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ABSTRACT 

A new stochastic algorithm for calculating the properties of Hamiltonian lat- 

tice field theories is described. This approach improves the efficiency as well as 

the- statistical accuracy of Projector Method simulations. As an example, this 

new method (called Parallel Scoring) is applied to PQED. Parallel Scoring is the 

software equivalent of parallel processing. Its advantages and disadvantages are 

illustrated and discussed. Numerical results from the application of the paral- 

lel processing algorithm to PQED in two space dimensions are presented and 

compared to earlier work. 

- - 
Submitted to Physical Review D 

z Work supported by the Department of Energy, contract DE - AC03 - 76SF00515. 
. 



1. Introduction 

For large /3, exp(-/3H) can be used to project onto the eigenstate’of H with 

the minimum eigenvalue. For example, denoting this lowest value by E, we have 

c-(a'-B)E= lirn (XI '-BfH I#) - - 
B',B+- (xl e-BH 14) ' (1) 

if the corresponding eigenvector I$) is not orthogonal to the trial states 14) and 

Ix). One also can evaluate the expectation value of an operator Q in the state 

I+> by using 

Correlation functions can be computed in a similar way. 

These equations form the starting point for the Projector Monte Carlo 

approach ’ which uses a stochastic method of evaluation introduced by Ulam 

.and von Neumann,’ and recently discussed by KutL3 There are many possible 

schemes for implementing this approach, ranging from the population method pi- 

oneered by Kales’ and Ceperely and Adler,5 to the modified projector method6 

to the approach of Ref. 1. 

In this paper we shall discuss a new variant of the stochastic approach which 

seems to offer both a reduction of statistical fluctuations and an increase in 

efficiency by being able to compute several matrix elements of the problem si- 

multaneously. These matrix elements may even be in orthogonal sectors. We 

term this new scoring method Parallel Scores, and shall illustrate its use and 

effectiveness by applying it to compact QED7 in two space dimensions.8 Three 
- - 
dimensions will be discussed in a subsequent paper. 
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2. Parallel Scores 

In order to implement the stochastic method, the projection operator in Eq. 

(1) usually must be simplified. The first step is to subdivide p into t subintervals 

of width AT = p/L: 

e-BH = (e-ATH)L = (U(At))L . (3) 

It is normally necessary to go one step further and to break the Hamiltonian H in 

UintoHrandH2,orU= U(2)U(l), such that the matrix elements of U(k) are 

easy to evaluate. By breaking the lattice up into independent subelements (e.g. 

the checkerboard breakup described in Ref. 1 and Ref. 7) this simplification can 

-be achieved. 

The sum over intermediate states implicit in Eq. (3) is evaluated stochasti- 

tally with importance sampling. We write 

(iI U(AT,k) Ii) = &j(AT,k) &j(k) 9 (4 

where- Sij is the score, and Pij the probability, which satisfies 

C Pij(k) = 1 . 
i 

(5) 

The precise form for the probabilities is not fixed by the above and they can be 

chosen to minimize the fluctuations in the final measured quantity of interest, in 

part G “smoothingn out the breakup into U (2)U( 1) (see Ref. 1 and 6) and in 

part by narrowing the distribution of final scores. . 
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Using the probabilities Pij to generate a trip through the intermediate states, 

the corresponding weight of this contribution is then the product of each of the 

corresponding elemental scores, 

FV(L,AT) = fiS(AT) . - _ 
1 

By averaging over many such paths denoted by ( ), one achieves an estimate 

of, for example, 

(xlex~(--PH) 14) = (W(L, AT)) . (7) 

ENERGIES: 

In previous applications of the projector method, the energy of Eq. (1) was eval- 

uated by the standard method of dividing the internal 0’ into L + AL intervals, 

and then going AL extra steps in evaluating the numerator N as compared to 

the denominator D. However there is a more efficient way to proceed. 

In this, the simplest application of the purallel aore idea, one goes L steps 

for both N and D, but uses,different scores. Define p = LAT, /3’ = LAT’, and 

Sij(AT, k) E (il U(AT, k) lj) /Pii 

(8) 
Sij(AT’, k) E (il U(AT’, k) lj) /Pii l 

By using the some probabilities, the configuration generated by Pij can be used 

to evaluate both N and D so that 

exp (-L(AT’ - AT)E) = . (9) 

We find that choosing AT’ to be from 1% to 10% different from AT is satisfactory 
- - 

and has no effect on the extracted energy value. This algorithm is not only more 
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efficient than the standard method, but we find that the fluctuations are smaller 

due to cancellations in the ratio present in Eq. (9). Numerical examples will be 

given later that demonstrates these features. 
z. 

EFERGY GAPS: 

One is often interested in computing the energy gaps between orthogonal sectors 

of a model. In the later application to PQED, we will want to calculate the string 

tension. Thus the energy of states of the model with strings of differing lengths 

must be computed. It is, of course, possible to simply use the previous method 

for differing choices of the initial state 14) and then to subtract the resultant 

energies. However, as we shall see, parallel scoring allows all string lengths (and 

positions) to be run simultaneously. As an additional benefit we again find an 

improvement in statistical accuracy is possible because the correlated fluctuations 

in the energy values of the different sectors allows one to cancel the major part 

of the statistical error in the extracted energy gaps. 

Since most of the computer time is spent in generating the random lattice 

configurations, and little time is spent keeping score, this algorithm is much 

more efficient. It is in this sense that parallel scoring is the software equivalent 

of parallel hardware. 

Although this application of parallel scoring cannot be applied to all mod- 

els, it is possible to discuss this scheme in a quite general context. We shall 

use the example and language of PQED in order to make the exposition more 

understandable. In the charge-free sector of the theory, the vacuum properties - 

are computed by generating a sequence of configurations such that the matrix 

element between two consecutive states jc + ic is related to the score and prob- . - 
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ability by 

(iol U Ijo) = si0jo pi0jo - 

The crucial point is now to note that in the string sector there is a corresponding 

matr:ut element 

(il I U bl) = Si,j, piljl - (11) 

It is obtained by a unique mapping of ic 4 ir and jc + jr, which is constructed 

by incrementing the value of the electric flux quantum numbers on those links 

that are included in the string. For a given positioning of the string, this mapping 

is unique. For fixed external changes, there are many suitable’ interpolating string 

configurations. Our final answer would be independent of this choice (for large 

- P). 

In the case of PQED ( in which any number of flux units can be added by the 

operator U to a link) note first that Piojo is nonzero whenever Pi,j, is nonzero. 

This circumstance suggests the following algorithm: use PiOjO to generate the 

random lattice configuration and use this in evaluating the score for both the 

vacuum and the string sector. Note that in traversing the lattice in these different 

sectors, the corresponding single plaquette matrix elements (and scores) differ 

only when the suggested flux change is in a plaquette that is adjacent to the 

string. In this case we increment the string score by SiOjO * ASiojo where 

A&,-,,jo = (ill u Id 
(i0J u Ijo) ’ (12) 

AScompensates for the fact that we have used the vacuum probability and that 

we have extracted the vacuum part of the score. One can either compute and 
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store a special table for AS or compute it from the standard vacuum score and . 

probability table. 

The implementation of this algorithm proceeds by marching through the lat- 

tice, making moves according to the vacuum link configurations-and accumulating 

the scores. When the visited plaquette is next to the string, one accumulates AS. 

At the end of the run, there are two types of scores, one for the vacuum and a 

partial one for the string: 

W(L, AT) = IIS AW(K,AT) = IIAS(AT) . (13) 

The corresponding average weights give the estimated matrix element for the 

vacuum and the string: 

WI e -BH I&II) = (W) and (xl = +JH 141) = (W - AW) . 04 

The energies can now be calculated separately by using the Parallel Score Method 

of Eq. (8) but it is more accurate (because the fluctuations are strongly corre- 

lated) to compute the gaps directly for each string length, 

,-LAT(A-Eo) = (W(L, AT)AW(L, AT)) 
(W(& AT)) ’ 

or to compute directly the difference in energies due to the addition of extra links 

to the length of the string. Thus the process of generating the basic configura- 

tion is independent of the presence or absence of a string of any length. Hence, 

from this basic configuration, which is that of the vacuum, we can simultaneously 
- - 
generate extra score factors reflecting the presence of a string of varying lengths 

and positions. In fact, we can accumulate AW for each plaquette as though it 

. 
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were adjacent to the string. One can then compute the full AW for many possi- . 
ble string lengths and positions on the lattice, thereby improving the statistical 

accuracy with little additional cost. 

3. Periodic Quantum Electrodynamics 

We apply the general ideas developed above to a specific example: Periodic 

Quantum Electrodynamics in two spatial dimensions. After decomposing the 

Hamiltonian we analyze the single plaquette matrix elements. With these build- 

ing blocks we demonstrate the substantial increase in numerical accuracy which 

results from the parallel score and trial parameter techniques (see next section). 

Our Hamiltonian is 

H=g2~E;-+osBP 
f g2 P 

BP = Afi + Af, - ALL - Af, (16) 

[Et, Aj] = f bjf - 

Of course, !.?I,. . . , 4 are the four links bordering plaquette p. The components 

of the‘electric field and vector potential are canonically conjugate operators as- 

sociated to each link of a finite lattice with toroidal boundary conditions. The 

basis in Hilbert space is specified by simultaneously diagonalizing the electric 

field operators: 

Ef I4 = nljn) nf =O,fl,f2,... (17) 

- 

Residual gauge symmetries allow us to label the sectors of Hilbert space according 

to the background electric charge. Our choice of basis is compatible with this 

labelling of sectors. 
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The purpose of decomposing the Hamiltonian is to reduce all computations of 

the matrix elements of U to a purely local problem. The following decomposition 

.achieves this goal: 

H=Hl+H2 

Hk=;g2cE;-; ccosBp k=1,2. 
f f’cpk 

(18) 

Here Pk partitions the set P of all plaquettes in the lattice into two disjoint 

subsets whose union gives P. The sum over J? is over d links of the lattice. This 

partition forms the usual checkerboard. 

In order to implement the ideas of the earlier sections we need to compute 

matrix elements of the exponentiated sub-Hamiltonians. This becomes easy once 

we note that 

Hk = c hP 
pep, 

[hp,hql = 0 * (P E pk =+ g E pk) - 

Note that each plaquette Hamiltonian contains all four electric field operators 

weighted by a factor of l/2 to avoid double counting. 

Now that each Hk has been expressed as a sum of commuting operators, 

exponentiation is easy: 

,--A% = 
rI 

,-Ah, 9 (20) 
- - 

where A is either AT or AT’. Matrix elements of eBAHk are then products of 

. single plaquette matrix elements. We now focus our attention on these. 
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i The following combinations of operators simplify the treatment of the single 

plaquette Hamiltonian: 

rno E El - E2 - Es - E4 

ml E El + E2 + E3+ E4 - - 
(21) 

m2 E El - Es + E3 - E4 

m3 E El - Es - E3 + E4 . 

This is an orthogonal Walsh transform on the electric field operators, and satisfies 

4~Ef=rfi2+m~. (22) 
i-l 

The vector components of m commute with h and each other: 

[h,&] = [mi,mj] = 0 i,~‘= 1,2,3. (23) 

-. Our single plaquette basis states are eigenstates of both nl, .., n4 and 6, mo, and 

we will use these labels interchangeably. Application of the Hamiltonian h to 

a basis state will then only change the quantum number mo. Clearly the same 

statement applies to matrix elements of eeAh. 

To obtain numerical values of the non-vanishing matrix elements we define 

- - 

h=e+b 

e=$ (Ef+Ei+Ei+Ei) 

b =-~cos(A1+Az-A3 
g2 

-A4). 

and then approximate the exponential operator by choosing a finite value for s 
. 
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in the Trotter Product Formula: 
. 

( I nil e -Ah Ini) S (nil (e -(A/zd)ee-(A/l)be-(A/28)e ’ lni) . (25) 

To-evaluate the right hand side, we insert complete sets of states between each 

operator factor. The resulting matrix elements can be evaluated analytically and 

then the matrix multiplication can be carried out explicitly and easily by the 

computer. 

The electric matrix ,elements are diagonal: 

( I ni e -(‘/‘)’ Ini) = 6fit,fi6*i,mo WP (-$(A2 + mt)) . (26) 

For the magnetic matrix element we use a function space realization: 

2s 

(nil e--(A16)b Ini) = 
/ 

d& . . . de4 

0 

(&)4W?[-i$(4- %Y?i] 

(h/8g2) COS(~ + e2 - f13 - e4) 
7 

(27) 
To establish this result use the following generating function for the modified 

Bessel function: 

- - C~ COB e = IO@) + 2 2 Ik(z) COS(ko) . (28) 
k=l 

Evaluation of the matrix elements of the exponentiated single plaquette 
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Hamiltonian proceeds by first combining the electric and magnetic matrix el- 

ements 

( I n,! ,-(A/281 Cc- (A”)be-(A/2”)c Ini) = 6~t,~E8(ti),I~(&,~) , (29) 

where 

Ed(G) rexp (-zCi2) 

II (m& mo) G e -(A$/I~s) (d$+m:)I 
Imi- m0/4l tA/W2) 

and then raising this matrix to the sth power: 

e-(A/26)ee-(A/d)be-(A/26)e 
> 

' Ini) = &, ril . E(s) . I(mA, mo) 
, 

where 

E(a) f (E&3))-’ = exp (-$Ci2) 

I(m&m0) f L(m&m0) . 

(30) 

and 

Jaf(m&mo) E CI,I-,(m~,iirg)L(iiLO,mo) , s’= 2,...,~ 
fi0 

0t I2&4h0) E CI&&mo) Id(mo,mo). 
fi0 

It is worth noting that symmetries of the single plaquette Hamiltonian re- 

duce considerably the storage requirements on the computer. Without special 
- - 

symmetries, one would need to store a single matrix element for each Ini) and 

In/). Since each of these eight quantum numbers might assume up to ten values 
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(a conservative estimate), it would be necessary to store lo8 matrix elements: 

The single plaquette symmetries mean that we can factor the typical matrix el- 

ement into two parts, the first of which has simple functional dependence on all 

ni and n,f and the second of which has a complicated functional dependence on 

a small subset of quantum numbers. The complicated functional dependence is 

isolated to the two combinations of quantum number mo and rni which occur in 

Ia. It is this factor which is computed during program initialization.’ The storage 

requirements are quite modest. 

As a check on the accuracy of our approximations for the single plaquette 

problem we can evaluate the above matrix element with e = 0. The accuracy of 

computing the matrix element of eeAh will always be better than the accuracy 

of computing the modified matrix element of emAb. That is because the terms 

truncated from the sum are highly damped by the presence of the factor eeAe. 

Analytic evaluation of the matrix element of eDAb gives a simple modified Bessel 

function. With s = 8 and the intermediate state sum truncated to five states 

the accuracy is better than one part in a million. Thus we have solved the single 

plaquette problem (essentially) exactly for the matrix elements of interest. 

4. Implementation 

As noted earlier, the choice of probabilities dictates the scores via (4). We 

will choose a-form for our probabilities which solves the single plaquette problem 

exactly and. augment it by adding two adjustable degrees of freedom. 
- - 

In marching through the lattice, we come to a plaquette with quantum num- 

bers 5, mo. The probability for changing the quantum numbers to rii’,mh can 
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be taken to be 

p?Fi,m0+cii8,m~ E 
(G’), rn0I eBAh 16, mo) 

’ Cfio,mJl (tSi”, rn;‘l trAh ITS, m0) 

I (m& m0) 

= 6a’9a Emi, I (mi’,mo) l - - 

(31) 

From (4), the score associated with this transition is 

%,m O++lt,rn~ = C( m + “, rn;‘l eaAh 16, mo) 

riit8,rni’ 

(32) 
= E(G) C 1 (mi’, mo) . 

rn;’ 

This score enjoys the unique property that it is a constant independent of the 

final state. It is in this sense that the above form of the probabilities is an exact 

- solution of the single plaquette problem. The constancy of the score implies that 

the average weight will give the exact matrix element with no fluctuations. For 

more than one coupled plaquette, this is no longer true, of course. 

Reference to Eq. (30) h s ows that I is a function of A and g2. It is through 

this functional dependence that we will introduce the two additional degrees of 

freedom into the probabilities. The actual probability we use is given by 

where I is computed from (30) with g and A replaced by gT and AT. The 

resultant score is 

I( C( 
- - m&mO;gTvAT) ,;, 

I m;‘,mo;!lTdb) - (34) Srii,m0-wii’,m~ = EFi) 
I(m&mo;g,A) 

Now the score is no longer independent of the final quantum numbers. 

. - 
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The breakup of the Hamiltonian ,Eq. (18), furnishes an immediate reason for 

the introduction of trial parameters. Our breakup splits the electric term from 

each link evenly into HI and Hz, thus introducing a factor of l/2 in the electric 

part of the single plaquette Hamiltonian as compared to the-magnetic term. To 

compensate for this factor and to achieve the correct electric suppression one can 

take gT g fig. Th e introduction of the second trial parameter AT will allow us 

to adjust the probability of adding flux to the system so as to minimize the final 

fluctuations. 

We now show how the general description of parallel scoring given above 

translates into a simple specific algorithm. First address the parallel scoring 

method of obtaining energies. Typically one takes Ir$) to be the strong coupling 

vacuum state, so that 

&I4 =O (35) 

-. for every link L One begins marching through the lattice visiting first the plaque- 

ttes in PI then P2, and repeats this process L times. As each plaquette is visited 

in turn, its initial quantum numbers Ci,mo determine the probability for making 

a transition to final quantum numbers r%“,mi via (33). Since the probabilities 

contain the factor 6*,a,, one need only choose amongst the final values of m& 

and the probabilities for these final values are stored as an array indexed by mo 

and m{. For a given mc, the transition with the largest probability is usually 

rn; = mo , and there is a preference to move towards rni = 0. This bias sta- 

bilizes the random walk, a crucial feature for any set of acceptable probabilities 

-(seeToint 4 in conclusions). 

In both the naive and parallel score methods, one always includes at least 
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one score factor for each transition. This is given by (34). The part of the score- 

which depends in a complicated way on m&me is stored as a two index array. 

The factors arising from rii are kept track of separately. The only modification 

arising in the Parallel Score method for energies is that a second similar score is 

also accumulated; from (7) and (33) we have the following form for this latter 

score, 

sA,mO+tiil,m~ 
I(m&mo;g,A’) 

= EC*9 AT’) ’ I(m& V&o; ST, AT) 

X c I@;‘, mo; ST, AT) . 

It, too, is stored and referenced as a two-index array. If we denote the product 

of the S (S’) over all plaquettes occurring in the L passes through the lattice by 

- W(L, AT) (W(L, AT’)) then the energy is computed from (8). 

All energies mentioned later in the paper will be computed from a pair of 

scores as explained above. We will not refer to both scores S and S’ explicitly, 

but expect the reader to realize that this parallel scoring overlays the structure 

outlined next. 

As discussed above, computation of string energies can be carried out simul- 

taneously with the computation of vacuum sector energies. As in the simultane- 

ous computation of numerator and denominator, this new application of parallel 

scores requires the accumulation of several additional scores while the usual al- 

gorithm generating the vacuum configurations proceeds as normal. The string 

energies are. then directly given in terms of these additional scores. 
- - 

To see the structure of one of these additional scores, consider the example of a 

string of unit length on link L First, observe that matrix elements corresponding 
. 
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to single plaquette transitions occurring at plaquettes not adjacent to the string 

do not change under the unique mapping from the vacuum sector to the string 

sector. Thus, the additional score factor can arise only from the transitions at 

the two plaquettes adjacent to the string. We will introduce an additional score 

factor AS such that the expectation of its product with the vacuum score S 

yields the string sector matrix element (see Eq. (12)). From this criteria we can 

see that AS is the product of the additional score factors for each of the two 

adjacent plaquettes; AS = AS- AS+, where 

AS, = EW*) . I(&, mo*; g, A> 
W) I(m&mo;g,A) ’ (37) 

The f indicates that me and rni are to be incremented or decremented by 1 

depending on whether the unit of flux contributed by the string at link e changes 

the mg quantum number in a positive or negative way. Thus if the string is 

one unit of right-pointing flux, AS+(AS-) re ers f to an additional score for the 

plaquette below (above) the string. 

For a string longer than one link, a straightforward extension of this algorithm 

will give the desired matrix element. The computer must form AS+ or AS- for 

each plaquette bordering the string. The final additional score factor is then the 

product of all the AS+ and AS-. 

Until now, we have discussed simultaneous parallel scoring of the vacuum 

sector and a single string. There is no difficulty in keeping track of scores for 

many different positions of the two external charges at the same time. These 

different external charge sectors correspond to strings with varying lengths and 
- - 
positions. Thus, completion of a single Lstep guided walk through the interme- 

diate basis states will determine contributions to matrix elements for many string 

17 



configurations. Reduction of statistical fluctuations via position averaging of a 

given string size is possible in this single walk. Even without position averaging, 

computational time is reduced by a factor of - N, if one wishes to compute 

energies in N orthogonal charge sectors. 7. 

Of course, the score AS is accompanied by AS’ as in (37). This is the re- 

quirement of the parallel score technique that allows one to sidestep the necessity 

of calculating the numerator and denominator of (1) with different L values. This 

structure exists side by side with the structure for working in orthogonal sectors 

simultaneously. 

5. Numerical Results 

The simplest measurement to make is that of the ground state energy density 

(energy per plaquette), given in Figure 1 as a function of coupling in the crossover 

region. Figure 2 shows similar numerical results for the 8 x 8 lattice. The 

statistical fluctuations are slightly larger for the larger system. 

In Figure 3 , a comparison with standard strong coupling perturbation theory 

calculation is given, where the energy density is given by 

E, = -(2g2)-‘(1 - 0.308(2g2)-4 + . ..) , (38) 

The curve in the figure was computed” including terms up to order g-32 . The 

strong coupling curve is not extended to small g since in this region the higher 

order terms in the series expansion become important. A few points from the 

%ia%nal calculation of Heys and Stump 
11 are also shown in the same figure. 

Comparison amongst all three is excellent throughout the range of coupling in 
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which the strong coupling expansion is reliable. Our numerical results for the- 

ground state energy are consistent with the upper bound given by Hofsiiss and 

Horsley. l2 

Next we compare different methods of computing the qnergy density and 

gaps. The -first method is operationally identical with the approach used by 

Potvin and DeGrand(Ref.7), but the probabilities and scores used were different, 

in ways that will be discussed in detail in the next section. A demonstration of 

the reduction in statistical fluctuations resulting from the use of parallel scoring 

is shown in Figure 4 . Method A computes the energies by the original method 

of going extra steps in the numerator as compared to the denominator, while 

both are evaluated using the same scores and probabilities. Method B, which 

provides the most basic and simplest application of parallel scoring, has been 

discussed above. In this method, the number of time steps is the same in the 

numerator and denominator, but the value of time step is different (by about 

1% in this example).Thus no extension of the denominator sequence is necessary, 

and additional unbalanced statistical fluctuations would therefore not occur. The 

parallel scoring method is expected to be more accurate since the fluctuations in 

the numerator and denominator are correlated. This is supported by the data of 

Figure 4 . 

In order to compute the energy of a particular configuration of external 

charges, one may choose the initial state 14) t o 1 ie in that particular external 

charge sector of the Hilbert space. The energy thus computed from equation 

(1) is automatically the lowest energy eigenvalue in that charge sector. The gap 

i;s then given by taking the difference of these lowest statistically independent 

eigenvalues from sectors corresponding to different length strings. The statistical 
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fluctuation in computing the gap is obtained by a simple Gaussian propagation 

of errors. This is the technique employed to generate the data presented in the 

first row of Table 1. 

In Table 1 we compare the energies computed several ways of a unit length 

string with the vacuum, and a string of length two with a string of length one. 

The second method (II) illustrated in the table differs from the first in that 

energies for the vacuum, unit length string, and two unit string are computed 

simultaneously as discussed above by using parallel scoring. The final values 

are then differenced. Thus, while three separate computer jobs are required to 

generate Eo, El, Es in the original method, all data in method II is generated by 

a single computer job requiring only a slightly longer time than that required to 

compute the single value Eo via the old method. Note that the values of the new 

computation of Eo, El, E2 are consistent with original ones. As in the original 

serial method, the gaps are simply computed by subtracting energies. 

The data quoted in the final approach (III) was generated by the parallel 

score method, so the three E values and their fluctuations are identical to those 

of Method II. However, the computation of the gaps and their fluctuations is 

different. In the parallel method (II), the error bars are calculated by dividing 

the 100,000 data passes into five bins of 20,000 each. The error bar quoted is 

then the root mean square deviation over the five bins. In Method III, we take 

advantage of the fact that each bin yields a measurement of all three energies, 

and simply record the gaps computed in each bin as El - EO and E2 --El. Each 

of these five bins then yields a measurement of the two gaps. In the third row of 

Tabla, the quoted number is the mean of the gaps over the five separate bins, 

and the.fluctuation is based on these five independent values. A comparison of 
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rows 1 and 2 shows that the measurement of the gap by the parallel method has . .. 

an error bar smaller than the serial method by a factor of 10, even though it was 

given by a computer calculation one third as long. 

We now study the dependence of the gap on the length of the&ring. In the 

limit of strong coupling, a string of length L has energy g2L to leading order, and 

the tension is g2. In Figures 5 and 6 we show the gap versus L at two different 

values of the coupling g. At both values of the coupling, the tension appears 

to have reached an asymptotic value by L of one. It is important to note that 

all data in each of these figures was generated by a single computer job using 

parallel scoring. 

Finally we wish to extract the string tension as a function of coupling. To 

_ see how this is done, refer to Figures 5 and 6 . Since the string tension appears 

to have reached an asymptotic value at unit length, we average the tension over 

all eight measurements. The final quoted error bar is then the average divided 

-. by -Jn,n = 8. 

Figure 7 shows the resulting asymptotic string tension for unit external 

charges as a function of coupling. The strong coupling prediction is also‘given. 

Before proceeding to the conclusion and final discussion, we will compare 

our results in more detail with that of Potvin and DeGrand (PDG). Figures 8 

and 9 include data reproduced from Figure 4 of this reference. Also included on 

the graph is our data for the same measured quantity produced by a single run 

using the parallel scoring method. Note that due to differences in the form of the 

Hamiltonian and in definition of g, we have translated their parameters to our - - 
units by using the relation between couplings G2(PDG) = J2g2(us) and energy 

. densities E(us) = J2(E(PDG) - G-‘). The strong coupling curve is also given 
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on the figure. Although these results clearly show that parallel scoring produces’ 

energies which can be characterized by a string tension, this is not the best way 

to extract its value. The optimum way is to measure directly the difference 

E(L + 1) - E(L) f or each bin of our data as was done to produce Figures 5 and 

6-. This procedure is not available using the standard projector method since 

one cannot measure string tensions in a single run but only the total energy in a 

given sector. 

A further discussion of the detailed differences in the simulations PDG and 

ourselves will be given in the next section. 

6. Discussions and Conclusions 

In this paper we have presented a new method, parallel scoring, for mak- 

4ng measurements in numerical simulations using the stochastic Monte Carlo 

approach. We have demonstrated that this method not only improves the ef- 

ficiency but also the accuracy of certain (comparison) measurements, such as 

energy gaps, string tensions, etc. 

In order to further clarify the advantages of parallel scoring, we now turn 

to a detailed discussion of the differences between the treatment of Potvin and 

DeGrand (PDG)and that of the present paper. They found that the projector 

method did not work well, and that the fluctuations in the numerical results were 

large. Our treatment differs in two important respects. First, we have utilized 

parallel scoring to improve not only the efficiency but to.reduce the statistical - - 
fluctuations. Second, the details of the basic formulations of the probabilities 

and scores are quite different. The major differences are: 
. 
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1. Our breakup of H into HI and Hz is symmetric whereas PDG use an un- 

symmetrical breakup by assigning to each single plaquette Hamiltonian 

only two of the four possible Electric field operators. This choice does not 

seem to fully suppress the probability of adding flux to the system. 

2. We compute the one plaquette matrix elements essentially exactly, whereas 

PDG use the lowest order Trotter formula (s=l in Eqn(25)). Furthermore, 

we also found that the introduction of the two trial parameters ST and AT 

was important in minimizing fluctuations. 

3. PDG evaluated some matrix multiplications using the stochastic method 

which can be done analytically. After breaking up e-pH into a product, 

and using the symmetric s = 1 Trotter formula on each factor, one obtains 

adjoining factors of e(Ae/2) x e(Ae/2) . If this product is carried out numer- 

ically, extraneous fluctuations are introduced which would not be present 

in the analytic result e(Ae) . 

4. The most important difference in the two calculations is not unrelated 

e . point 2 above. PDG use a probability function which has the same 

prot ability for adding m units of flux as for subtracting m units. Thus 

their ran&m walk is not bounded and the electric flux on single links 

can grow as ,/NT. This growth will eventually lead to large fluctuations. 

Our probabilities are not symmetric and if a plaquette has flux, it will 

prefer to subtract flux rather than adding more to the system. This feature 

stabilizes the generation of the random configurations. Furthermore, we 

_ -see no evidence of an instability at intermediate couplings. 

We have found that PQED can be treated by the projector method aug- 

mented with parallel scoring. The numerical fluctuations are reasonable and . - 
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measurements can be performed quite efficiently” down to quite weak coupling. 

The application of parallel scoring to three space dimensions will be given 

in another paper. We expect that ‘our method of measuring the string tension 

will be sufficiently accurate to clarify the behavior of the transition from strong 

to weak coupling in this quantity. There are many spin problems which can be 

attacked by parallel scoring, in this regard see Ref.7, but the particular form of 

the application depends in detail on the model and the quantity being measured. 
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Table 1 

Typical expectation values and fluctuations of string 

energies and gaps as measured by methods I, II, III. 

Eo 

Gap(l) Gap (2) 

& (E2 -El) (El - Eo) 

I -30.37 f 1.44 -30.26 f 2.20 0.11 f 2.63 -29.84 f 1.96 0.42 f 2.95 

II -29.81 f 0.60 -29.19 f 0.65 0.62 f 0.88 -28.71 f 0.74 0.48 f 1.09 

III n n 0.61 f 0.14 n 0.49 f 0.35 

8 x 8 lattice; 20,000@5 Del . = 0.01 NT=4 DS = l/4 

DSTIDS = 1.25 GT/G = 1.4 g = 0.8 

- - 
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FIGURE CAPTIONS 

1. Plot of the energy per plaquette as a function of the coupling g for the 

lattice size as given. The statistical errors are roughly one-fourth the size 

of the dots. 

2. Same as Figure 1, but for a larger lattice. The statistical errors are roughly 

the size of the dots. 

3. Same data as Figure 2 , presented with the strong coupling calculation 

shown as the solid line, which becomes dashed when the last term included 

becomes 1% of the leading term. A few points from a variational calculation 

are also plotted as diamonds. 

4. A comparison of typical statistical fluctuations in the total energy mea- - 

surement as computed with and without parallel scoring for various size 

lattices. 

5. A plot of the string tension as a function of length for g in the intermediate 

region from parallel scoring. All the data points were taken simultaneously. 

6. Same as the previous figure but at smaller coupling. 

7. .A plot of the string tension (averaged over length) as a function of the 

coupling g. The result from the strong coupling expansion is also given 

under conditions described in Fig.3 . 

8. A comparison of data from ref.(7), plotted as open squares, with data 

produced using parallel scoring, plotted as closed dots. The strong coupling 

curve is also given. 
- - 

9. Same graph as Fig.8 but at weaker coupling. The strong coupling expansion 

completely fails at this value of g . 
. 
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