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ABSTRACT 

We consider the embedding of the SU(2) monopole of ‘t Hooft and Polyakov 

into “realistic” grand unified theories and find a complication that may possibly 
-. 

interfere with the Callan-Rubakov effect. The fine tuning that keeps the weak 

interaction scale much smaller than the GUT scale is necessarily upset in the 
. 

vicinity of a magnetic monopole, and there is a probability of order one that 

the Weinberg-Salam Higgs field will have a GUT scale expectation value at the 

monopole core. This means that the fermions could have a large effective mass 

at the core which could act as a barrier to exclude the fermions from the baryon 

number violating interactions inside the monopole core. In this paper we de- 

termine whether such a barrier is likely to cause a significant suppression of the 

Callan-Rubakov effect. Our analysis involves a variational determination of a po 

sition dependent mass for the fermions in Callan’s soliton formalism. Once the 

position dependent mass of the solitons has been determined, simple energy argu- 

ments allow us to determine if the Callan-Rubakov effect will be suppressed. We 

find that in ordinary GUTS, the small Yukawa couplings between the Weinberg- 

Salam Higgs and the light fermions keep the effective soliton masses very small so 

baryon number violation is not affected, but if the Yukawa couplings are larger 

than 10e3 (instead of the usual 10e5) or with the appropriate tuning of Higgs 

parameters, the soliton masses can become large at the core, and the Callan- 

Rubakov effect can be prevented. In the event that the Callan-Rubakov effect 

is suppressed, we find that baryon number violation is still possible through the 

weak anomaly induced process discussed by Schellekens and Sen. However, this - - - 
process is not likely to be important phenomenologically. We also correct an 

ambiguity with the bosonization procedure that was noticed by Yamagishi. 
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i 1. INTRODUCTION 

One of the most spectacular predictions of Grand Unified Theories is that 

magnetic monopoles’ 2-4 can catalyze baryon decay at a strong interaction rate. 
-. 

This prediction has important implications for the phenomenology of monopoles. 

If GUT monopoles do indeed exist in a reasonable abundance, this process could 

lead to some very exciting events should a monopole pass through a proton 

decay detector. On the other hand, if monopoles catalyze baryon decay, then 

it would seem unlikely that monopoles exist in a detectable abundance due to 

monopole-baryon interactions inside neutron stars! Since neutron stars should 

capture virtually all the monopoles that collide with them, a high cross section for 

monopole induced baryon decay implies that the monopoles inside a neutron star 

should be a tremendous heat source. Thus, observations of the x-ray emission 

from neutron stars (or rather, the lack of x-ray emission) put a stringent limit 

on the galactic monopole abundance. 

The initial analysis of this process in monopole-fermion interactions, due to 

Rubakov and Callan, involved a simple SU(2) model and included only the s-wave 

degrees of freedom. This analysis was generalized to SU(5) and other “realistic” 

GUTS, and this generalization seemed to indicate that monopoles will catalyze 

baryon decay at a strong rate.’ Because of the numerous approximations used 

by Rubakov and Callan to reduce the monopole-fermion system to a simple one- 

dimensional model, there has been much subsequent work attempting to justify _- 
and clarify these approximations? There have also been several papers exploring 

the model dependence of this effects The general conclusion of most of these - - 

papers is that the results of Rubakov and Callan are qualitatively correct and 

that they apply to most Grand Unified Theories. 
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i In this paper, we discuss a complication which arises in realistic GUTS, as 

a consequence of the Higgs field. configuration in the monopole core. In general, 

the Higgs field which breaks the GUT symmetry deviates from its vacuum value 

at the monopole core. (This is partially responsible for the-large mass of the 

monopole.) This GUT scale Higgs field is, in general, coupled to the Higgs which 

breaks SU(2) x U(l), and a fine tuning is required to keep the weak scale low. 

At the monopole core, the GUT scale Higgs shifts from its asymptotic vacuum 

value, and the fine tuning is destroyed. Then, there are two possibilities: (1) 

The weak scale Higgs acquires zero expectation value at the monopole core and 

SU(2) x U(1) symmetry is restored; or (2) the weak scale Higgs acquires a vacuum 

expectation value at the GUTS scale. We will show that this second alternative 

is not unlikely in realistic GUTS. 

In the second case, since the weak scale Higgs is responsible for the fermion 

masses, the fermions may acquire a large effective mass at the monopole core. 

This mass can, in principle, act as a barrier which prevents baryon number vio- 

lation. (This problem was noted by Callan at the end of Ref. 4) The main goal 

of this paper is to analyze this situation in detail, and to understand’under what 

circumstances this barrier actually suppresses baryon number violation apprecia- 

bly. Our final conclusion is that this complication is probably not important in 

practice; the analysis, however, is nontrivial and the conclusion is in doubt until 

the last moment. Our result finally depends on the presence in this problem of a 

small dimensionless parameter, namely, the Yukawa coupling (- 10q5) between 

the Higgs field and the light fermions. We find that the Callan-Rubakov effect 
- - 

can be suppressed only if one of the Higgs sector coupling constants is tuned to be 

a factor of - 100 greater than another, (or equivalently, if the Yukawa coupling 

4 



is - 10v3 instead of - lo-‘). 

This paper is organized as follows. In Section 2 we consider the fundamental 

monopole of the SU(5) GUT and indicate explicitly how the weak scale Higgs 

field can acquire a large expectation value at the monopoIe car%. In Section 3 we 

follow the familiar procedure of Callan to reduce the monopole-fermion systems 

to a l+ 1 dimensional bosonic theory. In contrast to Callan’s treatment, however, 

we are careful to keep track of all the terms depending on the monopole core size 

since the effective fermlon mass term that we wish to study is dependent on the 

core size as well. We also address a question about Callan’s bosonization proce- 

dure that was raised by Yamagishi.’ Section 4 deals with the interpretation of 

the bosonized Hamiltonian obtained in Section 3. The spatial dependence of the 

fermion masses is obscured in the bosonized Hamiltonian, so we do a variational 

calculation to reveal this dependence. This allows us to use simple semiclassical 

arguments to determine the circumstances in which the Callan-Rubakov effect 

will be suppressed. We also estimate the probability of tunneling through this 

mass barrier. In section 5, we remove an approximation that was made in pre- 

vious sections, and show how weak isospin is conserved at short dist.ances when 

the baryon number violating reactions are suppressed. The effect of these rota- 

tions is to allow a AB = 3 process that involves all the fermions present in the 

s-wave, and we interpret this to be the result of the SU(2)w anomaly. In Section 

6, we briefly discuss some of the phenomenological implications of our results for 

non-minimal GUTS and find some models for which the Callan-Rubakov effect is 

likely to be suppressed. Finally, in the appendix, we present some calculations 
- 

that are used in section 4. 



2. MONOPOLES IN GUTS WITH FINE TUNING 

The theory we now consider is the minimal SU(5) GUT. The W (5) gauge 

symmetry is spontaneously broken down to SU(3)c x SU(2)w_x U(l)y at a scale 

u - 1O!5 GeV by the vacuum expectation value of a Higgs field (a) in the adjoint 

(24) representation. Another Higgs field (h) in the 5 representation is also present 

with a vacuum expectation value that breaks SU(3)c x SU(2)w x U(l)y down 

to SU(3)c x U(~)EM at a scale vW - 300 GeV. The Lagrangian density without 

fermions is given by 

l= -$ Tr (P”F,,) + Tr (DP@)2 + ID&l2 - V(@,h) , (2.1) 

where 

and 

A, E A;Xa , a = 1,...,24, 

D,h - 3,h + iA,h , 

The SU(5) g enerators Xa are chosen to satisfy Tr XaXb = 3 6’” and Xat = Xa. The 

Higgs potential” is given by 

V(% h) _- = -f p2Tr (aa) + i a(Tr (62))2 + i bTr (Q4) 

(2.4 

- - - 
- i m2hth + f X(hth)2 + a(hth) Tr a2 + /3htQ2h . 

The values of the coupling constants must be chosen to obtain a Hamiltonian that 

is bounded from below and that has the correct symmetry breaking pattern.” 
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I 

Hence, we require b > 0, a > -A b, X > 0, and ,B < 0 to obtain SU(5) + 

SU(3)C x SU(2)w x U(l)Y. (Th ere are additional very complicated constraints 

on a and ,0 to ensure that the Hamiltonian is bounded from below, but we 

expect no problems if ---a, -/3 2 a, b.) The coupling constants cy: and p can be 

generated by renormalization and are actually required to give the unobserved 

colored components of h a large mass. When the potential (2.4) is minimized, we 

obtain the symmetry breaking scales TJ and v, in terms of the coupling constants 

in the potential, 

P-5) 
m2 = (A+:$+:+ (15a+93)v2. 

Since we require (v~/v)~ - 0 (10-25) we obtain the fine tuning equation 

2 30a + 9p 
m = 15a-f 7b 

p2 + 0 (10-25) ) P-6) 

which constrains the coupling constants. 

Now, we will examine the behavior of the Higgs fields in the presence of the 

fundamental monopole. To simplify our calculations, we will assume that our 

fields have the symmetric form given by Dokos and Tomaras.12 The fundamental 

monopole is embedded in the SU(2) subgroup of SU(5) given by 

, P-7) 

where ra, a = 1,2,3, are the Pauli matrices. Thus, the magnetic charge of the - - - 
fundamental monopole is a sum of ordinary magnetic charge and magnetic color 

hypercharge. 
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The general form of the fields given by Dokos and Tomaras is 

h(C) = 

0 - 

0 

0 

0 

,h5(r), 

O(f) = 
42(r) + d&j+. 7’-. 

1 

9 

-w1+ 42) 

(2.8) 

(2-g) Ai = (~ X i)il - K(r) . 
r 

As r --) 00 the fields take their vacuum values which are 

43 4” -+ -u, 

hi + VW , 

K - esvr , 

to leading order in uw/u. As r + 0 we must have 

K-1, 43-w 

(2.10) 

(2.11) 

in order that the energy be finite. Thus, the fine tuning that worked as r + 00 

to keep h5(r) = uw small is upset near r = 0 since 43 (0) # 43 (00). Naively, there 

are two possibilities as r --) 0. Either hg develops a large positive mass squared - - - 
and no expectation value, or it develops a large negative mass squared and a 

vacuum expectation value of O(u). 
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In order to determine whether h5 (r) obtains a large value near the monopole 

core, we will study the stability of the configuration h5 = 0. Let us expand (2.4) 

in powers of hg (r) : 

V,E(hs) = iM’(r)h: + f hi . (2.12) 

and obtain M2(r) by plugging into (2.4) the solutions for &(r),t#2(r),&(r) ob- 

tained by solving the equations of motion derived from (2.1). If M2(r) > 0 near 

the core, then hs(r) + 0 near r = 0. But if M2(r) < 0 near the core, then h5(r) 

may attain a large expectation value as t + 0. The solutions for &(r),&(r) and 

$3(r) were found numerically by Eckert et a?3 In Table 1, we have used these 

numerical results (for selected values of a and b) to obtain the conditions we must 

impose on the coupling constants a! and /3 to obtain M2(0) < 0. In every case, we 

can satisfy M2(0) < 0 by picking cr large enough. We must be a little bit careful, 

however, because M”(0) < 0 does not necessarily imply that hs(O) - 0 (u). That 

is, if M”(0) < 0 but small in magnitude, it is possible that the derivative term 

in the Hamiltonian, (h:)2, will keep the minimum of the potential at hs(0) = 0. 

This is exactly analogous to nonrelativistic quantum mechanics where we can 

have a weakly attractive potential without any bound states. In order to ensure 

h5(0) - 0 (u), we must have a potential (M2(r)) which is deep enough. This de- 

pends in detail on all the coupling constants in (2.4), but it should be clear that 

by choosing cy large enough we can insure that h5(0) - O(u). For an arbitrary 
_- 
choice of coupling constants, we expect that the probability that h5(0) will attain 

a-large value at the monopole core should be of order one. Later in this paper, - 
we will be interested in configurations which give h5(0) >> u. Apparently, this 

can be obtained by setting cy >> X and cy > p. 
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We should also mention that, due to the fine tuning for r % l/u, the form 

of h5(r) will be very much different from the forms of the other Higgs fields (+i). 

The #i fields approach their vacuum values as $ eevr so they vanish outside the 

monopole core, but h5(r) - s for l/u, > r >> l/u. Thus,if the-Weinberg-Salam 

Higgs field has a large vacuum expectation value at the monopole core, the large 

VEV will extend all the way out to the weak breaking scale. 

One possibility that we have so far neglected is that the symmetry of the 

Dokos-Tomaras ansatz will be spontaneously broken. This does not seem to 

occur with just the 5 of Higgs, but it could occur with a more complicated Higgs 

sector. Clearly, if this symmetry can be broken, the odds that none of the fields 

contributing to fermion masses will get a large expectation value at the core will 

be substantially decreased, but this does not mean that monopole induced baryon 

number violation would be more likely to be suppressed because some of these 

fields can violate baryon number themselves. In the rest of thii paper, we will 

ignore this possibility because it does not seem to affect our results qualitatively. 

Finally, note that the effective potential (2.12) has no terms linear in hg. If 

it did, the weak scale Higgs would acquire a large VEV for any choice of the 

coupling constants. In the case of SU(5), the lack of linear terms is quite easy to 

prove. Since the coefficients in the effective potential come from couplings to the 

adjoint Higgs a, a linear term would have to be generated by a term like hQ3 

in the potential (2.4). But terms like this must always carry quintality because 

h has nonzero quintality but @  does not. Thus, such terms cannot be SU(5) 

invariant. For non-SU(5) GUTS this argument clearly does not hold, but there 
- - 

seems to be a similar argument proving the same result in other GUTS (at least 

those which are known to the author). So it appears that it is always possible 
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to choose a set of coupling constants such that the fermions do not acquire a 

large effective mass at the monopole core. The situation in which the Higgs field 

becomes large at the monopole core is, however a generic case, and in fact, for 

theories with a very complicated Higgs structure at the weak scale, it is difficult 

to avoid without a rather precise tuning of Higgs sector coupling constants. 

3. REDUCTION TO 1+ 1 DIMENSIONS AND BOSONIZATION 

What is the effect of these large Higgs VEV’s in the core region on light 

fermions? Let us study this question for the fundamental SU(5) monopole. As 

usual, we will only be considering fermions in the s-wave. This means that we 

only need consider those fermions that transform under the monopole’s SU(2), 

eq. (2.7). Thus we can reduce the problem to two Dirac SU(2) doublets (per 

generat ion), 

-. +A= (f) +2= (3 ) (3-l) 

interacting with an SU(2) monopole. This is just the monopole-fermion system 

originally considered by Callan with the following modifications. First, we must 

include the two SU(2) doublets given by (3.1) (or more if we wish to consider 

more than one generation) rather than the single doublet of Callan’s original 

work. Second, we must include all the relevant Coulomb interactions, not just 

the ones corresponding to generators in the monopole’s SU(2). Finally, we should 

include the position dependence of the VEV of the weak scale Higgs as a position 

dependent mass for the fermions. - - - 
To keep things simple, we will do the main analysis in the model used by 

Callan with only one fermion doublet and only one Coulomb term but including 
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a position dependent coefficient for the mass term; we will indicate the how to 

generalize this model to the SU(5) case whenever necessary. Our procedure is 

essentially equivalent to that of Callan, but we will not take the limit to + 0 

(where ro is the radius of the monopole ) until after bosonization. The bosoniza- 

&on procedure used here is also slightly simpler and perhaps more transparent 

than that used by Callan. 

The Lagrangian for our system is given by 

The magnetic and Higgs fields will be regarded as classical background fields, 

and we will allow for radial excitations of the unbroken electric field. (Quantum 

corrections to the Higgs field will be discussed in section 5.) The radial electric 

field is parametrized by a “gauge rotation” of the monopole field (2.9) (with 

f= f/2) 

(3.3) 

where ux = &(rJP*r’/2, and we require that X(O,t) = 0. This “gauge rotation” 

produces an electric field given by 

Ei” = (34 

because we have not rotated. Ao. The first term on the right hand side of (3.4) 

_ islust an ordinary radial electric field, but the second term is not radial and is 

orthogonal to the ordinary electric field in SU(2) space. It is of little consequence, 

however, because it exists only inside the monopole core and will vanish altogether 
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i when we take the core size (ro) to zero. Thus, if we include the effect of a 6 

(vacuum angle) term, the gauge. field Lagrangian is given by 

= $& + ($)‘+$ $ (1 -K”(r)) . (3.5) 

We now turn to the fermion doublet. Its Lagrangian is given by 

(3.6) 

where 

Following Callan’s reduction to 1 + 1 dimensions we set 

(3.7) 
x* = - 

Jikr ( $I*+&*~ 72, > 

in a representation where 

0 * 
7O= i -; ( > 7i = -i cr' 0 

c* 1 0 --i ' 

X* is a 2 x 2 matrix with the first index describing spin and the second describing 

isospin. Since we are in the s-wave, g* and p* depend only on r and t. We can 

write down gauge invariant two-component fields describing each helicity, 

x+ = ,iAn/2 x- = e-iXr2/f 

(3.8) 

- - - 
The gauge invariant form is used in order to simplify the form of the fermion 

interaction with the monopole core. With this reduction we can now write the 
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action for our system in terms of the 1 + 1 dimensional Fermi fields, x*. (Note 

that the Higgs field appears only in the fermion mass term in our approximation.) 

+n-(ig++d+ir5 q) x- + m(r) (X+x- + R-x+) (3-g) 

+ F (it)’ + f (K(r)i)l + & A’(1 - K2(r))] . 

We have now switched to 1 + 1 dimensional notation where 7' = -73, 7' = iq, 

r5 =707' = 72 and A, = i S,li. 

Since our fields are defined only on the half line 0 5 r < oo we must impose a 

boundary condition at r = 0 on our fermi fields xk in order that our Hamiltonian 

be self-adjoint. The correct boundary condition, obtained from the solution of 

the corresponding Dirac equation, is 

0 - 7o)X*(O4 = 0. (3.10) 

Usually at this stage, the limit of a point monopole is taken and all the 

terms in the action (3.9) dependent on K(r) vanish. In our case, however, we 

wish to study the fermion fields when m(r) becomes very large at the monopole 

core. Thus, to avoid confusion, we will leave these terms in our action when we 

bosonize the theory. - - - 

We will now proceed to bosonize14’15 the action (3.9). Due to the boundary 

condition (3.10), we can write the two fermi fields on the half line as one boson 
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field on the full line. In the representation where 70 = 72, 71 = irl and 75 = r3, 

we can write 

(3.11) 

where x* = &), and c N e.577 is the exponential of Euler’s constant. Here, NP 

denotes normal ordering with respect to an arbitrary normal ordering mass JL. 

Clearly, the boundary condition (3.10) is satisfied. Also note that this boson 

correspondence gives the correct anticommutation relations between the fermi 

fields in contrast to Callan’s treatment. (This is a minor point because it is easily 

corrected, and it has no influence on any of Callan’s results.) A similar problem 

is encountered when we try to add more fermion doublets because, if we just 

copy (3.11) for each doublet, we obtain commuting fermion fields. This problem ,- 

is easily solved with the use of Klein transformations described by 
16 Halpern, 

- ti we will not need to concern ourselves with it again. 

With the transformations given by (3.11) the action becomes 
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+ p Np (cos2fiqS(r) +xos2fiqS(-r)) 

.+ $ Np ~0s 6 (4(r) - 4(-r)) x cos fiJL,ds 6 

+ $f (i’)2 + 5 (Ki)2 + ; i’(1 - K2)] . 

(3.12) 

Note that by multiplying x- by an arbitrary phase (eia) in Eqs. (3.11) we can 

introduce an arbitrary phase into the mass term in (3.12). This phase can be 

regarded either as a redefinition of x- or as a chiral rotation of the fermion 

doublet. In the first case, we should expect that this phase will have no physical 

effect on the system which, as we shall see, is indeed the case. On the other hand, 

if we interpret a! as a chiral rotation, we would expect that a! would manifest itself 

as a contribution to the vacuum angle 8 = 0 + tr. The fact that thii does not 

occur is, apparently, a deficiency of the bosonization technique. 

. We will now examine the point-like (ro + 0) monopole limit. If we recall that 

K(r) - e -‘ire, we can see that the terms proportional to K2 will vanish in this 

limit. The remaining core term describes the interaction between the fermions 

and the monopole core which was responsible for the boundary conditions be- 
.- 
tween 9 and Q in Callan’s treatment .3 (@ and Q are given by @(r) = qS(r) 

asd Q(r) = 4(-- ) r in our notation.) A classical analysis of this term will indicate 
- - 

that the correct boundary condition is already incorporated into our bosonization 

scheme. The potential corresponding to this term is 
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v = -2 N,cos,/ii (g(r) -4(-r)) X cOSfiJL,ds6. (3.13) 

Since this potential is singular at r = 0, it should be forced to its minimum at 

r = 0, and this gives us a boundary condition. In our case;- this just means 

4(O) = 4(-O) (or ‘P(0) = Q(0) in Callan’s notation). 

Now that we have recovered the usual point-like results, we should examine 

the core dependent terms to see what influence they have. If we assume that 

Et-0 < 1 where E N the energy scale of the fermions, then we can still neglect 

the terms proportional to K2. The term describing the interaction of the fermions 

with monopole core, however, is not so simple. A naive classical interpretation of 

(3.13) would indicate that it has very little influence on low energy physics. For 

instance, if we expand (3.13) as a power series in C$ and r, we obtain (to lowest 

order) 

V = C + K(r) (&O)2 + 41(O)2) , (3.14) 

where C is a (divergent) constant. This term will have a completely negligible 

effect when we integrate over r, so if we could neglect the quantum’mechanical 

effects associated with (3.13), we could drop it from the action and just keep the 

boundary condition. 

The quantum mechanical effects of (3.13) are considerably more interesting. 

It turns out that (3.13) is capable of inducing baryon number violation (or charge 
_- 
violation with just one doublet of fermions) nonlocally throughout the monopole 

core. This would be important if the range of our effective fermion mass term - - - 
was smaller than to, the monopole’s size. (As it turns out, this is not the case.) 

That (3.13) p rovides for baryon number violation throughout the core is easily 
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seen if we make a canonical transformation to a new set of boson fields, 

rl*(+=) = f (d(r) - 4(-r)) f f j 4ds 9 
---I (3.15) - 

i*(r) = ; (J(r) - d(-r,> f f (4+9 - H-r)) 9 

so that (3.13) takes the form of an ordinary sine-Gordon mass term with position 

dependent coefficient, 

V = -2 (cos2fi7j+(r) + cos2fiq-(r)) . (3.16) 

Then baryon number violation can be seen classically; an incoming soliton will 

reflect off the large mass term at the core which, with these v* fields, implies 

baryon number violation. To see how baryon number violation occurs without 

transforming the fields, we should note that the fermion operators defined by 

(3.11) are capable of creating and annihilating solitons and antisolitons at the 

point r. So it seems reasonable that (3.13) should be able to create a soliton- 

antisoliton pair extending from r to -r. We will show below (eq. (3.26)) that this 

implies baryon number violation. For now, we will drop (3.13) from the action, 

but we must remember that, if we are to suppress baryon number violation, our 

barrier must prevent the solitons from reaching the monopole core. 
_- 

We now turn our attention to the X-dependent terms of (3.12) and write 

- c 

S~=~dt~dr[~(m’(r)-m’(-r))+~(i’)‘+~”’], (3.17) 
0 
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for the X-dependent part of the action. Integrating by parts we obtain 

Sx = /dk& (4(r) +d(-l,)[r 
_ +/dt/mdr[-$ (4(r) +4(-r) - -$) + y-(i’J2] .- 

0 

(3.18) 

The surface term merits careful consideration. The boundary condition on X 

implies that i(O, t) = 0, but we cannot also have i(oo, t) = 0 because this would 

make the 0 term vanish. Adding a term proportional to i(O, t) we obtain 

Now we can solve for i ’ to get 

-E, = j,‘= g2 
8r3i2r2 (d(r) + 4(--r) - 4b) - d-4 - -$) 9 

and 

4(+-> +4(-r) - d(4 - 4(-m) - 5)’ . (3.20) 

In order to interpret this Coulomb term we will need the electric charge 

operator. This is given (in 4-dimensional and then bosonic notation) by 

_ Qc /Gi:=i70+d3z = &Jdr(r,h’(r) - b’(-r)) 
0 

= &(+4+4(--)-24(O)) , 

(3.21) 
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Thus, the Coulomb part of the Hamiltonian is 

W 

/ 

g2 

HA= dr32;;2;-i. ( 
4(r) + 4(-r> - 2440) + $2”” - e))1 l 

(3.22) 
-. 

0 

. So, in order to have finite energy we must have Q = 8/2z in agreement with 

Wittenr7 Also, we notice that the charge on the monopole does not depend on 

the phase of the mass term. Apparently, this is the answer to one of Yamagishi’s 

objections9 to Callan’s bosonization procedure. Yamagishi had noted that, as we 

have mentioned above, we can change the phase of the mass term by an arbitrary 

amount by rotating x- by an arbitrary phase. If we interpret this phase as a 

redefinition of x- (and also neglect the surface term), we might conclude that 

electric charge on the monopole (from (3.21)) depends on 4(&oo) and hence, on 

an arbitrary phase in the definition of our bosonization correspondence. The 

surface term prevents this ambiguity so that the monopole electric charge is 

uniquely determined by Witten’s formula. Unfortunately, when this surface term 

is included, we can no longer implement chiral rotations correctly. .This is not 

a.problem for practical calculations, however, because we can rotate away any 

chiral phases in the fermion masses before we bosonize. (This has been done by 

Harvey!’ ) 

We must also note that the Coulomb term does not seem to allow states with 

Q = 8/2n + n/2 for n # 0. If we wish to scatter fermions off the monopole, we 

can evade this problem by placing an appropriate number of stationary solitons - - - 
at large r so that Q = 8/2z. If we are also careful to pick the correct phase for 

our mass terms (so that 4(&oo) = 0 is a minimum), we can drop all the surface 
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terms and obtain the following Hamiltonian, 

00 

H= 
J [ 

dr f r2(r) + f (#(r))l - m(r) F Nc( cos 2&(r)] 
-00 -. 

(3.23) 

This is essentially Callan’s Hamiltonian with a position dependent msss term. 

In order to study the scattering of fermions off the monopole, it is convenient 

to find the charges of the soliton states. The electric charge is given by (3.21), 

and the axial charge (or helicity) and fermion number are given by 

(3.24) 

and 

F= 
/ 

tj&b d3x = -& /m dr 4’(r) = #4 - 4(-d) 9 (3.25) 
--oo 

respectively. The charges of the various soliton states are given in Table 2. 

If m(r) = con&. and we neglect the Coulomb term, we just have a free Sine- 

Gordon theory, but as the solitons propagate through r = 0 they reverse their 

charge. So an incoming dat would change into a ez at r = 0 while conserving _- 
fermion number and helicity. (Recall that either charge or helicity must change 

i%order to conserve angular momentum.) This is exactly the result obtained 

by Marciano and MAnichi and D’Hoker and Farhi2’ when they solved the 

Dirac equation in a non-abelian monopole field. When we turn on the Coulomb 
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term, we obtain q%(O) = 0 as a dynamically enforced boundary condition, and the 

solitons will reflect from the monopole core and emerge with the same charge 

and fermion number but with the opposite helicity. 
-. 

With an SU(5) monopole, we have two Dirac doublets but only one effective 

boundary condition due to Coulomb terms. (There are three conserved abelian 

charges, QEM, Y, and Ic, but two of the dynamical boundary conditions are 

degenerate with our boundary condition matching 4(r) with 4(-r).) Thus for 

SU(S), some baryon violating processes remain, such as 

u,,(state a) + d,,(state d) 4 ii,,(state b) + et(state c) , (3.26) 

which is shown schematically in Fig. 1 The reactions involving a single incoming 

particle are more complicated (involving “half soliton” states), and are discussed 

in some detail elsewhere! The important point is that for baryon number vi- 

olation to occur, one or more solitons must pass through the origin. Actually, 

we must be more careful if we take the monopole size to be finite because we 

must include nonlocal interactions caused by (3.13). A soliton reaching the edge 

of the monopole core can annihilate with the antisoliton of a soliton-antisoliton 

pair created by (3.13). The pair produced soliton then propagates away from the 

opposite “side” of the monopole core without having passed through the origin. 

Fortunately, we will be able to neglect this fine point because the effective mass 

terms that we will consider extend far outside the monopole core. In the next 

section we will see if this type of process is allowed when m(r) takes a large value 

- a&=0. 
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i 4. THE EFFECTIVE FERMION MASS 

AT THE MONOPOLE CORE 

A semiclassical analysis of the monopole fermion system-described by the _ 

Hamiltonian (3.23) is rather subtle when m(r) # constant. To simplify the 

system further, we will drop the Coulomb term so that 

H = (44 

The Coulomb term can be added in later if we wish, but it can only serve to 

restrict baryon number violation, not enhance it. We will do a semiclassical 

analysis of (4.1) in order to see whether a large mass near r = 0 will lead to 

suppression of the baryon number violating reactions mentioned in the previous 

section. If we find that the solitons of (4.1) cannot pass through the barrier at 

r = 0, then we can conclude that the fermion scattering off a GUT monopole 

cannot violate baryon number. 

We now attempt a semiclassical analysis of (4.1). This analysis, will center 

on one important point: The mass term in equation (4.1) formally depends on 

an arbitrary normal ordering mass JL: 

Hm = m(r)ff-fjfNpeos2Jifq5. P-2) 

(4.2) is actually independent of p in the full quantum theory. However, if we are 

performing a semiclassical analysis, there is some particular value of ~1 for which - - 

this analysis will be the most accurate. The bulk of this analysis will be devoted 

to finding this preferred value. 
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First, however, we will consider the consequences of various choices for ~1: 

Let us take m(r) to be of the form discussed in Section 2, that is 

- l 
7 
-9 

mw - 
r0 

14 < r0 9 

moo, Irl B fo 9 

(4.3) 

where ro is (roughly) the GUT scale l/v, m is the ordinary fermion msss and 

7 is a factor proportional to the Yukawa coupling between h5 and the fermions. 

From the discussion in Section 2, we can make a rough estimate of 7, 

7 - ; x 1o-5 . (4.4 

Thus, we expect that 7 - CJ ( 10e5), but we can make it larger than this by tuning 

CY to be larger than A. The long range of the weak scale Higgs (h5 - i eBuor) will 

be neglected for now, but we will consider its consequences later in this section. 

Naively, we have two possible choices for ~1 in a semiclassical analysis: 

1. Set ~1 N moo (a constant), so 

co 

HC = 
--oo 

- m-m(r) i cos 2*4) . (4.5) 

2. Set j.4 N m(r) (a function of r!) 

- 5 m2(r) cos2fi4) . (4.6) 

L For each possibility, it is simple to determine if a classical soliton can pass 

through the barrier at the origin. If it can, then the large mass at the ori- 

gin presents essentially no barrier for baryon number violating processes. If the 
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soliton cannot penetrate the barrier then we will have a suppression of baryon 

number violation. (Provided that the tunnelling amplitude is small; we will show 

later that this is so.) We can answer this question straightforwardly by determin- 

ing the energy of a soliton at rest at r = 0. This energy will beinterpreted as the 

minimum energy that an incoming soliton must have in order to pass through 

the barrier at r = 0. We will take 7 - 10e5 and l/r0 - 1016GeV as approximate 

values. For Hc given by (4.5), we have 

ro 
E N msoliton + c mm 7r / dr m(r) 

-70 (4.7) 

E N msoliton(l + 7) N msotiton 

where msoliton = const. x moo. In this case, the kinetic energy required to pen- 

etrate the core is essentially the same as the fermion mass so that relativistic 

particles will see no barrier. For He given by (4.6), however, we obtain 

TO 

E= 
C 

m,oliton + ; 
/ 

dr m2 (r) 
-r0 (4.8) 

r2 cv msoEton + lo - lo6 GeV . 

Here, the kinetic energy required to penetrate the core much greater than the 

fermion’s energy, and any baryon number violation appears to be ruled out. We 

shall see that (4.8) is substantially correct for 7 >> 10w3, while (4.7) is correct 

for 7 < 10v3. 
- - 

Now, let us begin an investigation into what value of JL is the best for a 

semiclassical analysis. For the case of m(r) = moo, a constant, the question 
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14 was settled some time ago by Coleman; we will reproduce hi analysis here so 

that it will be clear how to generalize his argument to our case where m (r) # a 

constant. 

To obtain a relationship between the normal ordered-mass term and a bare 

mass term-we will need W ick’s theorem. This tells us that, for a free field of 
. msss JL and any space-time function J(x), 

exp s [ ‘/ J(x)4(x)d2x] = Np exp [i/ J(z)4(x)d2z] 

(4.9) 

J(x)+ - v; 4J(dd2xd2y] , 

where A(x - y; cl) is the free-field two-point W ightman function. For small sep- 

arations, it is given by 

A(w) = --& log czj2 [ (Z’)z - (x0 - ie)2] + 0 (z/&xP) . (4.10) 

To cut off the theory, we define a cutoff W ightman function by 

A(z;p;A) - A(z;p) -A&A) , 

where A is the cutoff. At zero separation we have 

(4.12) 
_- 

A(O;p; A) = --& log $ . 

Now, if we set J in (4.9) equal to a 6 function, we obtain - - - 

(4.11) 

(4.13) 

26 



i 
From (4.13) we can obtain the normal ordering relationship for our mass term 

g m,mo cos f&/6$ = 5 m,p Np cos 2fi4 , (4.14) 

-. 
where we must set the bare mass mo = A. This shows- that our mass term is 

indeed independent of the normal ordering ma.ss p. We have also developed the 

formalism we need to choose p for a semiclassical analysis. 

The correct choice of I( is that one associated with the ground state of the 

system. We will use the Rayleigh-Ritz variational method to minimize the Hamil- 

tonian density, 

with respect to the vacuum states for a free scalar field of mass Y. These states 

are defined by 

a(k,u) IO+) = 0 . (4.16) 

The minimum of (0, YIN IO, Y) with respect to Y gives the appropriate choice for 

P- 

. To calculate (0, vIUIO, Y) we will need to reorder the Hamiltonian density 

with respect to V. The reordering of the mass term is given by (4.14) to be 

~1 NIL cos 2&4 = Y NV cos 264 , (4.17) 

and the reordering of the first two terms of (4.15) is given by 

- ai,( lrs+l 
2 

z 412) = N,,(; r2 + f 412) + Eo(v) - Eo(P) 
(4.18) 

= NV <f x2 + ; 412) + u28;p2 . 
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Therefore, 

(O,uJUJO,u) = u28ip2 - Em,v. 7r 
(4.19) 

The minimum of (4.19) is at v = 4cmoo, so it is mostsensibleZo set ~1 = km,. 

Hence, (4.1) becomes 

00 
H= - $ j.k2 cos 2fi4) , (4.20) 

and the ground state of this system is given by 10,~). Thus, the choice of the 

correct normal ordering msss Jo really corresponds to choosing the correct vac- 

uum. After we find the vacuum state we normal order with respect to “its mass” 

in order to minimize radiative corrections. 

Now, we would like to repeat this procedure for m(r) of the form given in 

(4.3). So the Hamiltonian (4.15) is replaced by 

Ii = N,(fs2 + ;4t2 - t m(r) p cos 264) . (4.21) 

Qur trial states will now be the ground states of a free scalar field with a position 

dependent mass V(r). Initially, we will take both the m(r) and y(r) to be given 

by step functions: 

+- 

- - - 

m(r) = mtl((i 

v(r) = z&(lr 

4 - to> + z +0 - If-l) , 
(4.22) 

I - rt> + Me(rf - Irl> . 

We make the assumption that 7 and Mrt are small because this seems to be the 

physically relevant case. With the aid of equation (A24) from the appendix, we 
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obtain the reordering equation for the kinetic terms 

NP + Eo b(r)) - Eo (P) 9 
-. (4.23) . 

- H Np 

essentially identical to the constant mass case. The reordering equation for the 

mass term is 

where 

pN,~0~2fi4 = C(r) NV(,) ~0~264 , (4.24) 

b(r) = A [exp (-47rA(O; v(r); A))]‘/2 . 

The form of C(r) is obtained from Eq. (A18) of the appendix, 

P(r) = 
{ 

2M2rt r <& , 

u r+&+ 

(4.25) 

(4.26) 

Note that P(r) and v(r) h ave very different profiles (since we have assumed that 

Mrt < 1). Naively, we might expect the minimum energy configuration to occur 

when the reordering mass D(r) N m( ) r as occurs for m(r) = a constant as well as 

in the qualitative analysis of (4.6) earlier in this section. If m(r) is a very narrow 
_- 
step function (e. g. when 7 is small), we can make v(r) as narrow as we want 

_ buiD(r) will always have a range of roughly the inverse of its height. Thus, for 7 

small it will be impossible to have G(r) N m(r) as we would need for the baryon 

number violating case, (4.6). To see this more quantitatively, we will evaluate 
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the vacuum expectation value of the Hamiltonian density (4.21), 

(O,v(r)J Ii lO,v(r)) = $ - i m(r)fi(r) . (4.27) 

Integrating over r we obtain (roughly) 

(0, v(r)1 H IO, v(r)) N -& M2rt - F M2qy , (4.28) 

where we have set m,u N 0 and taken M2rtrg < 1. Clearly, for 7 < 1/16c - l/30 

the minimum is at M = 0 and the correct semiclassical picture is given by (4.5). 

This conclusion is premature, however, because we have assumed that m(r) 

is given by a step function and neglected its long range. In order to estimate the 

effect of the long (- l/r) t ai o m r , we will take m(r) to have the form, 1 f ( ) 

m(r) = 

i 

z 14 < r0 9 
(4.29) 

: lrl > ro . 

We will also need an approximation for G(r). In the appendix (eq. (A18)), we 

have calculated the first few powers of r in the expansion of P(r). These terms 

indicate that G(r) begins to vary from D(0) at a distance of order 1/M2rt, so we 

c&n approximate C(r) by 

D(r) cv 2M2rt 0 
( ii&)- 

ItI - 

Using (4.29) and (4.30) we can integrate (4.27) over r to obtain 

(4.30) 

0% 4r)l H 1% w> N gM2rl - :M2rt7 (l+log (Mtfro)) y (4.31) 
- - - 

where the log(l/M2 rtr0) term comes from the - l/r tail of m(r) cut off by the 

theta function in (4.30). This result is only weakly dependent on the radius at 
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which we cut off C(r), so the crudeness of our approximation for P(r) should not 

have a great influence on our result. Also, note that most of our barrier is located 

outside the monopole core so that we need not worry about the nonlocal term, 

(3.13), which is responsible for baryon number violation in the region 0 < r < ro. 
_ 

Minimizing the Hamiltonian, (4.31), we obtain 

M2rt = ; exp(-1/16c7) , 

and substituting this back into (4.31) gives us an expression for the minimum 

vacuum energy of (4.21), 

Emin G (0, v(r)] H 10,V(r))min = -1 4” e-1/16c7 . 
r0 A 

Evaluating this expression for 7 = 10e5, we obtain M2rt - Emin - -10-‘50/rc, 

so in this case any increase in the mass at the core would be negligible (to say the 

least). For 7 - 10s3 the results are considerably more interesting. At 7 = 0.001 

we obtain M2rt N 6 x 10-16/ro and Emin N 10-18/ro which would still seem to 

have little effect on the baryon number violating reactions, but for 7 = 0.002 

wci have M2rt N 2 x 10v8/rc and Emin z lo-‘O/r0 which would mean a fermion 

mass of greater than lo5 GeV if ro is the usual GUT scale. So apparently, it 

seems that there is a rather abrupt transition between heuristic pictures of (4.5) 

and (4.6) at 7 - 10 -3. Therefore, it would seem that, in this case, we must fine 

tune the Higgs sector coupling constants to about 2 decimal places if we wish to 

suppress baryon number violation. 
- - 

Before we can be confident that these results are correct, we should check to 

see that we have made a reasonable choice for our trial states. Perhaps, with a 
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more clever choice for v(r), we could obtain a large effective fermion mass for 

7 << 10 -3. This is very unlikely, because we are interested in choices for v(r) 

that will generate values for D(r) such that b(r) = m(r), and, as we have seen, 

when v(r) is a narrow function (i. e. when Mrt < le inkqua%ion (4.22) ), P(r) 

is only weakly dependent on the shape of v(r). Thus, another choice of u(r) 

will have little influence on the form of t(r) and therefore, little influence on the 

effective fermion mass. As an independent check, we have done this calculation 

numerically for several different choices of v(r) and the result is essentially the 

same (within a factor of two) in every case, so we have good reason to expect 

that this variational calculation gives the correct result. 

Since we have done our calculation in the semiclassical limit, we should try to 

estimate the tunneling probability. That is, we should try to obtain an estimate 

of the probability for the low energy solitons of (4.1) to tunnel through the barrier 

at r = 0. At a glance, it might seem that the tunneling probability might be 

significant. If we take the height of the potential barrier to be Emh and the range 

to be ro, we might guess that the tunneling probability would be of the order 

eEminro = e-lO-1o = 1 
9 (4.34) 

for 7 = 0.002. But we have neglected the fact that the soliton is not a point 

particle. Since the soliton has a width of order l/& (where & is the soliton’s 

energy), the soliton effectively sees a potential of width l/&. 

In particular, the classical soliton profile is given by 

- - - 4e = 5 tan-‘(e”) , 

at a fixed time. With this, we can obtain an effective mass for a classical soliton 
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of energy & at position r, 

W 

mff (f) = G  
/ 

ds m(s)D(s) ( 1 - cos 2fi$,(r - 8) 
> 

-w 

= -.!$yeB1116c7 (1, &) co,,‘,r+ei , (4a36) 

where we have assumed that the energy scale associated with the barrier at 

the core ’ ’ roe -1/16c7 9 is much larger than the fermion energy, E. The tunneling 

amplitude can now be estimated to be 

r 

P -exp - 
(1 

dsm.r(s)) - exp(-~.~~~)~ exp(-IO”> , (4.37) 
-1 

for 7 = 0.002, l/r0 - 1015 GeV and & - 100 MeV. (& is a typical quark energy 

inside the nucleus.) The tunneling amplitude (4.37) is miniscule, so we conclude 

that tunneling will not be important when 7 is large enough so that the fermions 

acquire a large effective mass at the monopole core. Thus, if 7 tuned to be large 

enough, we can prevent monopole induced baryon number violation. 

5. CONSERVATION OF WEAK ISOSPIN WHEN THE 
CALLAN-RUBAKOV EFFECT IS SUPPRESSED 

In the previous section, we have seen that with the appropriate tuning of 

parameters, the Higgs field configuration will induce large effective fermion mass 

terms. These mass terms will prevent the fermions from reaching the monopole 

cqre where baryon number violation can occur. Instead, all J = 0 fermions will 
- - 

simply flip their helicity upon encountering the monopole. The reader may be a 

bit suspicious of this scenario because these helicity flip reactions (like uIR + M -+ 
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u,, + M) clearly violate weak isospin which we should expect to be conserved 

at distances of order the monopole size. Furthermore, Schellekens 21 and Sen 22 

have argued that monopole induced baryon number violation can occur as a result 

of the weak (‘t Hooft ) anomaly even in GUT’s that conserv_e baryon number. 

How can we reconcile our previous results with these arguments? 

First, we should discuss how weak isospin is conserved when the Callan- 

Rubakov effect is not suppressed. In this case, there are two possible outgoing 

states when a uIR is incident on a monopole: the helicity flip reaction 

%R + UlL , (5.1) 

and the baryon number violating reaction, 

(5.2) 

Each of these reactions alone violates weak isospin, so how would the system 

behave in the limit of unbroken weak interactions? This question can be answered 

with the use of Callan’s peculiar “fractional solitons4 n (which carry fractional 

quantum numbers). If we allow outgoing solitons with less than unit amplitude, 

the following process is allowed 

which conserves weak isospin. Classically, this process produces 4 “fractional 

particlesn , but quantum mechanically, it has a more sensible interpretation. The - - - 
quantum mechanical state implied by (5.3) is just a mixture of the outgoing 

states from (5.1) and (5.2). When the incoming quark reaches the monopole 
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core it begins to excite the other fermion fields while conserving weak isospin as 

required by (5.3). Then as outgoing “fractional fermionsn reach a distance from 

the monopole of the order of the weak scale, the mass terms become important 

and the exotic outgoing state of (5.3) must decay into the outgoiiig states of either 

(5.i) or(5.2). Presumably, the probabilities of the reactions (5.1) and (5.2) are 

each l/2. In the remainder of this section, we will see how to obtain weak isospin 

conservation at short distances when the Higgs sector coupling constants are 

adjusted so that the Callan-Rubakov effect is suppressed. As might be expected, 

we will find another “fractional soliton” process that works at distances smaller 

than the weak scale to conserve weak isospin. 

The source of the weak isospin violation mentioned above is obvious; we 

have assumed that the Weinberg-Salam Higgs field (hs) can be treated as a 

classical background field. Thus, when it gets a large expectation value at the 

monopole core, weak isospin is strongly broken at the core. This assumption 

is not necessarily correct because the Higgs field takes an expectation value of 

order 2 v in a region of space of radius - l/v; hence, we expect might quantum 

fluctuations to be large. In particular, we might guess that the quantum ground 

state is a superposition of all possible orientations of h in SU(2)w, so that the 

SU(2)w symmetry will be restored at the GUT scale. To check this, we should try 

to include these SU(2)w rotations of h5 as dynamical degrees of freedom. These 

degrees of freedom can be parametrized by performing a time dependent SU(2)w 

rotation (at the monopole core) on the classical solution for h(r), (2.8). When 

we attempt to do this however we encounter some difficulty in constructing the - - 
SU( 2)~ rotations in the region of the monopole. In fact, as Nelson and Coleman 

have shown:’ in the presence of a monopole we can only define those SU(2)w 
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rotations which commute with the monopole’s charge. Thus, we can only include 

the Abelian component (13~) of the SU(2) w rotations, or rather, more properly, 

the combination of I~w and Yw which is orthogonal to the monopoles charge. 

Let us describe this system by writing an effective Lagrarigian including the 

-Abelian rotation degree of freedom for h(r). Here, for convenience we will repre- 

sent the fermions in Callan’s notation for boson fields on the half line. To connect 

with our previous notation we must set de+(r) = $.(-r) and &(r) = q&(-r), 

and let the & and 112 fields be represented by the e+ and ur fields for r < 0. The 

Lagrangian, neglecting the Coulomb terms, is given by 

L = Yr 
I [ 

27rr2h3r) (&2(r) + &2(r)) 
0 

+ ;&w;(r) (cos(waf+ + a) + cos(2fi& + a,> 

+ i ml(r)fii(r) (cos(2J;i~$~, - a) + cos(2&& - a) )I1 
where the proper normal ordering (discussed in Section 4) is assumed, and we 

have summed over three fermion generations. (We have assumed the existence 

of just three generations, but the generalizations for more generations should be 

obvious.) Notice that the phase a appears with the opposite sign in the msss 

terms for the two SU(2)monopole doublets. This is because the mass terms for the 

two doublets come from different couplings to h. - - - 
In order to obtain a simple system from (5.4), we will make some rather 

severe approximations. We drop the c~‘~(r) term and replace a(r) by d(ro - r) 
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(where cr is no longer a function of r). Evidently, these approximations will tend 

to reduce the correlation between the phases of hb(r) at r = 0 and r = 00. There 

is a separate motivation for studying the system described by (5.4). Suppose 

we consider the monopole of a theory which conserves lsaryon number. If this 

monopole has the same charge as the fundamental SU(5) monopole, and if we 

neglect the Coulomb terms and set cy = 0, its interaction with low energy fermions 

can be described by (5.4). This works because, for low energy fermions, the large 

masses at the core serve only to enforce the boundary conditions di(O) = 0, 

which are the only boundary conditions that conserve baryon number (modulo 

mixing between generations). The scattering processes implied by these boundary 

conditions are pure helicity flip (uR + ZL~) so that weak isospin is not conserved. 

Thus, if we demand weak isospin conservation at the monopole core we must 

modify the boundary conditions (or mass terms in (5.4)). This is accomplished 

by including a nonzero a! in (5.4) with the approximations mentioned above. 

A further approximation that we will invoke will be to take the bosonized 

fermi fields as classical objects. This is justified because we are considering only 

low energy fermions so that the time scale of the variations of the’q$ fields is 

much smaller than the time scale (- l/ro) associated with o. Similarly, we will 

assume that the # fields are constant over the range (0,~). In this region we 

will denote h5 by 

w-here u - o/X measures the tuning of the Higgs sector coupling constants. (a 
- - 

is just the ratio of 7 to the Yukawa coupling.) In order for the ordinary Callan- 

Rubakov effect to be suppressed, we will take CT > 100. 
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With these approximations, and the assumption that the fermion fields are 

in their ground state, (5.4) can be replaced by a simple effective Hamiltonian for 

the cy dependent terms, 

YO 

c/ 

-. 
Ha= 3 J2--cosa 

87rroa2 a r 
dr rrt(r)d(r) , (5.6) 

i 0 
1 where Ja = F rOa2cz’, and the sum is now over all fermions. Since the top quark 

is much heavier than any of the other fermions, we can neglect the contribution 

to this sum from all the other fermions. The effective mass for the top quark is 

given by 
, 

m(r) = 
{ 

art /f0 r<r0, 

art/r r>f-0, 
(5.7) 

where I’t - 0.1 is the Yukawa coupling between the top quark and Weinberg- 

Salam Higgs. Since we have assumed that o > 100, the assumption (al? = 7 < l), 

we used previously in our calculation of i/(r) does not hold. For ol?t > 1 we obtain 

fit(r) N 4cmt(r) as one might expect from (4.19). Thus, (5.6) becomes 

Ha= 3 J2 
(at)2 

8?rroa2 a - 2s cos Ly - (54 

For o - 100 and I’t - 0.1, the potential term is a factor of lo6 larger than the 

kinetic term, so we can neglect the latter. Thus, o need only appear in the mass 

term of our effective Lagrangian for the solitons, 

- - c + +i,(r)m (42mf+ + a)+cos(2fiq$~ +a,> 
(5-g) 

+ f mi,(r)fit(r) (cos(2fiqS& - a) + COS(~~~C& - Q) 
)I 

. 
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This is equivalent to the original weak isospin violating Lagrangian with one 

additional degree of freedom which will allow baryon number violation. Previ- 

ously, without the requirement of weak isospin conservation, we could summarize 

the effect of the large mass terms with the fermion boundary conditions di(O) = 0. 

Weak isospin conservation requires that we change these boundary conditions to 

4i(O) = fo where the (+) sign is for the charge 2/3 quarks and the (-) sign is 

for the charge l/3 quarks and leptons. (Note that the Coulomb terms play no 

role here; they only serve to duplicate the boundary conditions due to the mass 

terms.) 

Qualitatively, it is easy to see what types of processes are allowed by (5.9). 

In addition to the helicity flip reaction, (5.1), which leaves CY unchanged from 

its initial state (01 = 0), we can also allow ~1 to change continuously from 0 to 

27r. For one generation of fermions, this is just the usual type of baryon number 

violating reaction, (5.2), but for the phenomenologically relevant case of three 

fermion generations, we can see that every fermion must be produced. Thus, 

(5.2) is replaced by 

%R -+ fisR&d, + zlRi?2R$,Lpt t;Rt;Ri;3Lrz . (5.10) 

As we could have anticipated for a weak anomaly induced effect, this is a AI3 = 3 

process involving all three generations of fermions. 

P- Now, (5.10) violates weak isospin by an even greater amount that the helicity 

flip process (5.1) d oes, so we will have to construct a “fractional soliton” process 

- iurder to conserve weak isospin. The reaction that conserves weak isospin is 

5 
UlR 3 - UlL 6 + i fisRdaLet i?lRi?.~Ri?~Lpt flRf2R63Lr,+ . (5.11) 
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We interpret this outgoing state just as we did in (5.3), as a quantum mechan- 

ical superposition of the outgoing states from (5.1) and (5.10). This scattering 

process is shown schematically in Fig. 2 For one fermion generation, the weak 

isospin conserving reaction is just the “ordinary” Call&&bakov process, (5.3), 

discovered .by Callan without postulating conservation of weak isospin. If we 

generalize our arguments to an arbitrary number of fermion generations, we can 

see that (AB) = l/2 for a single incoming fermion. 

We should note that this situation changes slightly (in the case where cy 

represents the phase of the Higgs field), if we relax our approximation neglecting 

a(r) for r > to. Since the baryon number violating process (5.10) changes a(O) 

from 0 to 2n, we are left with a twist in the Higgs field. If the Hamiltonian (5.8) 

were not so dominated by the potential energy term, this twist would quickly 

decay via a quantum fluctuation (in which hg (0) -+ 0) or by tunneling through the 

potential barrier at QI N 7~. Instead, this twist would probably propagate out to a 

distance of the order of the weak breaking scale where it could manifest itself as a 

physical Higgs boson or decay through a quantum fluctuation or tunneling. While 

this possibility of Higgs field excitation does not change the fermion content of the 

possible final states (5.1) and (5.10) produced in fermion-monopole scattering, it 

could change the intermediate state (5.11). This is because we can now include 

a Higgs particle among our outgoing intermediate states, so that conservation of 

weak isospin does not imply a unique intermediate state. In the case where cr 
.- 
does not represent the phase of the Higgs field, Sen22 has shown that the Higgs 

field excitations are not important so that (5.11) should be valid. - - 

Finally, we should make a few remarks about the real cross section for this 

weak anomaly induced baryon number violating reaction (5.10). If we wish to 



calculate this, we must, of course, include the effects of Cabibbo mixing between 

the generations. Unfortunately, our bosonization approach is poorly suited for 

this calculation, and we will not attempt it. Sen has done this calculation for 

massless fermions and has shown that, with Cabibbo mixing, fiocesses involving 

only first and second generations of fermions are allowed. If fermion masses are 

included, it may be possible to obtain a process involving only light particles (no 

charmed quarks). In any event, this type of process would seem to have little 

effect on present day attempts at monopole detection through catalysis of baryon 

decay (either in proton decay experiments or in neutron stars) both because of 

the high powers of mixing angles involved and because only AB = 3 processes 

are allowed. 

6. CONCLUSIONS 

Thus far, we have only considered fermions interacting with the fundamental 

monopole of the minimal SU(5) model, but since this model has many problems 

(such as being excluded experimentally), we should like to generalize our results 

to other, presumably more realistic, models. As we have seen in Section 2, our 

conclusions depend critically on coupling constants in the Higgs sector which are 

unlikely to be observed in the near future. We expect the situation to be essen- 

tially the same for non-SU(5) GUTS, as well, because the fine tuning that keeps 

the weak scale small is present for any GUT, and as in the SU(5) case, this fine _- 
tuning can be destroyed by the GUT monopole. The analysis should be essen- 

_ ti$y the same for any GUT with a monopole of the same charge as the SU(5) 

monopole. Thus, we expect that our conclusions are essentially independent of 

any details of the theory that manifest themselves only at the GUT scale. 
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The situation is quite different, however, when we consider the structure of 

the SU(2)w breaking sector of the theory. Since this sector of the standard model 

is not well understood, we are free to consider many extensions of the single 

Higgs doublet considered above. For example, several authers have imagined 

models-with two Higgs doublets and an enhanced Higgs-fermion couplingT5 In 

such a model, the Riggs boson which gives mass to the fermions has a vacuum 

expectation value of only about 25 GeV; the Yukawa couplings are increased 

by a factor of 10. Then, the Yukawa coupling to the down quark might be as 

large as a few times 10e4, so that we could achieve a significant suppression of 

the Callan-Rubakov effect by tuning some of our Higgs sector parameters to less 

than one decimal place. 

An even more interesting variation of the weak scale Higgs sector is the 

attempt by Bagger et. a;? to explain the fermion mass spectrum. We need 

not explore their ideas in detail here, but we will just note that in their model, 

the small Yukawa couplings to the light fermions are replaced by (4) / (x) raised 

to a power that is roughly the number of fermion generations. (4) and (x) are 

the vacuum expectation values of additional Higgs fields, and in general, we can 

expect that these expectation values will change in the vicinity of a monopole. In 

fact, in the explicit example given by Bagger et. al. (for an SO(10) theory), both 

4 and x get their vacuum expectation values in either the Y (weak hypercharge) 

or B-L directions. Since neither Y or B-L commutes with SU(2)monopole, both 

-(+) and (x) must change from their vacuum values at the monopole core. So, if 

(4) / (x) is increased at the monopole core, then the effective Yukawa couplings - - - 
to the light fermions would be increased as well, and we could have suppression 

of the Callan-Rubakov effect without any extra fine tuning. 
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Thus, if we consider alternatives to the minimal Grand Unified Theories, it 

seems quite possible that, under special circumstances, we can obtain a very large 

suppression of monopole induced baryon number violation. However, we are al- 

ways at the mercy of the coupling constants in the Higgs sector, Finally, we must 
- 
note that the process we have discussed here depends entirely on the disruption 

of the fine tuning which enforces the gauge hierarchy between the GUT scale 

and the weak scale. This fine tuning is usually regarded as the most unnatural 

aspect of Grand Unified Theories, so we might expect that this fine tuning will 

be explained by some other mechanism. In supersymmetric GUTS, this fine tun- 

ing is stable under radiative corrections, but since the relevant parameters must 

still be tuned at the tree level, the possibilities described herein still remain. In 

technicolor theories, however, there is no fine tuning at all, so monopole induced 

baryon number violation could not be suppressed by our mechanism. Each of 

these approaches to the solution of the fine tuning problem has its drawbacks, so 

we might expect that the real solution has yet to be proposed. In any event, it is 

difficult to say whether the suppression of the Callan-Rubakov effect described 

here will survive the solution to gauge hierarchy puzzle or not. 

ACKNOWLEDGEMENTS 

I am indebted to Michael Peskin for many helpful discussions and for a critical 

reading of the manuscript. I would also like to thank Lenny Susskind for several 

illuminating discussions. 

- - - 

43 



APPENDIX 

In this appendix, we will calculate some expressions necessary for the varia- 

tional calculations of Section 4. Our trial functions will be the ground states of 

a free massive scalar field with a spatially varying mass term. The Hamiltonian 

density for this trial system is 

and the ground state of this system is denoted by lO,v(r)). In order to perform 

the variational calculation we will need to calculate 

Eo (y(r)) - (0, y(r)1 (f n2 + f 4”) lO,v(r)) , 

and the Wightman function at zero separation. 

Initially, for simplicity, we will take v(r) to be a step function: 

44 = u + MB(rt - 171) , w 

where Y < M, l/t-t. The Wightman function at zero spacetime separation is now 

given by 

APi 44) = @ I +(t, +#,r) 10) 

= lot [jm2*ddgdz ciwpt (lo+(k,++(k) + co_(k,r)4k)) 
0 

- - - 

+ eiwtt (d+k r>dJk> + d-(k,r)o!(k))] IO) , 
(A31 

44 
_- . 



i where we have expanded t$(t,r) in terms of creation and annihilation operators, 

a!(k) and ai( and dropped terms where ai acts on IO). The functions, 

cpk(k, r), are just the orthogonal solutions of the field equations obtained from 

the Hamiltonian (Al). These are given by 
- 

1 

A,ikr 
r>rt, 

p+(k, t.) = Bear + Ceear Irl < rt , 

Deikr + Eewikr 
(A4 

r < -rt , 

cp- (k 4 = P+ (k, -4 9 

where 

M2 = a2 + k2 , (A51 

and 

A= 
1 

1+ f EsinhSart ’ 

B - e-arteikrt a + ik - ----A, 2a 

c = earteikrt CY - ik 
-----A, 2a 

D = e2ikrt cash 2art + 1 2 (f-a)sinh2ort)A, 

EC-f ;; - sinh 2art A . 

These solutions are normalized so that 

00 
I dr cpi(k, r)p;(p, r) = 2n SijS(k - p) . 

-00 

- I&ing the commutator 

[ai( u;(p)] = hjS(k -P) , 

(A61 

W) 
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i 
we can obtain an integral expression for our Wightman function, (A3), 

- We -will now evaluate (A8) for r > rt in the limit where Mrt < 1 and 

M2rt. >> Y which, as we have mentioned in Section 4, seems to be the most 

interesting case. Substituting for cp*(k,r) in (A8), we obtain 

A(0; v(r)) = A(0; Y) + I , (A91 

where 

x qdmsinh2dmstcosh2dmztsin2q(z - zt) W) 

- f (1 - 2q2) sinh2 2dmzt cos 2q(z - zt) 
> 

. 

We have switched to the dimensionless variables q = k/M, zt = Mrt, z = Mr, 

and E = u/M. It is useful to break this integral up into two parts 

I=I,‘+1,00, (All) 

according to the sign of (q2 - 1). In the interval 0 < q < 1, we can use our 

assumption, Mrt = zt < 1, to simplify the integral _- 

_I,‘= &/ d& (q2iEi) (2qztsin2qz+2q2zfcos2q2-2zfcos2qz) . 
- - 

(Al2) 

We will denote each term in the integrand by IA(i), i = 1,2,X The la& term, 
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i Ii (3)) will give the largest contribution because it is infrared divergent for c = 0. 

(Recall that we have assumed c < zt.) The integral of this term has the upper 

limit 

I,‘(3) 2 -2 I dq 1- 2qv 1 ( E2 
o d-5 q2 + $ = z 1% 42,2 - 2+210g 2 

> 
’ bw 

The upper limit of the other two terms is given by 

1 

1: (1) + 1: (2) I & 4(2f + zzt) 
I 

P&l 
q2 + %; 

= --$2ntlog z; , (Al4 
0 

where we have dropped a term proportional to zf log $. Note that the inequal- 

ities in (A13) and (A14) become equalities for z < 1. 

Finally, we must consider the integral I?. Changing variables again to u = 

#?, we obtain 

03 
sin 2u.q 

0 
U2 + 1 u2 (u2 + 1) + $ sin2 2uzt 

- - - 
X u&Gicos2uztsin2&FTiz 

[ 

+ u2+; ( ) sin 2uzt cos 2J77-Y 2 
I 

. 

w4 
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i The upper bound on I? is easily found to be 

I;” e ; 2zt 
00 urn+ (u2+i) 

I 
du 

0 
(2 + 1)2 

- 
00 

5 ;2zt 
I 

2 
du- 

u2 + 1 
0 

(Al6) 

= $ (2w) . 

So I? makes essentially no contribution for zt < 1. 

Now, we can combine our results to obtain our expression for the zero sepa- 

ration Wightman function, 

A(0; V(r)) 5 A(0; V) + & 2 (M2rtr + M4rt2r2) log M2rt2 
I 

. 

W) 

Using (4.11) and (4.12) we can obtain the cutoff Wightman function, 

A(O;v(r);A) 5 --& [log (y2 + 2(M2rtr + M4rt2r2) log ti2rt2 1 . (Al8) 
Although we have derived this formula only for Irl > rt, it can be easily shown 

to hold for It-1 < rt as well. 

Next, we will calculate Eo. Expanding in terms of creation and annihilation 

operators for Irl > rt, we obtain 

- - - I30 (v(r); Irl > t-t) = / g + u2 X finite terms . (A19) 

Since we are considering the case where Y is small we will keep only the leading 
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term. The quadratic divergence will require a little bit of care to regulate (because 

an infinitesimal change in the cutoff, A --) A + c, can lead to a finite change 

in A2 + A2 + 266). The correct procedure is to use point splitting. Strictly 

speaking, point splitting doesn’t work for the quadratic divergence of (A19), but 

in a rigorous treatment this term would be replaced by space and time derivatives 

of a logarithmically divergent integral that can be regulated by point splitting. 

Another, simpler procedure that will give the same result is to cut off the integral 

at the same momenta that point splitting would cut it off. Thus, the quadratically 

divergent part of (A19) is given by 

co 

cos(k/A) kdk . 
0 

So, we cut this off at k/A = 1, and we obtain 

00 
kdk=;A2. 

0 0 
Wo) 

Now for jr1 < rt, the cutoff will be different because the functions cp* will 

oscillate with a different wave number p = dm. Thus, to use (A20), we 

must change variables from k to p, and the leading term is given by 

- - - 

PdP -= - = & (A2 + M2) . 
4?r 

0 iM 

W’1) 

Here the non-leading terms may be as large as M2 so we should calculate them, 
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too. The creation and annihilation operator expansion gives 

Eo (49; Irl > rt) = / !f-g + M2J , 

- co 

J E - 
/ 

udu cos 2uzt (cos 2uzt - cos 2212) 
87r u4 + u2 + i sin2 2uzt 

, 
i 

where, as before, u = dp, z = Mr and Q = Mrt. It is convenient to 

break J up into intervals, 

J = J,+ + JTz t * 

These integrals are easily evaluated (for small zt): 

Ji’b’ k: (z2 - $) 
/ 

udu 1 
- 
47r IL2 + (1+ 2;) 

= & (t2 - z;, log + , 

i 
=t 

(A=) 

Jl$* k! 
1 du 1 --Z-Q?. 

167r u2 32~ 
l/a 

Combining Eqs. (A19) through (A23) we obtain 

EO (u(r)) = & (A2 + u”(r)) + O(rt - Irl) 0 (M4rt2 log (Mrt)) + O(u2) , (A24) 

for u(r) given by (A2)). 
- - - 
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i - TABLE 1 

24 Self Couplings Minimum Value of cy 

a b such that M2(0) < 0 

0 .O o- - 
- 

0 .l -.ozp 

0 1 -.osp 

0 100 -.23p 

-.4 1 -.14p 

-2 5 -.lSfl 

1 1 -.09p 

1 10 -.11p 

5 1 .56p 

10 1 1.02p 

10 10 .osp 

Note that b > 0, a > -A b and p < 0 are required 

for the correct symmetry breaking pattern. 

- - 

. 
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i TABLE 2 

Boson type r 

Electric Fermion 

Motion Charge Helicity Number 

(4 soliton >o left + - + -. + 
- 

(b) - .- soliton CO left - + + 

(4 soliton >o right + - + 

(4 soliton CO right - - + 

(4 antisoliton > 0 left - - - 

(f 1 antisoliton < 0 left + - - 

(g> antisoliton > 0 right - + - 

(h) antisoliton < 0 right + + - 
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FIGURE CAPTIONS 

1. This is the baryon number violating process ulR+dJL + &+et as described 

by soliton scattering on the full line. Fig. (a) shows the incoming solitons. 

In (b), the solitons are passing through the origin and begin to change their 

identity, and (c) shows the outgoing particles. 

2. This figure shows the scattering of a u IR quark, (a), off the monopole while 

imposing weak isospin conservation on the monopole core. (b) shows the 

weak- isospin conserving intermediate state, 

where i runs over all generations and j runs over only heavy ones. (c) shows 

one possible final state, u,, + ulR, with Q! = 0 which is the only possible 

final state when the incoming quark has low energy. Finally, (d) shows the 

only possible baryon number violating process, 

while CY goes from 0 to 27r. 
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