the analysis of the previous section for the minimally coupled, 

massive scalar field in n+l dimensional de Sitter spacetime. We have: 

S = ldtpxqx) = J dt d”x fl ~[gpu~p~*&4 - m2j4j2]. (5.1) 

Following the manipulations of the previous section, we can put this in the form: 

S = J d?(;$ & = (5.2) I&-!& [T +~{!f+&--li2jx21, 

where the dot now means a derivative with respect to conformal time. From this 

equation, we see that the Hamiltonian for x is: 

$ n2 - 1 
-- . 

4 (5.3) 

Notice that the Hamiltonian is explicitly time dependent; hence, the SchrGdinger 
- equation will not separate; also, far in the past it reduces to that of a harmonic 

oscillator. 
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i 
The Schrcdinger equation is: 

.a ld2 
-‘rr 

----- 
2 ax2 -- m-k2 x2 *k =O. 11 (5.4 

Again we look for solutions of the form 

(5.5) 
Equating coefficients of x0 and x2 to 0, we see that we need solve the pair of 

equations: 

-;9 + - = 0 - f 
9 2 (5.6) 

As before, we substitute f = -9 into the second equation to reduce it to: . 

f$ R=O. 1 (54 
This is just a form of Bessel’s equation; defining u = ($ - $); we get 

R(r) = c$ HS’)(kr) + c,$ Hp)(kr) (5.9) 

where HP1 and HP1 are Hankel functions, and hence we can solve for f and g. 

In general, 

f(r) = -; y+, cl H”), (k:) + c2 Hs22, (kr) 

cd&k?) + c2Hp’(kF) 1 (5.10) 

and 

(5.11) 
- - 

where C is a normalization constant. As in the conformally coupled case we see 
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that the wavefunction for each mode k depends on an undetermined parameter. 

If we impose as our boundary condition the requirement that the vacuum wave- 

functional tend to the harmonic oscillator (Gaussian) ground state in the far past 

(r* -oo or a --$ 0), then it can be written as: 

hIOk) = *k[d] = 

where 

and 

f (t)dt - ; f (F)x2 

R(r) = c$ Hp)(kiY). 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

C was chosen by requiring (Ok/Ok) = 1. Of course, if we did not make use of 

an initial condition, any R satisfying (5.8) would be allowed and the vacuum 

wavefunctional, of each mode, would form a one-parameter family. Requiring that 

the wavefunctional be de Sitter invariant is not enough to remove this degeneracy, 

although it does reduce it tremendously by effectively making the constants mode 

independent. (5.14) is also the wavefunction in the exponentially contracting 

coordinates if a boundary condition is used in the far future. 

The equal time Green’s function in momentum space is just: 

- - (X2(m) = 
1 

2Ref (F) 
= $J;(k?) + Y;(k:)] (5.16) 

where Jv and YV are Bessel functions. Here, unlike the conformally coupled case, 
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the Green’s function is time dependent. 

If we restrict ourselves to 3+1 dimensions and look at the massless scalar 

field, we see that the wavefunctional is: 

- (X,Ok) = *k[X,fl = (x>“’ (&)“2exp [-ikTi -$~i~~)x2] (5.17) - 

up to a (formally infinite) phase in the exponent. So, we see that a minimally 

coupled scalar field in de Sitter spacetime looks like a collection of harmonic 

oscillators with time dependent frequencies. The flat spacetime limit of this 

wavefunctional is just the harmonic oscillator wavefunctional we found for the 

conformal field, times an infinite phase which cancels the phase alluded to above. 

This wavefunction gives: 

(x2(k,r)) = &(l+&)=$(l+g, (5.18) 

which differs from the conformally coupled Green’s function by a piece which 

grows in time (remember that conformal time F --) 0 corresponds to the far 

future). This expression is also valid in the exponentially contracting coordinates. 

Brandenberger la has also derived this expression for the real part of the 

coefficient of x2 in the exponent. There are, however, differences between our 

wavefunctions; primarily the time dependent normalization, which is of some 

importance, and the imaginary part of the coefficient of x2. These do not affect 

the two point function in momentum space (x2(k,r)). It should be pointed out 

that Brandenberger has exactly the same (x2(k, ?)) as we have obtained for de 
- - 

Sitter space; not, as he claims, something that is valid only in a de Sitter phase of 

a FRW cosmology. The result he attributes to Hawking 15 is applicable only for . 
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very long wavelengths-much outside the horizon-where the km3 term in (5.18) 

dominates the k-l term. 

To study the spreading of the wavefunctional in field space we need to look 

at this Green’s function in position space: 

2 (4 > 1 = - 
27r2a2 J k2dk (x2(k,ij). 

This integral is logarithmically infrared divergent in 3+1 dimensions; in fact, 

it is in any number of dimensions. The infrared structure of the scalar field 

propagator in de Sitter space is very similar to that of the propagator in l+l 

dimensional flat spacetime (see Ma and Rajaraman’ ). As we will discuss in 

detail in Section 10, the logarithmic infrared divergence in the de Sitter scalar 

field propagator leads one to the same conclusion about symmetry restoration as 

in the low dimensional flat spacetime examples. 

Evaluating this integral with suitable infrared and ultraviolet fixed proper 

momentum cutoffs, we find in 3+1 dimensions 

2 (4 > = & [h3(t - ti) + h21n , 

and in an odd number (n) of spatial dimensions: 

(4”) = $@ [hn(t - ti> + hnslln (“>I . 
4 

(5.20) 

(5.21) 

Here we have retained some of the cutoff dependent terms (all terms discarded 

- &her depend on the ultraviolet cutoff or disappear when the infrared cutoff is 

removed (+ = 0 or ti = -00)); tcu and ni’are the ultraviolet and infrared proper 
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momentum cutoffs and t and ti are the times at which the momentum scales 

n, and tci were the size of the horizon. The l+l de Sitter propagator exactly 

reproduces the flat spacetime result in the limit h = 0. The extra piece (for 

h # 0) arises from the redshifting of the proper momentum cutoff in de Sitter 

space. 

We could view (5.21) as describing field theory in a universe which at time 

ti went from a Minkowski to a de Sitter phase; the infrared cutoff would then 

correspond to eliminating all information outside the initial de Sitter horizon 

which could not influence the scalar field’s evolution. The symmetry group of 

such a spacetime would not be as big as the de Sitter group; equivalently we 

may say that the momentum cutoffs do not preserve the de Sitter symmetry. 

This is the reason that the form of (4”) seems to be inconsistent with the fact 

that de Sitter spacetime is a maximally symmetric space. This expression is 

probably also valid for even n. The time dependence may be interpreted as the 

wavefunction spreading linearly with time in field space. Massive scalar field 

theory in l+l dimensional flat spacetime with a time dependent mass that goes 

from a constant nonzero value to zero abruptly also has a time dependent (4”). 

The 3+1 dimensional result has been noted previously by Linde.” Hawking and 

Moss l6 have noticed that the propagator is logarithmically infrared divergent 

in 3+1 dimensions. Their result is of interest particularly because they use the 

Euclidean version of the coordinate system which covers the whole de Sitter 

hyperboldid, i.e., the coordinate system in which de Sitter space is a contracting 

and then expanding compact 3-sphere (we shall look at scalar field theory in this 

- e&rdinate system in more detail in the next three sections). This checks that 

the infrared properties of the propagator are independent of the coordinatization 

. 
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of the hyperboloid. Field theory in the contracting metric will also be infrared 

divergent. 

We make a short digression to discuss how to recover the massive confor- 

mally coupled case from the massive minimally coupled case, Looking at the 

Schr6dinger equation for the minimally coupled case we see that for a particular 

value of the mass, $ = v, we recover the conformally coupled SchCdinger 

equation; for this value of the mass, u = f and f(“t’) = k; thus we have the 

conformally coupled wavefunctional (up to an unimportant phase). In fact, if we 

had an arbitrary coupling to the curvature of the background geometry-i.e., a 

term of the form -f &kW2 in the Lagrangian with 6 arbitrary -we would 

just need to make the replacement m2 + m2 + ER (i.e., m2 + m2 + tn(n+ l)h2) 

to obtain the wavefunctional. 

Let us now compute the full equal time Green’s function, taking some care as 

regards the divergences. To remove the trivial ultraviolet divergence we evaluate 

the two-point function at finite separation; to handle the infrared divergence we 

study the case of a non-zero mass. Then: 

dnk eii’(‘-“) [Jz(kF) + Y;(kr)] (5.22) 

T = 
f2 ?yT an-lrE$ / 

dk ki JF (kr) [J,“(kr) + Yz(kr)] (5.23) 

hn-’ w -4Jx $-dF u n +ys(n+l r2 
=(&)y q!qq 2 - ‘2 ’ 7);1-2 1 (5.24) 

q,; 1 - $I., (5.25) 

where 6 = ma ~,r=IZ-- 2’1 and F is a hypergeometric function. The integral in 
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(5.23) has been evaluated in Appendix A. The massless limit of this two point 

function, in 3+1 dimensions, is exhibited in Figure 2 (we have suppressed the zero 

mode). We will consider the case 6 << 1. To study the infrared properties of the 

integrand in (5.23) we need to look at its behavior at low momenta; consequently 

we-can use--the limiting form of the Bessel function for small arguments, Jp(z) k: 

G)‘&j and yi(4 w -$w(g)~ . Clearly the infrared divergence comes 

from the second term in the integrand. At low momenta the momentum integral 

goes like 

/ 
& k-2u+n-l = 

/ 

& k-(n’-4$)‘l’+n-l = 

/ 
;k 26+0(P)* (5.26) 

This is logarithmically infrared divergent for the massless case. For fixed n an 

infinitesimal positive mass cures this divergence (even with a fixed positive mass 

the integral is still divergent in the limit n + co). 

In spite of a claim to the contrary, l7 this infrared divergence is a real physical 

divergence-it is not an artifact of a wrong choice of initial condition but is 

present in the de Sitter invariant vacuum state (we will elaborate on this later). 

It is easy to see that even if we start out with a state which has no infrared 

divergences initially, time evolution will generate them, provided the state is 

allowed to evolve for a sufficiently long (formally infinite) period of time. Consider 

the following initial condition-let the (3+1 dimensional massless) wavefunction 

go to that of a harmonic oscillator at some finite time $ in the past (not at -oo 

as before). Then we obtain 

_ = cos(k&) + [ik% - (kro)2] exp(-ikrc) Cl 

c2 sin(k&) + i[ikro - (k&)2] exp(-ikro) 
. 
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(the coefficient of x2 approaches that in (5.17) in the limit ?o + -oo), and 

1 
’ 

iii$j = k(k&)4(ki)2 
[(k%)4((kr)2 + 1) 

+ (krO)2(kr)2 
( 

- (k&)2 + S(k&) (kr)) (sin2 kF T coslkT”) 
(5.28) - 

+ sin2 k!? + (kr)2 cos2 k? 

+ (4(k&)2(kT) + 2(kro) - 2(kro)(kr)2 - 2k?) cos k?sin k?] 

where ? = r- To. Clearly 

Ref(6) = k (5.29) 

and so this state describes a harmonic oscillator with a time independent fre- 

quency. There are no infrared divergences. Consider a much later time, ? + 00; 

then sin2 k? - cos2 kF - : and sink? - cos k? - 0 we obtain: 

1 

Ref (r) 

= l+(kiT)2 + l+(k?)2 
k3$ 2k(kr)2(kFO)4 

(5.30) 

The first term is what was present when we imposed the initial condition at 

rc = -00; it has a logarithmic infrared divergence. The second term has an 

even more infrared divergent structure, but we need not consider it if we are 

interested in finite r, i.e., rc + -oo. One can check explicitly, from (5.28), that 

for ? << k-l, these infrared divergences disappear. 

In the coordinate system (2.3), the equal time two point function is: 

hn-l I?(; -v)l?(;+Y) F 
(4n)9 r(ck$L) 

The flat spacetime limit may be obtained by letting h + 0 in (5.23). In this limit 

v becomes imaginary. We make use of the asymptotic formula valid for large real 
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I 

b and x: 

which gives us 

J;(x) -P q;(x) k: 2 
s(b2 + x2)+ ’ 

(5.32) 

(5.33) 

(where C+ is a contour in the complex k, plane enclosing the positive pole), the 

Minkowskian result. 

At this point we could repeat the analysis of the previous section by finding 

the path integral of the Schrbdinger equation and the “nonequal” times Green’s 

function for the minimally coupled scalar field. However, we do not have to go 

through this exercise as there is an easy way to obtain the Feynman Green’s 

function; looking at the conformally coupled case we see that we just need to 

make the substitution: 

e2hty2 ---) ,h(t+t’) ’ -ht _ ,-ht’ _ i~)2 = _a2 
h2 ce 1 (5.34) 

(notice that in the equal time limit the right hand side reduces to the left hand 

side). In conformal coordinates we are making the replacement 

a2r2 + 
(hT); hrl) 

r2 - (-r+ 2 - q2 
I 

(5.35) 

- 
Rich is the unique object, up to a multiplicative factor in front, that is de Sitter 

invariant, and that reduces to [r2 - (t - t’) 2] in the flat spacetime limit. So we 
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have: 

(Gqt, q 4(t ‘9 s’,) = 
hn-1 r(; - Y)r(; + V) 

(47r)T r(+ ) 
(5.36) 

XF [ ; -u,; +v; (-- ,b’); 1+h2[2].- 

The Minkowskian limit may be obtained as before by letting h + 0. 

6. The Lanczos Metric: A. The Conformally Coupled Field 

In this section we again consider the massless conformally coupled scalar field, 

but in the k=+l background. The action is given by equations (3.1) and (3.2). 

Using equation (2.8) and integrating, spatially by parts, it becomes: 

s = / dt d”x a” 1gij Ill2 111” 
+ &*q7&,s - 

(n - l>(n + 
-ij-- 8 

w2+*+ 1 (6-l) 
where f+‘Tn, is the Laplacian on the unit sphere Sn (see Appendix B). As before, 

we rewrite this in terms of a dimensionless field x = a? C$ : 

S = dTd% lgijl 
/ 

l/2 [!$ -!?$ (?$)2+;,*~fnl,], (6.2) 

where the dot now means a derivative with respect to conformal time (we have 

integrated by parts and dropped a surface term). 

- - The eigenfunctions of L’t, are generalized spherical harmonics YAW with n 

indices (W represents the n-l magnetic indices), which we shall generically denote 
. 
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by k; these are discussed in Appendix B. Now 

L!n]yAW = -A(A + n - l)Y~w, (6.3) 

or, treating the real and imaginary parts of Xk as independent real variables, 

which we generically denote as x, we have: 

S=T/d$ -$ (A+q)2], 

or 

(6.5) 

An analysis similar to that performed in Section 3 then allows us to write the 

functions R and j as: 

R(r) = cle’(p+f F+ c2e-++i 17 (6.7) 

and 

where p = - - A + n/2 - 1. As we are considering a conformally coupled scalar 

field we need to have a time-independent f which means that we need to choose 
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c2 = 0 

will be 

(the choice cl = 0 gives us a unnormalizable wavefunction). 

discussed in detail later on. So the vacuum wavefunction for 

This choice 

mode A is: 

*A&r) = (XIOA) = (y)li(exp (-i(p+ a)(irzx2)). (6.9) 

The equalLtime two point function in momentum space is: 

( > x2 = 1 i 
2Re j(“t’) = 2A+n-1’ 

it is time independent. Transforming back to position space we have, 

The addition formula (B13) simplifies this to: 

(6.10) 

(6.11) 

(6.;2) 

This is the same as the expression we had for the k=O metric (3.28). 

7. The Lanczos Metric: B. The Minimally Coupled Field 

We extend the analysis of the previous section to the minimally coupled scalar 

field, where the action is given by equation (5.1). We can write the conformal 

Hamiltonian as: 

gA2+$ [ (A+ !!$)2 +sec2r $ - !$A)], ( (7.1) 
where 

- - 
sec2r= h2a2 . (7.2) 

Unlike the Hamiltonian for field theory in the k=O background, this Hamiltonian 

does not have a classically allowed asymptotic region in which it approaches 
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i 
that of a harmonic oscillator with a time independent frequency. The formal 

similarity to (5.3) should, however, be noted. Also, at r= 0, 2~ has no explicit 

time dependence and hence the r= 0 hypersurface might be a good surface on 

which an initial condition can be prescribed (this is not what we do). Notice that 
-. 

as a + 0 (this limit does not lie on the Lorentzian section of de Sitter space) this 

-Hamiltonian approaches the conformally coupled Hamiltonian; this fact shall be 

used to impose a boundary condition on the Schrcdinger equation. 

The functions R and j appearing in the wavefunctional have the form: 

m = cod : qR (‘)r(sinr) + c2 R (2)L(sinZj] U-3) 

f(F) = ( i l-2u 

> 
tanr-i(p+v) (p-v+l) 

cl R(l);-’ (sin?) + cz R(2)L-1 (sin r) 
2 crR(r)L(sinr) + czR(2)L(sinr) 1 (74 

where ~1 = A + !j - 1, Y = ($ - g)li2; md R(l)’ R(2)’ a, a are related to the 

Legendre functions Pi, Qt by* . 

R(‘);(t) = Pi(z) f ;QE(z). P-5) 

This is similar to the relation between the Hankel and Bessel functions. The 

asymptotic analysis is more easily understood if one uses the R(‘)t instead of the 

Pi and Qi. Although these functions do not seem to have been studied before, 

the formulae that we shall use may be derived using the Legendre’functions. 

Burges’ has attempted to use de Sitter invariance to obtain an expression 

- for j(0). He has considered a massless scalar field with, presumably, no coupling 

to t-he background geometry. Our results, when restricted to ?= 0 and m = 0 

. - 
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i (and assuming that the ratio cr/c2 is the same for each mode) only agree with 

his expressions in l+l dimensions. We shall elaborate on this discrepancy later. 

First we present a heuristic argument for the “correct” initial condition. This 

is more of a self consistency requirement, that the minimally coupled solution 

should reproduce the conformally coupled solution for some particular value of V, 

rather than the stronger requirement concerning the behavior of the wavefunction 

as a --) 0, which probably depends to some extent on the quantum theory of 

gravity. For u = i we have: 

j(F) = -i cl R(‘)Lq (sinr) + CUR;’ (sin:) 

cl R(l): (sin r) + c2 Rc2)Q (sin F) 1 * 
(7.6) 

Using the following relations, 

R(‘)if (sin 0) = 

R(l)! (sinB) = (&)li2exp[i(8- t)(p+ f)], 

and 

[R(‘);(x)] * = Rc2);(x), 

V-7) 

(7.8) 

we obtain: 

So if this j is to describe the conformally coupled scalar field, then we need to 
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i choose cz = 0. With this choice we have: 

R(r) = cl ; 
0 

and 

. 

(7.10) 

(7.11) 

as in the conformally coupled case. A more general argument will be presented 

later on to show that this is indeed the correct initial condition. We can tem- 

porarily accept this as an ansatz. 

This ansatz then gives us: 

1 rp + p + U) 

Ref(‘)= rc~s~ [Pfl(sinr)]2+$[Q;(sinr)]z T(l+P-U)’ 
(7.12) 

The coincidence limit of the massless scalar (resealed) field’s two point function 

in 3+1 dimensions is then given by: 

( x2 > 1 1 h2a2 = 
2Re j(F) = 2(A + 1) ‘+ A(A+2) ’ 1 (7.13) 

where the prefactor is the conformally coupled scalar’s two point function. This 

is very similar to (5.18), the expression in k=O coordinates. As before, the second 

term will lead to an infrared divergence in the propagator. 

The position space two point function can be expressed as: 

(‘$(+$(2)) = --&x ’ - Y;(n)Yk(n’) 
k 2Ref(t) 

(7.14) 



[[ 

&#2 4 Pi+;-, sint + 2 ( )I [Qz+; -l(sinr)] ‘1 , 

where CA’9 1 * 1s a Gegenbauer polynomial, and we have used (B12). 

For the massless conformal case u = l/2 and so using (B8), the -. 

above reduces to: 

(7.15) - y 

expression 

(7.16) 

which is exactly what we had before. 

We can evaluate the general expression (see Appendix C) to obtain: 

((+)4(q) = (4h;- ‘(i - wq + $ (; + v, f - u; !!+A ; 1+ ?y) ) 
!lr 2 r(q ) 

(7.17) 

which is the same as (5.24) and also agrees with the earlier analysis of reference 

18. 

8. Euclidean Green’s Functions 

In this section we use the Euclidean path integral representation of the gen- 

erating functional to evaluate the Green’s function. The generating functional, 

for any of the theories we have considered, in the presence of an external source 

J, is given by: 

z[J] = N 
/ 

D4eis+'.fdnzd(ht) &TJI. (8-l) 

Here S could be any of the actions which we have considered, N is a normalization 

. 

- 
constant chosen in such a manner that Z(O] = 1, and we have chosen to work 

with the variable ht instead of t. 
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As discussed in Section 2, the analytic continuation of de Sitter space is-an 

n+l dimensional sphere embedded in n+2 dimensional Euclidean space. Then 

where 

and 

where 

Igl+ dnxd(ht) = -&@“+‘)l1 dn+‘xE, 

n+l 

d”+‘xE - n dOi, 
i=l 

(84 

(8.4 

(8.5) 

We first discuss the conformally coupled case. In Euclidean space, using the 

Euclideanized version of (3.1) we may write the exponent in (8.1) as: 

1 

/ 
dn+lx 

(s(n+l) 1; 
-- 

2 E hn-1 

S(n+‘)Pyp~*& + (n + l)(n - 1) l4l2 J*4 J4* 
4 -F-F’ 1 P-6) 

Integrating by parts, using the generalized spherical harmonics defined in Ap- 

pendix B and 

lTn+l)YAW = -A(A + n)YAW t 

where 

- - 
1 

‘fn+l) = JS(n+l)lt 
$ls(n+l) 1; S(n+llw#, 

P-7) 

we obtain for the momentum space representation of the exponent in the func- 
. 
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tional integral: 

1 -+#,;(A+!!$) (A+~)&-$&$$+ (8-g) 
2h”-’ 

By using an expansion in spherical harmonics, we effectiveli exclude from the 

-functional integral those field configurations which are not regular on the Eu- 

clidean section. We may introduce a shifted field 

(8.10) 

The path integral measure does not change under this transformation, so we 

obtain 

Z(J] = Z[O] exp & c 3 1 Jk 
k h2(p++)(p+;)p I ' 

(8.11) 

or rewriting the Green’s function in the position representation: 

J*(x) c ha-1 fi(n)Y,*(n’) J(s’)]. 

k (P+f)(P+g) 

So the Euclidean Feynman Green’s function is: 

Using the equivalent of (B12) in n+ 1 dimensions, we find: 

(8.12) 

(8.13) 

- - 
(Tqqn)q5(n’))E = hn-1r(3 c (2A + n) 

47rT 
c(5)(co,, +I) (8 14) A (A+~)(A++) A n ’ ’ 
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which, from Appendix D, is 

p-1 

= 2(27r)T 

r(y) 1 r(y) 
(1 - cosy,+l)T = -q [-u;lq * (8.15) 

47r 

This is the Euclidean extension of the Feynman Green’s function that we had 

-calculated- in Sections 3 and 6. 

The minimally coupled case is analyzed in exactly the same way. An ap- 

propriate definition of the shifted field & allows us to express the generating 

functional as: 

1 Jk 
+u)(A+; -u)h2 I ’ 

(8.16) 

We can therefore write the Euclidean Green’s function as: 

u) c~‘)(COS7n+l)7 

(8.17) 

which is (see Appendix D) 

= hn-l r(; - 2qy; + u)~ 
[ 
n n+ 1 1 +COS7n’+l 

(47r)F r(y) z +u,; -u;-; 2 2 1 , (8.18) 

the Euclidean continuation of (5.36). 

- - 
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9. The Initial/Boundary Condition and De’ Sitter Invariance 

There is a widespread belief that the de Sitter vacuum state belongs to a one 

parameter family and that some extra criterion must be used to pick a suitable 

vacuum state.’ We have shown that if the wavefunctionfor eCch mode is taken 

to be the general solution of the functional Schrcdinger equation without impos- 

ing an initial condition (on the Lorentzian section, or, equivalently a boundary 

(regularity) condition on the Euclidean section), then each wavefunction forms 

a one parameter family. We now elaborate on this statement and exhibit what 

the correct initial/boundary condition is, and how it is closely related to Hawk- 

ing’s prescription for quantum gravity. 25 We may rephrase the initial condition 

which we have been using in the following manner: instead of requiring that the 

wavefunctional (as a functional of the dimensionless field x) approach that of a 

harmonic oscillator ground state in some limit, we may equivalently require that 

the energy of this state not diverge in the same limit. 

The expectation value of the scalar 

p, is related to that of gP as follows: 

field (c&,) Hamiltonian, U,, for the mode 

1 
4 = (%I up lo,> = r NM & lop) = i (opl $lop) a a 

1 

= 2a( f + j*) 
If2 - if + ff*] 

(94 

P-2) 

We have used the standard form for the wavefunction (3.13) and eliminated 4 by 

using the equation of motion (3.14). We may now eliminate j2 - ij by using the 

other equation of motion; this will result in a different expression for each of the 
- 

cases we consider. As we will be working with the wavefunctional for a particular 

mode, we will refer to cl and cz as constants; in reality, they could be different 
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i for different modes. We tist consider the k=O conformally -coupled scalar field. 

Using (3.15) we obtain: 

1 
Ek = 24j + j*) [k2 + ff*l. 

Then from..(3.18) we find 

(9.3) 

We have assumed that the ratio cl/c2 is real; in general it could be complex. How- 

ever, the independent argument concerning regularity on the Euclidean section 

justifies this choice. So, if Ek is to remain finite as a -+ 0 we require 

2 C:+C, or c2=0 c; - c; 

which means that Ek is just k, or all excited states of the harmonic oscillator are 

unoccupied. The ground state energy just leads to a shift in the zero of energy 

and may be taken care of by appropriately normal ordering the Hamiltonian. 

Similarly, for the minimally coupled scalar field in the same coordinate system 

we may use (5.7) to rewrite (9.2) as: 

1 
Ek = 24 j + j*) 

k2 + jj’ + h2a2(i - u2) . 1 P-6) 

Using (5.10) and the relevant asymptotic forms of the Hankel functions, we see 

that in the limit a + 0 this becomes: 

k c: + c; &=-- 
2u c; - c; (9.7) 

- wetly as in the previous case (again we assume cr/cz is real): This should 

not come as a surprise as this Hamiltonian approaches the conformally coupled 
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scalar field’s Hamiltonian in the limit a + 0. So finiteness of energy as a + 0 

again requires c2 = 0. Notice that de Sitter space in k=O coordinates has no real 

Euclidean section. 

For the conformally coupled scalar field in k=+l coordina_tes, we obtain: 

1 
EA = 2u( j + j*) [ 

(CL + f )2 + ff* 1 - 

In these coordinates it is not clear, a priori, what the a + 0 limit means. In fact, 

a = 0 does not lie in the Lorentzian section of de Sitter space. It is easy to show 

that a = 0 corresponds to two points, the North and South Poles of the Euclidean 

sphere in this coordinate system (actually the Euclidean section consists of an 

infinite number of spheres, one on top of the other, with the contiguous North 

and South Poles identified, see Figure 3). From (2.9) we can write: 

sinT= 
(h2u2 - 1)‘i2 

ha ’ 

So the a -+ 0 limit is clearly equivalent to r-+ fioo, one limit corresponding to 

the North Pole and the other to the South Pole of the Euclidean section. We 

need satisfy the condition of finiteness of energy at only one of these points, and 

it will be automatically satisfied at the other because these points are identified 

on contiguous spheres (so, effectively we use only one boundary condition). Let 

us write r= iT, this places us on the Euclidean section; then (9.8) becomes: 

E _ (p+f) 
A- 

+-@P+l)T + ,pP+l)T 

2u 
(9.10) 

lpow i (p + k) is the harmonic oscillator ground state energy, so to satisfy the 

requirement that the energy remain finite at either T = +oo or -oo we need 
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to choose cz = 0 (as before, we have chosen cl /c2 to be real). Alternatively, we 

could have evaluated the energy on the Lorentzian section and then required it 

be finite as a ---) 0. The energy on the Lorentzian section is: 

EA b+f) c;+c; - = - - 
2u c; - c;’ 

(9.11) - 

and so, as before, we need cz = 0. 

The minimally coupled case in k=+l coordinates can be analyzed in a similar 

manner. The expressions for the R(“)p Q need to be analytically continued from 

(-1,l) to (-oo,cX). Evaluating the energy on the Lorentzian section, we see 

that c2 = 0 keeps the field energy finite as a + 0. Equivalently, with c2 = 0, j(r) 

given by (7.4) approaches the conformally coupled scalar field’s j(r) = (p + i ) 

in this limit. . 

We now argue that the initial condition we have described above reduces 

to the boundary condition of regularity on the Euclidean section proposed by 

Hawking. The analytic continuation (2.14) leads to what may be considered to 

be an infinite set of n+l dimensional Euclidean de Sitter spheres with contiguous 

North and South Poles identified; see Figure 3 (it should also be possible to 

identify the spheres and hence replace the infinite set by one sphere; this is .not 

important). The waist of the hyperboloid is the equator of the sphere. 

Consider a trajectory which comes in from r= 5 (a = 00) on the hyperboloid 

and goes to F= 0 (a = i) -this point, r= 0, will be at the intersection of a real 

and the Euclidean time axis in the complex time plane. If we now analytically 

continue to Euclidean time, this is equivalent to the trajectory moving off the 

- equator on the Euclidean sphere towards either the North or South Pole, de- 

pending on which way we move along the Euclidean time axis. The requirement 
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that the energy be finite as a + 0 then corresponds to including in the functional 

integral only those field configurations which are regular on the Euclidean section 

(in particular we discard field configurations which are singular at the Poles). 

It is instructive to discuss the approaches of references_ 1 to-field theory in de 

Sitter spacetime. Chernikov and Tagirov have studied the conformally coupled 

scalar field in k=+l coordinates. They use the Heisenberg representation and 

exhibit normal mode expansions for the field operators. Since they have not 

used an initial condition when solving the equation of motion, they find a one 

parameter set of vacuums, which they show are invariant under the de Sitter 

group. They then use the correspondence principle to argue that particles with 

large momenta must travel on geodesics and so choose a particular vacuum in 

which particles behave appropriately in this limit. 

Burges, on the other hand, argues that the massless minimally coupled scalar 

field’s vacuum wavefunctional must be de Sitter invariant and proceeds to con- 

struct generators which should annihilate it. His arguments seem incomplete, for 

reasons which we now discuss. We can write: 

i&c = ice - (9.12) 

so we see that the minimally coupled Hamiltonian $MG, for a particular mode, 

describes the quantum mechanics of a particle in a time-dependent potential. In 

fact, as the expansion proceeds, the scale factor a grows and the time-dependent 

term soon dominates the x2 term in gee; because of the relative minus sign, the 

time-dependent term corresponds to an inverted harmonic oscillator potential. 

The time evolution of this system is easily visualized; the equivalent quantum 

mechanical particle oscillates in a harmonic oscillator well which starts flattening 

- 
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out. Eventually the potential turns over and the particle is now in a position of 

unstable equilibrium. In a time-dependent potential like this, the wavefunction 

does not factorize into a part that depends only on time and a part that depends 

only on the field-clearly the frequency of the equivalent h_armonic oscillator 

ground-state is time-dependent. 

Burges requires that the symmetry generators annihilate the vacuum state 

wavefunctional on the r= 0 hypersurface. If the wavefunction describes a system 

of harmonic oscillators, with a time-independent frequency, this assumes the 

existence of a normal ordering prescription. For example, consider the total 

Hamiltonian on t,L~o; using the SchrGdinger equation, we may reduce this to a time- 

independent problem by replacing i& with the total ground state energy (which 

is infinite). We may then consider this equivalent to requiring that the normal 

ordered Hamiltonian annihilate the time-independent part of the wavefunction. 

However, if the wavefunction describes a system of harmonic oscillators with a 

time-dependent frequency, we cannot reduce the problem to a time-independent 

one and therefore do not have a normal ordering prescription. Even if we only 

consider the equations at ?= 0 we need to be able to normal order. Notice that 

in I+1 dimensions the massless minimally coupled case has exactly the same 

Hamiltonian as the conformally coupled case, i.e., u = 5 ; hence the wavefunction 

describes a system of harmonic oscillators with a time-independent frequency and 

so it can be separated. 

- - 
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10. The Restoration of Continuous Symmetries 

We study the restoration of continuous symmetry in de Sitter spacetime by 

considering an interacting scalar field theory which has a broken symmetry phase; 

Goldstone’s original example,” a complex scalar field Cp in a QB? potential, lends 

itself readily to analysis. The Lagrangian density is 

L: (10.1) 

where the potential V(WD*) = d (@a*) + *(@O*)2 has an O(2) symmetry. For 

X0 > 0, pi < 0 we find 

Euler-Lagrange equation 

the convent ion al symmetry breaking potential. The 

xrJ@ = 0 (10.2) 

then has stable minima at 

(10.3) 

The Goldstone modes of this theory are the massless excitations along the circle 

[Qrl = p. These are spin wave excitations which do not cost energy (which is 

proportional to gradients) since only the direction, and not the magnitude, of the 

field @  changes. If we are interested in the low energy behavior of this theory we 

need only consider these modes. We can, hence, approximate Q(z) = p(z)e”cZ) 

by a(z) = ,eie(‘), where 6 E (-00, 00). From the previous Lagrangian we get 

the new Lagrangian that determines the equation of motion of the-real field e(z) 

which lives on the circle: 

- - L: = f a,ew?. (10.4) 

Thus the field 4(z) z pfl(z), w ic is essentially the field on the circle, satisfies h h 
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a minimally coupled Klein-Gordon equation, as it must; any other term would 

break the U(1) symmetry (translational invariance in 9 space). To study sym- 

metry restoration we need to look at correlation functions such as: 

. 

(@(zp’(Z’)) = p2 (exp (T) exp (-‘t”))). (10.5) 

If this correlation function asymptotically tends to zero for very large physical 

separation the theory is in a symmetric phase; if it asymptotically tends to a 

constant (>0) then the theory is in a Goldstone phase. 

Now: 

(@(Z)O*(Z’)) = Zp2 exp kww)> _ bmww 
P2 I P2 ’ 

(10.6) 

where we have regulated the object (r$2(O)) by point splitting at equal time. 

This expression is ultraviolet singular; hence we need renormalize it: 2 is a 

renormalization constant chosen in such a manner that the correlation function 

(@(Z)@*(Z’)) = 1 at a physical separation 15 - s’lu(t) = I where 2 is much less 

than a Hubble radius. With this definition 

(Q(Z)@*(2)) = exp 
1 

hvhw’)> _ wMz”)) 1 
P2 P2 1 p-z”la(t)=l - 

(10.7) 

To study symmetry restoration, we would like to evaluate this expression in the 

limit IZ- Z’lu(t) + 00. Now from equations (E6) and (E12) we see that the part 

of the exponent which depends on X = (h a r/2) 2 in the appropriate limit is just: 

- - p-1 
r(n) 1nX 

- (4a)Fp2r(y) ' 
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Therefore 

where 

h”-‘I’(;) - 
cY= 

2*Yp2 
. 

(10.9) 

(10.10) - 

So, the correlation function asymptotically approaches zero (as a power) for very 

large physical separations. 

A related indication of symmetry restoration is:8 

= exp 
hn-‘I’(” ) 

- 2 In w(t) 
4pz2 - * 

a P ( )I W@i> 
(10.11) 

or (a(Z)) -+ 0 as si t 0,so as we remove the infrared cutoff, the expectation 

value of the field vanishes. For n=l and h = 0 we recover the massless l+l 

dimensional flat spacetime result 8 

@qq> = exP [-$-dn(%)1. (10.12) 

The restoration of continuous global symmetries by anomalously large cor- 

relations in the infrared is a well known phenomena in lower dimensional field 

theories and spin systems in flat spacetime. For a nice discussion of the physics 

involved, see Ma and Rajaraman. 8 We briefly review some of the points discussed 

in their paper. It is clear that symmetry restoration is a quantum mechanical 

phenomena. Quantum fluctuations (zero point motion) usually lead to spread- 

ing .of the wavefunction about a classically allowed trajectory; if they are large 
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enough then no trace of the classical trajectory remains. -Clearly this is what 

happens to the field 0 which lives on the circle; a logarithmic infrared divergence 

in its two point function just means that there are many paths in the space of 8’s 

connecting two points; some of these will subtend an angle that is equal to the 

difference between the two points plus an integral multiple (which could even be 

infinite) of 27r. These correlations wipe out the classical minimum, which is at 

some fixed value of 8 on the circle. 

It must be stressed that the zero mode on the n-sphere, which is present both 

in the infrared and the ultraviolet (see Appendix E), is not responsible for the 

spreading of the wavefunctional in field space. Symmetry restoration is a direct 

consequence of the infrared logarithm in the propagator. 

A few comments are in order; as we go up in dimension cy decreases (for fixed 

F). Th’ 1s means that (Cp (Z) @* (Z’)) for large separations dies more slowly in 

higher dimensions; which is what we expect. The logarithmic divergences present 

in scalar field theory in n+l dimensional de Sitter spacetime are very similar to 

those in 2+1 flat space finite temperature field theory or l+l zero temperature 

field theory. However, these divergences do not seem to be like finite temperature 

divergences, because field theory at finite temperature can effectively be identified 

with zero temperature field theory in the same total number of dimensions but 

with the time dimension curled up. So, as far as the infrared divergences of the 

theory are concerned, the number of dimensions has been effectively reduced by 

one, and not by n-2 as seems to be the case in de Sitter space. 

- - 
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11. Discussion 

The functional SchrGdinger approach to field theory has proved to be both 

intuitively and technically useful for analyzing quantum field theory in curved 

spacetime. Although we have only considered scalar field theory, our results may 

easily be extended to allow analysis of nonzero spin fields in de Sitter space. 

Similar analysis may also prove useful for understanding field theory in other 

backgrounds of cosmological and astrophysical interest. We are now investigating 

scalar field theory in matter and radiation dominated FRW cosmologies using 

these methods. 

We have seen that spontaneously broken symmetries are dynamically restored 

in de Sitter space. Although it is clear that this is caused by an infrared diver- 

gence in the propagator, it is not obvious why the propagator diverges logarith- 

mically for large physical separation-independent of the number of dimensions. 

It is tempting to try to identify the Hawking effect as the cause for this sym- 

metry restoration, but this identification does not seem to be correct. This is 

primarily because from finite temperature field theory, we know that the infrared 

properties of an n+l dimensional finite temperature field theory are the same as 

the n dimensional zero temperature version of the theory. Here it seems that 

the n+l dimensional field theory in a gravitational background is very similar 

to l+l dimensional Minkowski space zero temperature field theory. Further- 

more, we know, from the analysis of Shore, 26 that discrete symmetries in de 

Sitter space do not seem to be as drastically affected. Finally, similar analysis 

in other metrics, in particular the Schwarzschild metric, do not seem to rein- 
- 

force this interpretation; in fact, this phenomena may be peculiar to de Sitter 

spacetime. Alternatively, this could be interpreted as being inconsistent with the 
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conventional identification of field theory in nontrivial backgrounds and at finite. 

temperature. 

., 

Whether this effect has any’consequences for the inflationary scenario remains 

to be seen. In the inflationary scenario one can conceive of an earlier FRW phase 

-efFectively -acting as an infrared cutoff. However, as we have seen, the de Sitter 

evolution will generate infrared divergences, on a characteristic time scale of the 

order of the Hubble time. It would be interesting to see if familons 27 would 

be affected by this phenomena and if so, whether these effects would survive 

reheating. 

To show that a broken continuous symmetry is restored we have considered 

the simplest possible case, a broken U(1) symmetry. In flat spacetime (2+1 

dimensions, finite temperature) McBryan and Spencer28 have shown that the 

two point correlation function for the field @ (with a U(1) symmetry) can be 

used as a bound for two point functions of O(N) nonlinear o models, and so if 

a U(1) symmetry is restored so will an O(N) symmetry. We expect that the 

behaviour of the U(1) will also bound the O(N) case here. 

The functional SchrCdinger formalism readily permits an analysis of the 

uniqueness of the vacuum wavefunctional. We have shown that the coefficient 

f@) of x2, in the exponent of the wavefunctional, satisfies a first order non- 

linear differential equation which can be transformed into a second order linear 

differential equation. This has two linearly independent solutions, but the trans- 

formation connecting j to the general solution is such that only the ratio of the 

constants is important; hence j depends on one constant (this is because the 

- Ehriidinger equation is first order in time) whose value we must determine. 

. We find no substantial difference between the uniqueness of this wavefunc- 
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tional and the equivalent one in Minkowski spacetime. The main difference’be- 

tween these two wavefunctionals lies in the interpretation of the initial conditions 

imposed. In Minkowski space one can but does not have to invoke regularity on 

the Euclidean section. In de Sitter space, in k=O coordinates, a real Euclidean 

section does not exist; however, we may impose as the initial condition the re- 

quirement that the field energy remain finite as a -+ 0 @  + -00). When we 

try to do a similar thing in k=+l coordinates, we find that we end up with 

Hawking’s25 prescription because a + 0 (in fact all a < i) lies in the Euclidean 

section of the manifold. Thus Hawking’s prescription for the semiclassical case 

may be interpreted, physically, as a special case of the requirement that the field 

energy remain finite as a + 0. This interpretation could, perhaps, be extended 

to the fully quantum mechanical case; certainly it is correct if we consider the 

metric fluctuation as just another quantum field propagating in the background 

metric. 

It seems conceivable that this formalism (along with the initial/boundary 

condition prescription) can be used to resolve the problem of the correct vac- 

uum state (mode expansion)2Q for those spacetimes to which it is applicable. 

Particle production manifests itself in the time dependence of the unique vac- 

uum wavefunctional. Perhaps the major advantage of such an approach is that 

it allows one to utilize physical intuition developed solving quantum mechanical 

problems. Also one need solve a first order (in time) differential equation instead 

of the Klein-Gordon equation; hence we require only one initial condition. 

We have also succeeded in finding a creation operator that allows us to ex- 

-pficitly construct the excited state wavefunctionals from the ground state wave- 

functional. We hope to discuss this and some other topics, in particular the 

- 
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behavior of nonlinear cr models and discrete symmetries in de Sitter spacetime, 

in the future. . 

Acknowledgements 

I am very grateful to M.Peskin and L.Susskind for invalu”able guidance and 

many patient discussions. I also thank LAntoniadis, P.Franzini, E.Martinec, 

M.Mueller, P.Nason and N.Tsamis for useful suggestions, as well as P.Franzini 

and especially M.Peskin for extensive comments on preliminary versions of the 

manuscript. 

. . 

- - 

53 



Appendix A: Evaluation of the Integral (5.23) 

We use 

J;(kr) + Yy”(ki) 7 $l$ exp ($ +r2y) Kv(r2y) (Al) 

-. 
(ref. 21, p. 94), to rewrite the integral in (5.23) as a double integral and inter- 

change orders of integration (all integrals are convergent) to obtain: 

2 =)dy -a 
Co 

2 J - et y Ku T2y) 
Y ( J dk kni2 e-ka/2y J..-+ (kr) . (A21 

0 0 

We can do the second integral, using eqn. (5.9) of ref. 22; we find 

00 
2 E-1 

;;;Zra J dy Y~/~-‘K, (r2y) exp (T2y 
r2 

- ,Y). 
0 

Then eqn. (3.31) of ref. 22 gives us: 

(A31 

-+yt +y) P- - ( ;)*~;~‘($-l). (A4) 

so 

_ (4mw)) = l r(kj - 2.+y; + V) 
!ckL 4~ a an--lrY (4G - r2) Y 

Or using eqn. (6) on p. 143 of ref. 23 we find 

((@ )@‘)) = F-l v! - w; + 4 
(4++ r(y) 

. , 

xF -v+;,Y+;;( T);l- $1.. - 
- - 
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Appendix B: Generalized Spherical Hatmonics - 

The n-dimensional spherical harmonics are the eigenfunctions of .CFn,, the 

Laplacian on the unit sphere Sn (for coordinatization and metric see (2.15)): 

% = ,,,:,i 
ails(n sCn)‘iaj = ’ 

+ 
Asinnyl 63 2t 

sin n-18, de, “aen- 

1 a - n-2 a 
+ 

sin2 8, sin n-2 (9,-l ae,_l sm 
e- 

n-l aen-l + ‘.’ (Bl) 

1 a2 
+ 

sin2 8, sin2 8,-r . . . sin2 e2 as: ’ 

‘_ 

where ai stands for the derivative with respect to the coordinate 8i. The n- 

indexed YAW(~) (W stands for the collection of “magnetic” indices B, C,... which 

run over the integers [-A,A], [-B, B] ,...respectively) are defined by the following 

equations: 

~$‘--AW (n) = AAYAW (n) w 

where the O(n+l) symmetry makes the eigenvalues independent of all but A; 

and 

J dfl IYAW (n) I2 = 1. P3) 

We can find AA by studying the case where W  = 0. (B2) gives us: 

1 a n-l 

sinn-l 8, a& 
sin 8, -& yAO(fl) = )‘AYAO(f$ 

n 1 
The substitution x = cos 8, reduces this to: 

(1 - x2) & - nx -g yAO(s) 1 = AAYAO(x), 

w 

- which is just the Gegenbauer equation (eqn. (22.6.5) of ref. 20 ). So AA = 

-A(A+n- 1) and YAO(X) = crCA (-(x). T o d t e ermine the constant cl we make 

. 
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use of the orthonormality of the Y’s; using eqn. (22.2.3) of ref. 20 we find: 

YAO(n) = 
A! (2A + n - 1) [r(T)12 r(t) 

24-f%? I’(A + n - 1) 1 1’2 c~~)(,ose,~. w 
Using eqn.(22.3.12) of ref. 20 we obtain: n+l) 112 

Yoo(fl) = ‘,‘,L - 1 1 a 
(4 Explicit forms for the Cm (5) may be obtained from the generating function 

(ref. 20 eqn. (22.9.3)) 

(1 - 222 + 4-a = e &$(z). VW 
m=O 

The addition formula is: 

where 7 is the angle between fI and n’ and c2 is a constant which we must 

determine. The right hand side is invariant under rotations, so we can rotate n’ 

to the North Pole 

YAW (!I’ = North Pole) = &,e 
A! (2A + n - I) [I’(F)12 I’(g) ‘12, 

24-nr9 r(A+n- 1) 1 
Using 

cyqq = (A + n - a!, 
A! (n - 2)! 

we eventually obtain: 

cyqcos7) = 
q 

(zA+i'l)r(~) w 
c Y;W(n)YAW (a’). 

- - 

CL? J(1) . 

VW 

Pll) 

(Bl2) 

We are now in a position to expand IS- yl-(“-‘) in spherical harmonics. Let 

(B7) 
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121 L lii’j; then 

A cy )(cos 7) 

4nv 
c 

YA 
= l?(y) AW xA+-l 

y;w (!?h’@ ‘) 
(2A+n- 1) ’ 

(Bl3) 

Appendix C: Evaluation of the Sum (7.14) 

Using eqns. (18) p. 144, (13) p. 141 and (2) p. 143 of ref. 23 we can write: 

[ f’~+,+, sinr 2 + 4 ( )I 2 [ Q:+n/2-1 ( )I - 2 = sin t 

2 
7rcosr [ 

r(A + i + v)]l Pv~~$n-‘)‘2(itan~) P~-~;z(n-1)‘2(-;tan~). (Cl) 

Now eqn. (10) on p. 140 of ref. 23 allows us to replace P -A-(n-1)/2 
u-112 (-; tanr) 

with a linear combination of P-A-(n-1)‘2 (i tan F) and Q-A-(n-1)‘2 (i tan r) . w-l/2 u-1/2 
Then 

using equations on p. 179 of ref. 21 (the expansion for Qf: = DE, has an extra 

factor of eBirp and of e- ’ r2rp, dropping both of these corrects it) reduces (7.15) 

to: 

(de) W)) = (4t& r(5 +Y) r(i -v)(y)’ 

+ 2ei(q jr sin r( 2 _ *) Q(? ) 

2 

(C2) 

(“) - wbre the sign of the phase of the coefficient of Pv-i is determined by the 

fact that this is the equal-time limit of the Feynman pr:pagator (Im[ 1+ q ] = 
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LimT+‘;; Im[h(r’ - (-r+ r’ - ;c)~] < 0). Then eqn. (10) on p. 14~1 of ref. 

23 allows us to write this as : 

and finally using eqn. (15.4.18) of ref. 20, 

Appendix D 

In this appendix we establish equations (8.15) and (8.18). Let 

X = cos m+r Pw 

. FI(x) = hnmlI’(n)fi(x) = h”-ll?($) 
c 

(2A + n) 
(4~)9 r(y) 47r=F A (A+; +v)(A+; -v) 

CL: ‘(x) 

P2) 
and 

hn-lWrz(x) 
F2(x) = (dr)y r(q) = 

hn-lr(; - v)r(4j + v)- 
(.47@ r(y) 

(03) 

xF 
- - 

We shall now establish that Fl(x) and F~(x) satisfy the same linear second 
. 
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order differential equation, and the same boundary conditions: 

Wxo) = J’z(xo) and -$i(x)~ = &‘!2(z)l . ( 04) 2=&l Z=Z, 

It then follows that Fl(x) = Fz(x) (see, for instance, Whittaker and Watson 24 

Section 10.21). 

Clearly, F~(x) satisfies the hypergeometric equation, 

HF2(x) = 0 (3 

where 

d2 
H E (1 + x)(1 - x)@ - (n + 1) x-& - (; +v)(i -v). w 

Now 

h”-‘I?(! ) 
H FI(x) = - 4TTn+s a z(2A + n) CL”(x), 

A 
w 

where we have made use of Gegenbauer’s equation. We may use relations between 

Gegenbauer polynomials (ref. 23, p. 178) to express (D7) as: 

nhn-lI’($) (ti) 
HF44 = 4?rn+2 a pm; (x) + &y)(x)] , P) 

It is easy to show that Gegenbauer functions with negative integral subscripts 

vanish and hence: 

H Fl(x) = 0. 

Now using eqn. (15.2.1) of ref. 20 we have: 

w 

. 

- mere the second subscript on F indicates the value of n wherever it appears in 

the expression for F2 (x), except in the cos m+r term, which remains unchanged. 
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Similarly (eqn. (30) on p. 178 of ref. 23) we find: 

Pw 

We shall now show that the two functions satisfy the same boundary conditions. 

it is convenient to work with fr (x) and fi(x). Th e series representat ion of fr (x) 

(see (D2)) becomes relatively simple at x = fl and 0; we consider the case 

x = -1. Then eqn. (22.4.2) of ref. 20 allows us to rewrite this as: 

1 
fl(-l) = r(n) 

1 
+ 

I 
““AA: 4 (-l)A 

A+;-Y . Pl2) 

and from eqn. (15.3.1) of ref. 20 we find: 

f2tB1) = rcn) 2 -L$ - Y)r(g + v). VW 

Using the integral representation of I’(A + n), and interchanging the order of 

integration and summation (the integral and sum are convergent) we may rewrite 

(D12) as: 

00 

& /dy e-Yy”-’ 
0 

1 + (-YIA 
A+;-J/ 7’ 1 VW 

Now, both of the series in (D14) are related to incomplete gamma functions (see 

ref. 20, eqn. (6.5.29)), so we End: 

lo 
fl(ll) = rcn) 

/ 
dye-% i-' 

[ 
y-yY(i +Y,y)+YY7(; -V,Y,] . (Dl5) 

- - 0 

Using the integral representation of the incomplete gamma function we then 
. 
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obtain: 

00 Y 

fl(4 = & 
/ / 

dy & e-Yeety2 -'tG -' [t"ymY + y"tk"]. Pl6) 

0 0 

The integrand of this double integral is symmetric in y and t; hence we can extend 

the upper limit on the second integral to 00 while simultaneously dividing by 2: 

& e-Ye-ty; -v-1$ +v-1 

= r(; +~)r(g -Y) 
w4 = f2(-1). (Dl7) 

So, we have established Fl(-1) = Fz(-1). Then from (DlO) and (Dll) we see: 

Pm 

Thus we have established 

E(x) = F2(x). Pl9) 

The sum that we need to evaluate in the conformal case (8.15) may be obtained 

from the general result by considering the value v = 3 and simplifying the 

hypergeometric function. 

- - 
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Appendix E: Approximate Green’s Furictions 

In this appendix we develop two power series expansions of the minimally 

coupled scalar field’s equal time Green’s function, one valid for large, the other 

for small, separations. For large separations we would find a power series in (l/r) -. 
helpful. -Using eqn. (15.3.8) of ref. 20 we have: 

w4w) F[a, b; c; 1 - z] = w 7r 

w r(C - a>r(l - b + a) sinr(b - a) 

x Z-‘F[u, c - b; a - b + 1; z-‘1 

w 7r 

+r( c - b)r(l - a + b) sin?r(u - b) 

(El) 

x z-*F[b, c - a; b - a + 1; z-l]. 

Defining X = v, we can convert equation (5.24) to the form 

xF 
1 n 

-u+- - -v;l-22v;x-1 
2'2 1 r(; +v)x-v 

- 
r(f - +r(l+2~) sin(27rv) 

v+;,; +v;1+2v;X-' 11 . 

VW 
We then use the power series expansion for the hypergeometric function to write 

this as: 

p-1 1 
= (4,)=F 

XV 
00 r(; -v+p)r(; -v+P)X-P 

2sin(nv)Xf [ c 
p=o r(l- 2~ +p)p! 

- 
- - 

,-,Fr(+ +u+p)r(; +u+~)x-P~. 

p=o r(i + 2~ + p)p! VW 

. 
Now if we are interested in the X + 00 limit, the leading term will be the p=O 
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contribution from the first power series, which is 

hn-1 
Vu) 

= (4+F r(; + U) [ 
xv-i r(% - u)] 

or for a-very small mass - 

(Jw 

) Ix-6vN 
hn-1 

= (47r) 
r(n) !I-lnX [ 1 vr(+) 6 . 

(E5) 

w-9 
For small separations a power series in I would be helpful; eqn. (15.3.6) of ref. 

20 gives: 

WuYb) 
w F[u9 bi ‘; ’ - ‘I = r(C _ u)r(c _ by sin r(c _ a _ b) 

ww4 
r(a + b - c + 1) 

F[u, b; a + b - c + 1; z] 

W) 
r(C - U)r(C - b) %“-a-* 
r(C - a - b + 1) 

x F[c-u,c-b;c- b - a + 1; z]] 

so that 

(ew’)) = hn-% 
(4?r)FxF+(; - u)r(; + u) sin7r(q) 

- - 

X t 
2 

-u r +u;,3-n;x 
'2 2 1 (E8) 
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Using the power series expansion for the hypergeometric function this becomes: 

hn-b 00 r(; -u+p)r(; +u+P)x~ 

(4++ hr(q )r($ + u)r(; - U)X? p=. r(%p + P)P! 

-XY 00 r(t +u+p)r(; -~+p)xp 

c r(q +P)P! I * p=o 
VW 

We notice that the Green’s function has an X independent piece which comes 

from the p=O term in the second series and is given by: 

)&n-l r(y)r(y) 
-(4+9 r($ + u)r(+ - U) 

r(; + u)r(; -u) 
r(y) * 

In the limit of small mass, we can write this as: 

/&n-l 
w 1 

(‘4 
9 r(+) S’ 

VW 

(Eli) 

However, if we keep all terms which contain negative powers of X we get a power 

series: 

rW 1 x-(+) + WF ) x-cy) + r(y ) x cnls ) 
WI (V)l! (9 )2! 

+ . ..I. (Jw 

Notice that the first term is the only term that diverges as we let the mass go to 

zero (this can be interpreted as the zero mode on the n-sphere, see below). The 

terms with negative powers of X presumably are the ultraviolet divergences of 
- 

the theory; in fact in 3+1 dimensions, the second term is just 4n2i3,1 which is 

the’standard ultraviolet divergence in three dimensions. 
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The contribution of the zero mode on the n-sphere to the propagator is (from 

(7.14) and (B7)): 

* 
A=0 - 

For a smallmass we have (from (7.12) and (Cl)) 

IRef(r)I A=O = --L (F(n)]2P~‘_“;;~~‘2(itani-)P~~$‘2(-~tan~). 7rcost 
Then using eqn. (14) on p. 150 of ref. 23 we can rewrite (E13) (for a small mass) 

(4(qqZ’)), = hn-l r(n) 1 
(4z)Y r(y) 6’ (Jw 

which is exactly the same as the first term in either (E6) or (E12). From (8.17) 

we see that this is also the zero mode on the n+l sphere that is the Euclidean 

section of de Sitter spacetime. 
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Figure Captions 
. 

Figure 1. The contour C for integral (4.3) 

Figure 2. The massless limit of the two-point function, in 3+1 dimen- 

sions (with the zero mode removed) [(4(Z)q5(5!)) - h2/Gr2S] 7h2; as a function 

of proper distance y = halz’ - 3’1, in Hubble units. All contributions in the 

ultraviolet, from scattering off of the background have been suppressed. 

Figure 3. The Lorentzian and Euclidean sections of de Sitter spacetime. The 

set of axes represent the complex time plane; the vertical axis is imaginary “time” 

tE, the horizontal axes are real time. 

- - 
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