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ABSTRACT - - 

The general application of the projector Monte Carlo method to spin sys- 

tems is discussed. The purpose of the paper is to present several variants of 

the method that improve its accuracy and convergence in specific problems and 

to give numerical examples of the improvements. More detailed application to 

specific spin models is left for subsequent publications. 

- - 
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I 

1. Introduction 

In this paper we study the numerical simulation of quantum spin models. 

We present a general formalism for carrying out such simulations i and discuss 

methods for reducing systematic and statistical errors. in subsequent publica- 

tions the methods presented here will be used to make detailed studies of specific 

spin models. 2,3 

Our general approach is to use statistical methods to project out the ground 

state and first excited state wave functions of the system of interest. Once these 

wave functions have been obtained, it is straightforward to calculate energies, 

gaps, correlation functions and thermodynamic quantities. This general approach 

was pioneered by Kalos and his collaborators,4 Cepereley and Adler,’ and has 

been applied to the study of a wide variety of physical system.s6-’ In particular 

Kuti and his collaborators have been studying quantum spin models alone lines 

similar to ours. 10 

In Section 2 of this paper we describe our basic formalism.’ In Sections 3 

and 4 we discuss methods of minimizing the systematic and statistical errors that 

arise in the calculation of energies and correlation functions. In Section 5 we turn 

to the problem of computing the energy gap between the ground state and the 

first excited state. The straightforward approach of calculating the individual 

energies of these states and then subtracting is untenable for large systems since 

the energies grow linearly with the volume, while the gap approaches a volume 

independent limit. We present alternative approaches which avoid this difficulty. 

Finally in Section 6 we briefly summarize our results. - - 
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2. Formalism 

In this section we present our approach to the numerical study of quantum 

spin models. We shall use the Ising model and Heisenberg antiferromagnet as 

illustrative examples. 

As is well known, a classical spin model in d + 1 dimensions can always be 

described by a transfer matrix in one lower dimension. For example, the Ising 

model with partition function 

(1) 

has the transfer matrix 

(2) 

In Eq. (1) the sum is over all nearest neighbor lattice points in a d+l dimensional 

space. In Eq. (2) the first product is over all lattice points in a d dimensional 

space and the second product is over all nearest neighbor points in this space. 

ai and ai are the usual Pauli spin matrices defined at the ith lattice point. 

Alternatively, one can start with a quantum spin Hamiltonian in d dimen- 

sions. For the Ising model in a transverse field we have 

(3) 

A quantity of particular interest is the evolution operator for the propagation of 
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the system through an imaginary time interval Ar, 

T(Ar) = ewArH . (4) 

For small values of AT we can write 

= n(cosh Arh - 0: sinh Arh) n eA’gafai , 
i (ii) 

(5) 

which has the same structure as Eq. (2). The important feature of Eqs. (2) and 

(5) is that the transfer matrix (from now on we will use the term transfer matrix 

to denote either T or T(Ar)) can be written as a product of operators each term 

of which involves only a few neighboring lattice sites. We shall shortly consider 

breakups of H other than Eq. (3) which lead to the same property. 

Most quantities of physical interest can be obtained from a knowledge of the 

two largest eigenvalues of the transfer matrix, Xc, Xr (Xc > Xi), and their cor- 

responding eigenvectors, I&), [$I). 0 ur strategy is to project out I&,) and I&) 

by repeatedly applying the transfer matrix to suitable trial states. Ordinarily 

one is aided by the fact that I$,-,) and I$ 1 are eigenvectors of a symmetry oper- ) 

ator with different eigenvalues. For the Ising model the appropriate symmetry 

operator (henceforth referred to as parity) is 

- - 
and 

P I$,i) = (-)’ Iplri) , i = 0,l . 

(6) 

(7) 
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If we then introduced trial states, Ir$;), such that 

P Ig$) = (-)’ pi) , i = 091 , 

-we see that 

TN IA> y---&+ Ci(MN 19%) , i = ($1 

where ci are constants. It then follows that 

(Xi1 TN+M IA> 
(Xi1 TN Iq$) -ET (Xi)M 

and 

(Xi1 TNQTN I&> 
(xil TN I&) N+oo. (+iI Q  k) ’ 

(8) 

(9) 

(10) 

(11) 

where Ixi) are trial states which also satisfy Eq. (8) and Q is an arbitrary 

operator. In Eqs. (10) and (11) T stands either for the transfer matrix of Eq. 

(2) or T(A7) of Eq. (4). 

We will evaluate the matrix elements of Eqs. (10) and (11) using stochastic 

techniques due to the von Neuman and Ulam” and Kuti.l’ The first step is to 

introduce complete sets of states, ljl), between each factor of T. We then write 

= c (%I jN+l) (jN+l( T IjN) (jN( T l&f-1) (12) 
il...jN+l 

- c . . - (.i2 1 T Id (A 14s) . 

It is the sum over intermediate states in Eq. (12) that we wish to perform 
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t stochastically. To this end we write the matrix elements in the form 

(3.1 I A> = Pjl& , (A+11 T Id = %+lj,sjt+IjL - (13) 

pzl will be the probability that the first intermediate state is /jr). Pi~+~j~ will 

-be the probability that the .! + lth intermediate state is Ijl+r) given that the .&h 

intermediate state is IJi). We shall refer to sil and Sjl+ljL as the corresponding 

scores. It is clearly necessary to impose the constraints 

One approach, which we have previously called the projector Monte Carlo 

method,’ is to choose the state ljl) with probability piI, the state I&) with 

probability Pj2jl, etc. We thereby generate a particular set of intermediate states 

a(jl . . . jN+r) with a probability 

Repeating this process allows us to sample many different sets of intermediate 

states. Clearly 

‘i(W = ~(x'IjN+l) SjN+ljN SjNjNTl . *. Sj2jlSzl , 
a 

and 

The division of the matrix elements of the transfer matrix into a transition 

probability and a score leaves a great deal of freedom which can be exploited 
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to improve the convergence of the method. If one has some idea of the under- 

lying physics, one can use it to construct transition probabilities that favor the 

most important intermediate states. The calculation is kept exact by adjusting 

the scores in accordance with Eq. (13). Kalos4 has emphasized that with a 

knowledge.of the exact ground state wave function we could completely elimi- 

nate statistical fluctuations, and with a good variational trial function they could 

be significantly reduced. 

- 

3. Systematic Errors 

Finite 0 

There are several sources of errors in this stochastic approach. One of the fun- 

damental systematic errors arises because of the simple fact that in a practical 

calculation we can only apply the transfer matrix to the trial states a finite num- 

ber of times. Because the quantity N in Eqs. (lo)-(12) is finite, non-leading 

eigenvalues of T enter. If we denote the second leading eigenvalue with parity i 

by Xf and its corresponding eigenvector by I$J,) then, for example, 

&(N + M)/&(N) = AM 1+ A (,:,h>, [ (X;/Xp - 1 (16) 

where 

The problem of course is to minimize the non-leading term in the bracket on 
- - 

the right-hand side of Eq. (16). The most straightforward approach is to increase 

N until the results are independent of it. Here one relies on the fact that if the 
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(perhaps infinite) system has a finite gap, the quantity Xi/Xi approaches a finite 

limit-less than one-as the spatial size of the system is increased. However, if 

the gap is zero in the infinite volume limit, then en(xj/&) - l/L where L is 

some linear dimension of the system. As a result, if the gap is zero, or just small, 

one might have to make N impractically large, if one was relying on the (Xi/Xi)N 

term alone for convergence. 

An alternative is to make A small by minimizing the overlap of 14;) and Ixi) 

with I+f) and other eigenvectors associated with non-leading eigenvalues. This 

can be accomplished if one has a good trial state for I&), by choosing I4i) and 

IXJ) to be such a state. 

We will illustrate the improvement due to the choice of the initial state by 

considering a nearest neighbor 4-site Heisenberg antiferromagnet, whose Hamil- 

tonian is given by 

H=):T?is2j s (17) 
(id) 

We input a trial state of the form 

Id> = Itltl> + Itm> + qllttl) + Ittlu + Itllt) + 111tt)) 

which becomes exact when b = 0.5. 

From Table I, we note that the error due to finite /3 is reduced significantly 

if 14) is a good approximation to the exact ground state. 

The corresponding improvement due to the choice of the final state is illus- 

trated by considering an 8-site l-d Ising model whose Hamiltonian is 
- - 

8 
- 

CL a; + ofcJf+l] . 
i=l 

(18) 
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Periodic boundary condition is imposed and our basis 1;) is ~9 diagonal. This 

system is in the ferromagnetic regime so we choose the trial form to be 

Ix) = Ce-ctC~=lgfuT+l Ii) . - _ (19) 
i 

We expect the optimal ct to be negative because ferromagnetic alignment is then 

favored. In Fig. 1 we plot the measured energy as a function of J? and the 

approach to the ,O = 00 limit is much faster for negative ct than for the positive 

ones, thus confirming our expectation. 

If a suitable trial state cannot be found, it can be generated stochastically as 

follows. Let us imagine expanding I$Q) in terms of the basis states 

IA> = Cui(j) lj> . 
i 

The ideal choice for I&) is IT,&), so, for example, 

Z;(N + M)/Zi(N) = 
Cj q’(N + M)q(j) 

CjYii(N)ai(j) ' 

where we have written 

Q(N) = (xi1 TN lj) . 

Now for large N 

q’(N) = Xy (x;l +l>ai(j) , - - 

(20) 

(21) 

(22) 

(23) 

so 
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112 

G(N+M)/Zi(N) = (244 

= [ (xil T2tN+M) Ixi) / (xi1 T2N (~i)]~‘~ . (246) 

Thus by using Eq. (21) we can double the effective values of N and M without 

increasing the number of time steps in the Monte Carlo calculation. Using again 

the example of the Heisenberg antiferromagnet, Eq. (17), we have found that the 

energy calculated form Eq. (24a) is only a few parts in a thousand away from 

the energy calculated by inputting the exact ground state (see Table I and Ref. 

1 for details). The price paid for this improvement is that one must calculate the 

Yj for a variety of states j. However, we have found that even truncating the 

sum in Eq. (21) to a small subset of j can significantly reduce the systematic 

error due to finite N. 

Breakup Error 

A second important source of systematic error arises in most Hamiltonian sys- 

tems. As we noted in Section 2, in order to evaluate the time evolution operator, 

T(A7), of Eq. (4), ‘t 1 is convenient to break the Hamiltonian up into two pieces 

each of which is a sum of commuting terms as in Eq. (3). We then write for 

small AT 

T@d = G(A7) Tl(A7) 1 - ; (AT)~[H~, H1] + . . . , 

- Gliere 

T;(AT) = emArHi i= 1,2. 
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i Ordinarily this breakup leads to errors in the energy of order ( AT)~ and errors 

in correlation functions can be of order Ar. However, the magnitudes of these 

errors are very sensitive to the specific choice of the breakup, the parameters of 

the model, and the model itself. This is clearly illustrated in Fig. 2 where we 

-present results for the Hamiltonian of Eq. (3). The points denoted by the o’s 

represent the breakup 

H,’ = c [-gofo;+’ - h CT;] 
iOdd 

H; = c [-g&;+’ - ho;] 
(25) 

i even 

while the o’s represent the breakup of Eq. (3) into separate g and h terms. It 

is remarkable that the error to the first breakup is essentially negligible while 

that due to the second is clearly of 0(Ar2) as predicted. HI + H2 and H; + Hi 

have the same lowest energy eigenvalue and we see that the extrapolation to the 

Ar = 0 limit is within a few parts of a thousand of the exact result. 

4. Statistical Fluctuations 

. In Section 2 we set up a general formalism for carrying out the numerical 

calculation, and outlined a specific implementation, the projector Monte Carlo 

method. For large systems the statistical fluctuations encountered in evaluating 

the sums in Eq. (15) can become large since the eigenvalues of the transfer matrix, 

and therefore the scores S. r,j, grow exponentially with the volume of the system. 

However, the freedom in factoring the matrix elements of T into a probability 
- - 

and a score allows us to attempt to minimize the fluctuations by an appropriate 

choice of the probabilities. 
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It is interesting to ask for the optimal choice of the probabilities and scores. 

We define this choice to be the one for which the mean square deviation of Z;(N) 

with 

h+l 

is a minimum. That is we minimize 

hjN+l 

xjN+l ‘jN+lh cN) 

. - * pj2,il C1)Pjl 
(26) 

. . . sj2,jl (l)sil] 2 

respect to the choice of the P’s for fixed values of the matrix elements, 

T I jl), and subject to the constraints of Eq. (14). In writing Eq. (25) 

we have anticipated that the optimal probabilities and scores will depend on the 

time slice. We have also introduced the notation xB+~ = (xi ( jN+l). 

A straightforward calculation yields 

I (it+1 I T Id I/@ (h) , (27) 

where 

Fi+l(jN+l) = XzN+, 

and 

F&d = c F~+l(jt+l)I h+lI T I&> 1 . it+1 
- - 

For 4! < N these equations simplify considerably. If we denote by \Ei(jl+l), 

i = 0, 1, the left eigenvector of the matrix I(jl+r I T I jl)I with the two largest 
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eigenvalues , hi, then 

Fj (it) N-L 4% (A) (28) + 

so 

P l%(~) N-(-too 
W.G+dl h+lI T Id I 

Ai% * (29) 

If the matrix elements of T are all positive definite, then Eq. (29) becomes the 

results of Kalos, Levesque and Varlet.4 Note that Eq. (29) is exact for all ! if 

we are farsighted enough to choose XiN+r = \Ei(jN+r). 

Similarly we find that 

i opt p. = F~bi)I (.ilI 441 
31 Cj, Fi’(j,‘)l(jl’l d%>l ’ (30) 

If we choose (jr I &) = ei( jr) then for large N, Eq. (30) reduces to 

Pi1 = IWi)12 , (31) 

again in agreement with Kalos, Levesque and Verlet4 when the matrix elements 

of T are positive definite. The optimal choice of probabilities leads to a total 

score 

N (it+11 T 1%) h I 44 s=lJ . 
l=1 I (jt+ll T I&) I ’ I (A I +i> ( ’ 7 F’(j) (jl”’ ’ (32) 

Clearly if all the matrix elements of T and (jr ( +i) are positive, then S is com- 

pletely independent of intermediate states and there are no statistical fluctua- 
- - 

tions. In general if we could choose (j I &) = (j I xi) = \Ei(j) then the magnitude 

of S would simply be Ai. 

14 



Of course, obtaining the wave functions \Ei analytically is as difficult as solv- 

ing the original problem. But as has been emphasized by Kalos, one can make 

very considerable progress by using variational trial functions in determining the 

transition probabilities. In the spin models we are presently-considering, it is 

important to keep the Monte Carlo algorithm local in order for the calculation to 

be tractable. This means that we must make some compromises in our choice of 

transition probabilities. Let us consider the Ising model with the transfer matrix 

of Eq. (2) as an example. It is convenient to take the intermediate states to be 

eigenstates of 0:. Then they will also be eigenstates of the symmetry operator, 

P, with eigenvalue +l if an even number of spins are down and eigenvalue -1 

if an odd number of spins are down. In this basis the terms es + e-pa; become 

c-numbers and the operator 

eg”iur = cash g + sinh g &J: 

either flips a pair of neighboring spins or leaves them unchanged. Thus we can 

sweep through the lattice testing whether to flip each pair of nearest neighbor 

spins in turn. At the simplest level we could take the spin flip probability equal to 

e-g sinhg; however, it is clearly preferable to build into the spin flip probability 

the effect of the tr$ factors. By choosing an appropriate 0~ (see Ref. 9) we can 

take into account the configurations of the neighboring spins. For example, in 

the ferromagnetic domain we would want to increase the probability of a flip 

that tended to align the spins under consideration with their neighbors. The 

full transition probability between a pair of intermediate states is, of course, the 
- - 

product over all the elementary two spin probabilities, and the corresponding 

score the product of the elementary scores. 
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In addition to guiding the choice of intermediate states by an appropriate 

selection of the local transition probabilities, we can also provide guidance based 

on the total score over the entire spatial lattice for each imaginary time interval 

(application of H1 and Hz). 

We have implemented such global guidance in two ways. The first is a simple 

modification of the original projector method and the second is the population 

method of Kalos. 

A. Modified Projector 

We assume that N applications of the transfer matrix are sufficient to project 

out I$i) from I4i) as in Eqs. (10) and (11). (Of course, N depends on the accuracy 

one desires. In practice it must be determined experimentally.) We first make 

a few (L) passes though the lattice as described in connection with Eq. (15) to 

obtain a rough approximation to the average score for TN I +i). 

zi(N) = i C sjN+ljN SjNjNel . . s Sj2jlsz1 
-. a 

(34 

We are then ready to begin the calculation in earnest. At each pass through the 

lattice we make N steps as in the original projector method obtaining an overall 

score 

Si(N) = SjN+ljN s s s Sj2jlszl s (35) 

We then form the ratio 

Si(N)/Ti(N) = I + r (36) 

where I is an integer and r is a number between zero and one. In proceeding to 
- - 

calculate the eigenvalues Xi or the matrix elements ($iI Q I$i) we use the con- 

figuration IjN+r) not once as in the original projector method but I times (with 
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probability l-r) or I+1 times (with probability r). Thus the total probability for 

using a configuration IjN+r) is proportional to the product of elementary proba- 

bilities for reaching the state times the product of the corresponding elementary 

scores. The overall score for reaching the state IjN+r) is therefore independent of 

the intermediate states I ji) , . . . \jN). Equation (15) now simplifies considerably. 

For example, 

(A i )hf = ca (xi1 jN+M+l) ‘jN+&f+l,jN+&# - - - sjN+l,jN 
C, (Xi I jN+l) 

. (37) 

B. Population Tracking 

The second approach to global guidance that we have investigated is the 

population method of Kalos.4 In this approach one provides guidance at each 

application of the transfer matrix or in other words at each time interval. 

We begin by computing a rough average score for the first time interval, 

SC,i. The main calculation is then carried out not with one lattice configuration 

at a time, but with a population of configurations. Suppose we begin with LO 

configurations. For each of these we calculate the score for the first time interval. 

Comparing the individual scores to SC,i, we multiply or delete configurations 

just as in the modified projector method. At the end of the first time interval we 

are left with Lr configurations each having a score SC,i. 

In order to stabilize the population we take the trial score for the second time 

interval to be 

- - SCl,i = EO,i(h/LO) 3 

since decreasing SCr,i will tend to increase the population and vice versa. 
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After N applications of the transfer matrix or equivalently after N time 

intervals we will have a population of LN configurations, each carrying the score 

si(N) = SCN-l,i SCN-2,i e a . SC0.i 

= LN-1 LN-2 v * s Ll (SCo,i/Lo)N-l . - 
(39) 

If N is large enough to have projected out I$i) f rom I&), then, we can calculate 

Xi by simply going an additional step and obtaining the average score for the 

entire population. Of course, one can increase statistics by going a number of 

steps beyond N, multiplying or deleting configurations as just described, but 

keeping a running average of the scores. The important point is that at every 

step beyond N the distribution of states within the population gives a snapshot 

of I$i). The particular basis state lj) will occur with frequency proportional to 

til~i)~ 

The calculation of ($il Q I$i) is straightforward in the population method if 

Q is diagonal in the basis states I jt). In this case one merely measures the value 

of Q for each member of the population after the Nth application of the transfer 

matrix. Then according to Eq. (11) one must proceed an additional N steps 

carrying this value of Q with each population member. The average value of Q 

for the population that survives after the 2Nth step is a measure of ($il Q I$i). 

If Q is not diagonal in the basis states, then its application will modify each 

member of the population. We can imagine applying Q stochastically so there is 

both a transition probability and a corresponding score, 5’~. We must propagate 

both the original and the modified populations forward for an additional N steps 

in accordance with Eq. (11). The expectation value of Q is then given by 
- - 

(Ictil Q Itk> = 
#%:l (Li/L&) c (xl $N+l) sQ 

#$:l cLj/LN) c (xl j2N+l) - 
(40) 
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Here the primed quantities refer to the population to which Q has been applied 

and the unprimed quantities to the one to which it has not been applied. The 

sums in Eq. (40) are over all members of the two populations that exists after 

2N steps. 

The three approaches just described are compared in Table II, where we give 

Monte Carlo results for the two largest eigenvalues of the two-dimensional Ising 

model. We present results for the intensive quantities 

Ei = -en&/N,Ar , (41) 

where N, is the number of spatial lattice points. When we are dealing with 

the eigenvalues of the transfer matrix of a classical system Ar 3 1, while for a 

quantum Hamiltonian ei is the energy per site of the state in question. 

For the sake of comparison we use the same number of sweeps through the 

lattice for each method. The computer time is roughly equal in each case, but 

the population method requires substantially more computer memory. There is 

little to choose between the methods for small systems, but for larger systems the 

population method is clearly superior. This superiority is even more pronounced 

for calculations of ground state expectation values where a detailed knowledge of 

the wave function I$i) is more important than for the calculation of the Xis3 

- - 
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5. The Energy Gap 

A quantity of particular interest is the energy gap 

A = N& - co) = El - E. - - (42) 

where the ci are the densities defined in Eq. (41) for both the transfer matrix 

and the Hamiltonian systems. For small systems one can simply calculated El 

and EO directly using the techniques discussed in Sections 2-4. However, since A 

will in general approach a finite limit as the volume of the system grows, a direct 

calculation will become untenable for large systems because of the large volume 

cancellation in the difference El - Eo. 

Fortunately the gap can be calculated directly by a measurement of intensive 

quantities. Let us begin by considering the transfer matrix for the Ising model 

given in Eq. (2). It is convenient to introduce an interpolating transfer matrix 

T(t7) = (eg + rl e-Q-2) T 
(eg + e-go:) 

Now using the fact that 

aiT a; = T(q) , 

(43) 

(44 

the two largest eigenvalues are connected by 

A,(~) = X1(-v) * (45) 

- - 
Thus Xc(q) interpolates smoothly between X0(1) and X1 (1) as q goes from 1 to 

-1. 

20 
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i One strategy is to use the population method, with a set of probabilities 

Pij (~0) and scores Sij (~0) chosen to minimize fluctuations for v = vo. We then 

define scores at ~0 f Aq by 

After generating configurations with P’i(qo) and &~(Qo) a measurement of 

Sij(vo f Arl)/Sij(vo) t a each time slice, which is an intensive quantity, yields 

Xo(rlo f Arl)/xo(rlo). B y c h oosing a few ~0’s so as to completely overlap the re- 

gion -1 5 q 5 1, we obtain X,(l)/&(l) and therefore A without subtracting 

two extensive quantities. Some sample results are shown in Table III. 

An alternative approach which is particularly useful for quantum spin Hamil- 

tonians is to make use of the Feynman-Hellmann theorem. In this case we intro- 

duce an interpolating Hamiltonian 

HbI,i) = H + (1 - 7) ha; , (47) 

where H is given by Eq. (3). By our previous argument 

Eo(rl,j) = J%(-%.i) (48) 

where Eo(rl,j) and E&G) are the ground state and first excited state energies 

of H(q,j). As a result 

A = Er(l,j) - &(l,j) = j dv dEc)j;“) , (49) 
-1 

- - 

which is independent of the particular choice for the spin j. This formula can be 

used to improve the calculation of the gap A. The Feynman-Hellmann theorem 
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states that 

which is 

It is convenient to work in the representation where the 0,‘s are diagonal. the 

probabilities can then be chosen to be independent of 7 and hence j. Then with 

a single set of configurations one can calculate v for all values of r] and 

j. One can now increase statistics by averaging over all values of j in Eq. (50). 

Since the result for different values of v is obtained from just one set of random 

walks, the fluctuations increase at values of q where the walks are not guided 

optimally. This point is clearly illustrated by the solid curve in Fig. 3 where the 

fluctuations for negative q’s are much bigger than those for positive q’s. However, 

by the symmetry expressed in Eq. (44), the curve dE$:9’) versus q obtained by 

inputting a parity even 140) is just the mirror reflection (about the q-axis) of the 

curve obtained by inputting a parity odd I&-,). The two curves are t.he solid and 

dash curves in Fig. 3 respectively. Hence, we can combine just the good statistics 

sections of the two curves to form a new curve (the dotted one) which yields an 

even more accurate result. The numerical results for moderate length runs are 

as follows: 

- - 

A = 0.182 f 0.047 solid curve 

A = 0.191f 0.017 dotted curve 

A = 0.191f 0.026 direct extensive subtraction 

A = 0.197 exact result 
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This technique is especially appealing because it is already comparable to direct 

extensive subtraction for an 8-site chain. For a 16site chain, the derivative 

technique is decisively superior to direct subtraction. Note that these numbers 

and those of Fig.3 involve much shorter runs than those in Table II and III. Thus 

the accuracy as reflected in the fluctuations cannot be directly compared. 

6. Conclusions 

The main point of this paper is to emphasize that there are a large number 

of possible stochastic algorithms which can be used to advantage in extracting 

numerical results from Hamiltonian or transfer matrix formulations of quantum 

spin models. The most efficient algorithm clearly depends on the particulars of 

the model and the question asked. 

In this paper we have studied the error induced in the eigenvalues by the 

breakup of the Hamiltonian into factorizable parts and how to minimize it. We 

have studied the error do to finite p and have suggested several methods for 

reducing this error by improving the initial and/or the final state. The improv- 

ment of the final state is most convenient in most applications because only the 

variational coefficients are needed. If suitable trial values of these weights cannot 

be found, one can use the stochastic method itself, at the expense of having to 

generate several sets of random walks. 

The fluctuations can be reduced in a number of ways. We have shown in 

Section 4 that by using a good trial wave function in computing the transition 

probabilities could bring about a considerable improvement in convergence. In 
- - 

practice, we use an appropriate 0~ to smoth out the breakup of H into HI and 

Hz. The other approach discussed here was the population method in which the 
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configurations are replicated in proportion to their score.Thus each configuration 

carries the same weight and hence they are all important in determinimg the 

final averages. The population scheme becomes superior for for large systems. 

Finally, we have presented a method which extracts energy gaps without 

direct subtraction of two extensive quantities. The key ingredients here was the 
.n 

Feynman-Hellman theorem and the use of parallel scoring” to obtain several 

measurements from just one set of random walks. 

- - 
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Table I 

Comparison of the ground state energy of a &site 

Heisenberg antiferromagnet obtained by using 

different initial states I$) and using Eq. (24a). 

4 site Heisenberg antiferromagnet 

Exact EO = -3. 

Using Ir$) as input state. 

- - 

__ . 

Eo b 

-3.13 0.0 

-3.00 0.5 

-2.94 1.0 

-2.90 1.5 

-2.88 2.0 

-2.86 2.5 

Using (24a) E. = -2.99 
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Table II 

g = 0.40 

Table of the ground and first excited state 

energies for different projector methods. 

N, = 8 Eo(Esact) = 0.8816 

Method Eo (Monte Carlo) 

Projector 

Modified Projector 

Population 

-0.8819 f 0.0002 

-0.8813 f 0.0002 

-0.8816 f 0.0001 

Nz =16 

Projector 

Modified Projector 

Population 

Eo(Ezact) = -0.8796 

-0.8798 f 0.0011 

-0.8794 f 0.0004 

-0.8797 f 0.0001 

N, = 24 Eo(Ezact) = -0.8794 

Projector 

Modified Projector 

Population - - 

-0.8783 f 0.0014 

-0.8794 f 0.0003 

-0.8790 f 0.0001 

El(Ezact) = -0.8558 

El (Monte Carlo) 

-0.8552 f0.0003 

-0.8558 f0.0002 

-0.8559 f 0.0001 

El(Ezact) = -0.8687 

-0.8681f0.0009 

-0.8682 f0.0006 

-0.8689 f0.0002 

El(Ezact) = -0.8723 

-0.8655 f 0.0014 

-0.8724 f0.0009 

-0.8724 fO.OOO1 
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Table III 

GAP Results 

g = 0.40 

Table of A obtained by the overlap method versus the exact result 

for a 2-d Ising model. N, is the number of sites in the z-direction. 

NZ Monte Carlo Exact 

2 0.525 f 0.001 0.525 

4 0.300 f 0.001 0.298 

6 0.233 f 0.002 0.234 

8 0.208 f 0.002 0.206 

10 0.189 f 0.002 0.191 

12 0.180 f 0.002 0.183 

- - 
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FIGURE CAPTIONS 

1. Ground state energy versus /? for different final state Ix) for an 8-site l-d 

Ising Hamiltonian in a transverse field. 

2. Ground state energy versus Ar2 for two different breakups of the Hamilto- 

nian. 

3. The ground state expectation value of oz versus 7 in an 8-site Ising Hamil- 

tonian described by Eq. (47). 

- - 
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