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1. Introduction 

When one tries to naively translate a Dirac Hamiltonian into a lattice Hamil- 

tonian, one finds that there are unwanted low energy states with momenta close 

to q these states can be interpreted in the continuum limit-as new species of 

fermions. Different methods have been proposed to overcome this difficulty. Wil- 

son’s method”’ consists in adding to the Hamiltonian a term of the form: 

where V is the lattice laplacian. This term raises the energy of the unwanted 

states, and, being of the order of the lattice spacing, vanishes in the contin- 

uum limit. A different approach, of Susskind’“’ , consists in starting with a 

single component fermion, and then exploit the doubling in order to recover all 

the desired spin and flavor components. In both methods chiral symmetry is 

explicitly broken, and it is recovered only in the continuum limit. Therefore 

the Goldstone bosons associated with spontaneous chiral symmetry breaking are 

not massless for any finite coupling. This is an undesirable feature, especially in 

strong coupling calculations. In contrast, the SLAC group”’ proposed a fermionic 

Hamiltonian with a long range derivative, which avoids the doubling completely, 

and maintains full chiral symmetry for any couplings. There is, however a new 

difficulty: the current associated to the U(1) axial symmetry is both conserved 

and gauge invariant. Therefore, in all circumstances in which chiral symmetry 

breaking is expected, one would expect to find a massless excitation associated 

with the axial current. Of course, such excitation would have little to do with 

the continuum limit theory. 

The nature of this problem is particularly transparent in 1 + 1 dimensional 

electrodynamics with a single Dirac fermion, the lattice version of the Schwinger 

_ mdel. There the anomaly has a very simple physical interpretation, which will 

be illustrated in Section 2, for the continuum limit case, as well as for the various 

types of lattice derivative. There it is shown that in the case of SLAC fermions, 
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unlike the case of Susskind’s or Wilson’s fermions, the electromagnetic coupling, 

because of the anomaly, must cause nontrivial dynamical effects at the “bottom” 

of the Fermi sea. In other words, the usual assumption, that only low energy 

states participate to the dynamics of the model, fails because of the anomaly. 

In Section 3, a variational calculation of the ground state wave-function of 

the lattice Schwinger model with SLAC fermions is presented. There it is shown 

that fermionic states with momenta around m, are in fact excited, because of the 

long range nature of the electrodynamic forces. The relation between lattice and 

continuum operators is discussed. 

In Section 4 a physically intuitive picture of the continuum Schwinger model 

is given; the same picture is applied to a lattice version of the Schwinger model 

with a truncated SLAC derivative, and an exact solution of the model in the weak 

coupling regime is found. It is shown that the theory has the correct continuum 

limit, but for any finite coupling the spectrum is sharply modified: at small 

momenta, the spectral branch of the massive excitation turns into the Goldstone 

boson of the lattice chiral symmetry. The relevance of this solution to the full 

SLAC derivative Schwinger model is discussed. 

2. The anomaly in the Schwinger model. 

The anomaly in 1 + 1 dimensions has a very simple physical interpretation* 

Consider a 1+ 1 dimensional Dirac fermion in the continuum limit. The spectrum 

is represented in Fig. l(a). There are two spectral branches, one with positive 

slope (right movers) and one with negative slope (left movers). In the ground 

state all the negative energy states will be filled. Suppose we turn on an external 

electromagnetic field, pointing to the right, for a time At; all the right movers will 

acquire momentum Ak = gEAt, and energy Ac = Ak; left movers will acquire 

the same amount of momentum, but will lose an amount of energy equal to Ak, 

* I have been unable to find out the origin of this argument. See ref. 4 for references on the 
subject. 
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since they move against the electric field. After a time At the state of the system 

will be as represented in Fig. l(b). S ince the number of states in a momentum 

interval Ak is LAk/h, where L is the total length of the system, the number of 

right movers will exceed the number of left movers of an amount 

A?‘&R - AnL = 2y = LEEAt. 
7r (2.1) 

But r&R - nL is the chiral charge of the system; therefore we find 

A95 -= LEE. 
At x 

This is precisely the anomaly equation. 

Consider now a Susskind fermion on a lattice; the Hamiltonian is: 

H = $ C(ai+laj - a2aj+l) 
i 

(2.2) 

P-3) 

and the spectrum is represented in Fig. 2(a). The low energy sector of the spec- 

trum, has states with momenta close to 0 and positive velocity, and states with 

momenta close to T and negative velocity. Since momentum conservation modulo 

27r implies momentum conservation modulo 7r, if we redefine the momentum to 

be conserved modulo ?r, the continuum limit of the model will represent both 

chiral components of a single Dirac fermion. Under an external field the state of 

the system will evolve into the state represented in Fig. 2(b). If we define the 

chiral charge to be the difference between the right and left movers we recover 

Eq. (2.2). It is clear that the role played by the ‘bottom’ of the Fermi sea, is to 

convert right movers into left movers when an electric field is applied. No such 

conversion is operating in the continuum case; simply, particles sink and emerge 

_ inthe infinitely deep sea. The mechanism operating in the continuum case is 

only possible when the cut-off is strictly infinite. A lattice theory has therefore 

to provide a different mechanism that produces the same effect, as in the case 
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of Susskind fermions. For Wilson’s fermions the energy eigenstates are chiral di- 

agonal only for small momenta; the conversion of left into right movers involves 

mixing of the two chiral components, and only if the conversion proceeds slowly 

enough Eq. (2.2) is recovered. This has been analyzed in detail by Ambjorn et 

al[‘l . Consider now the case of SLAC fermions. In chiral basis the Hamiltonian 

is: 

with S’(j - k) given by: 

6% - 

H = i c S’(j - k)$juz$k (2.4 
j,k 

Hi-k k) = 
j-k’ 

0, 

if we define: 

we obtain: 

for j # k 
for j = k 

P-5) 

(2.6) 

-. 
H = ciS’(j - k)( afak - bfbj) = 2 k(tZiOik - blbk) (2-V 

j,k -U 

The spectrum is represented in Fig. 3(a). If we apply an electric field for a short 

time, the system evolves into the state depicted in Fig. 3(b). The exact lattice 

chiral charge, defined a~ Ci(~~~ - bibi) is conserved. There is therefore a sharp 

difference with respect to Susskind’s or Wilson’s fermions. One can define a 

point-split chiral charge, which only counts states close to the Fermi surface (see 

ref.5) and thereby obeys the correct anomaly equation. The above argument, 

however, seems to indicate that there is nontrivial dynamics taking place at the 

_ &tom of the Fermi sea. It has been argued that the continuum theory could 

therefore be sick. In the next Section I will analyze the dynamics of the SLAC 

lattice schwinger model in the Hartree-Fock approximation. 
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3. The lattice Schwinger model in the Hartree-Fock approximation 

The Schwinger model Hamiltonian in Coulomb gauge is: 

this translates into the following lattice Hamiltonian: 

H = ixi?(i- j)$fa,& - $cPili-jlPj 
ij i,i 

which in momentum space becomes: 

(3.1) c 

(3.2) 

c(k) = k for -7r 2 k < ?r, periodic with period 27r. 

N = number of sites. 

All the functions of momenta are considered to be periodic functions with period 

27r; momentum variables are to be viewed as angular variables. Momentum sums 

can be converted to momentum integrals according to the replacement rule: 

We finally get for the Hamiltonian: 

P-5) 

Now define: 

- - (3.6) 

I will minimize the expectation value of the Hamiltonian for the most general 
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Hartree-Fock state which conserves momentum and charge. This means that 

only the following expectation values of fermionic bilinears will be allowed: 

(a; ak) = r; (ak a;) = 1 - r; 
(b; bk) = rb, (bk bt,) = 1 - I’; _ 

(a: h) = Ak (b; t.%k) = A; 

_ (3.7) 

The expectation values I’f, I?;, and &, are not completely arbitrary. Positivity 

of the Hilbert space requires that the matrix: 

(3.8) 

is positive semidefinite (this follows from the requirement that any linear combi- 

nation of oi (Vat), bi Ivac), ok IVac), bk (Vat) has positive norm). We thus obtain 

the following constraints: 

We can now calculate the expectation value of pq pmq : 

(pqp-q> = $ x((+k+q +bLbk+q -6k,k+q) b$+quk’ + bZ,+q bkl - 6kk’,k’+q)) (3.10) 
k,k’ 

the constant &$+q in the definition of p is required by the normal ordering 

prescription. We obtain: 

2 

(Pq P-q> = $ C(rz + ri - 1) 
k > 

&,o 

_ & c(r:(l- ri+,) + r:(l- ri+q) - AkA;+q - Ak+&) 
k 

(3.11) 

In order for the potential energy to be finite, this has to vanish at q = 0; the 
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l s e c o n d  te r m  o f E q . (3 .11)  a t q  =  0  b e c o m e s : 

W  - rb ,) +  rb ,(l _  r”,) 
2  - b & l 2  

I 

M u l tip ly ing  th e  first two inequal i t ies  o f (3 .9)we o b tain:  _  _  

(3 .12)  

(3 .13)  

S ince  th e  g e o m e tric a v e r a g e  o f two n u m b e r s  is neve r  la rger  th e n  th e  ar i thmet ic  

a v e r a g e , (3 .12)  c a n  van ish  on ly  if (3 .13)  is saturated;  th e  first two b o u n d s  in  (3.9)  

a re  th e r e fo re  b o th  saturated.  It is easy  to  s h o w  th a t in  th is  case  w e  m u s t h a v e : 

(3 .14)  

Th is  a lso  impl ies  th a t th e  first te r m  in  (3 .11)  van ishes.  W e  c a n  n o w  p a r a m e trize 

th e  l?  a n d  A  in  th e  fo l low ing  w a y : 

rf =  S in 2  6k  
rb  =  C O S 2  ek  

dk  =  S in  f&  C O S  6k  t? i’k 

S u b s titu tin g  in  (3 .11)  w e  o b tain:  

s in2  6k  cos2 e k + q  -k cos2 flk s in2  & + a -  

k 

2  S i n  6k  c O S  6k  s in o k + q  cos f lk+q cos(  4k  - 4k+q) )  

T h e  e x p e c ta tio n  va lue  o f th e  Hami l ton ian  (3.3)  c a n  n o w  b e  wri t ten as:  

(H)  =  x(s in2 flk - cos2  ok)E(k)- t  
k 

- - 
$  c x (S in2  6k  C O s 2  & + q  +  cos2 6k  s in2  dk+q-  

q  k 

(3 .15)  

(3 .16)  

(3 .17)  

2  S i n  6k  cos 6k  s in f lk+q cos e k + q  C O S @ k  - 4k+q)  ) 1  _  ‘,,, q  
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i Minimizing with respect to 4k immediately gives & = constant. This arbitrary 

constant corresponds to the freedom of performing global chiral rotations on the 

system. The Hamiltonian becomes simply: 

w = X(2 sin26k - l)c(k) + 
k 

(3.18) - 

For g2 = 0 the minimum is at sin2 6k = 1 for -r < k < 0, sin2 6k = 0 for 

0 < k < ?r, as plotted in Fig. 4(a). For small g this solution will give an infinite 

potential energy, originating from the discontinuity of I’% at k = 0 and k = T. In 

fact, in this case, the charge-charge correlation is: 

(Pq P-q) = $ xSin2(6k - 6k+q) = $f for -r < q < r (3.19) 
k 

-. 

extended to be periodic with period 27r in the variable q; the potential in (3.17) is 

therefore logarithmically divergent at q = ,O. We would then expect that for small 

couplings I’: will become something like Fig. 4(b), with the theta function type 

singularities smoothed out; we can estimate the parameters h and e, representing 

the size of the k intervals respectively around 0 and around z, in which I’: differs 

from the free fermions solution (Fig. 4(b)), in the following way: the kinetic 

energy behaves as Ah2 + Be, where A and B are constants of order 1, while the 

potential energy behaves like Cg2 I log hl + Dg2 I log .!I, because 

singularities at h = 0 and e = 0; therefore: 

of the logarithmic 

H-Ah2+BtT+Cg2110ghl+Dg2110g41 (3.20) 

and minimizing with respect to h and e we obtain: 

- - 

h2 - g2 

e N g2 
(3.21) 

Let us now examine the behavior of the charge-charge correlation (pq pmq); for 

small q, sin2(6k - &+q) vanishes for most values of k, except for k - 0 or k - T; 
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therefore we have: 

$ xsin2(ek+ek+q) = $ ~Sin2(6k-6k+q)+$ ~S~2(ek-ek+q) 
(3s22) 

k k-0 kwr 

In the free field limit, both sums on the right hand side of(3.221 equal Iql/(2?rN), 

and we recover (3.19) . In the weak coupling regime, the k - 0 part of the 

correlation function will be smoothed out in a region of size h - g, while the 

k - 0 part will be smoothed out in a region of size .fJ - g2. It is easy to see that 

the whole variational Hamiltonian can be split into a part involving momenta 

of order zero, plus a part involving momenta of order r; this is because, in this 

limit, the potential coming from the intermediate q region, is highly insensitive 

to the behavior of 6k for k - 0 and k - z; the part of the Hamiltonian involving 

lattice momenta close to 0, coincides with what we would have obtained if we 

performed a variational calculation of the continuum Schwinger model. In the 

case of the continuum Schwinger model we expect: 

(Pq P-q) = !12v% E-q) @z 
&&p 

(3.23) 

This is not what we obtain in the g2 + 0 limit of the SLAC lattice Schwinger 

model. Instead, we have: 

(Pq P-q> = $ c SiI12(ek - &+q) + c Sin2(6k - 6k+q) = 

k-0 kwr 

= y&lPlfo(S) + &hlf,(s) 
(3.24) 

where fo(q) + 1 for q >> g, fr(q) + 1 for q >> g2. Only fo(q) is related to the 

continuum limit physics; therefore, we expect it to be an approximation to the 

function 

Id - - 
GT-S 

for small g. 
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The variational problem has been solved by sampling the function 6k with 

up to 100 points, and then minimizing (3.17) numerically. In Fig. S(a), the 

function sin2 6k is plotted for two different values of the coupling constant, and 

the corresponding excitation mass, evaluated by calculating q/fo(q), and fitting 

it with a form dw, is given. The excitation mass is-seen to approach 

the continuum value from above as g2 gets smaller, as plotted in Fig. S(b); 

in particular, for g2 = .25, the calculated lattice model mass overestimates the 

exact continuum mass by about 10%” . The separation of the 4? - 0 states can 

be performed more rigorously by defining a cut-off (point-split) electromagnetic 

charge density: 

P&O = ; c F(k + q/2) ‘hi+q+‘k 
k 

(3.25) 

where F(k) is a smooth function such that F(0) = 1, f(r) = 0, F(k) = F(-k). 

If we define: 

Pkwr(q) = + x(1 - F(k + d2)) +l+q’hk 
k 

(3.26) 

We have p = PkrwO + P)Nr, and one can verify that for small q: 

(pq P-q) = (/‘kNO(q) /‘kNO(-q)) + (Pkw(d I%+?)) (3.27) 

From the Hartree-Fock calculation performed in this section, we can draw 

the following conclusions: 

(a) The model contains a massive excitation corresponding to the contin- 

uum Schwinger model excitation. 

(b) The lattice charge density does not corresponds to the continuum 

charge density. One can define a charge density with the correct con- 

tinuum limit by cutting off states with momenta close to z. This is 

essentially a point splitting definition of the charge I51 . 

* When I started this work, Michael Peskin informed me that he actually performed a Hartree- 
Fock calculation of the continuum Schwinger model. He claims the mass of the excitation 
he obtained differs from the exact mass by 5%. 
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(c) The part of the charge density involving momenta close to r, has non- 

trivial dynamics, in the sense that (pkNr (q) p&*(-q)) has nontrivial 

behavior as q -+ 0. This behavior manifest itself at scales q - g2, unlike 

the point split charge density, which has nontrivial behavior at scales 

Q - g. The dynamics associated with fermions-of momenta around z 

does not have a Lorentz invariant continuum limit. 

A few questions remain unanswered in this analysis. First of all, we obtain 

for small q that (p&O(q) pkNr (-q)) = 0 in our Fock state. This is because we did 

not assume any expectation value for ($J: $k+s). The Hartree-Fock calculation 

becomes much more involved in this case. A second problem is to determine 

the spectrum of the excitation associated with &,.,n. We cannot follow the same 

procedure used for Pk,.&, because in that case we relayed on Lorentz invariance, 

which is necessary to extract a mass parameter from an equal time correlation 

function, while the dynamical effects associated with k - 7r fermions are clearly 

not Lorentz invariant. A third problem is the following: we know that the lattice 

p5 is both conserved and gauge invariant. Is there a Goldstone particle associated 

with it? We cannot rely on Goldstone theorem in this case, because the SLAC 

derivative is long range when applied to objects with momentum ti, and the full 

lattice p5 does contain such objects. 

In the next section I will analyze these problems in a simplified contest, that is 

to say, in the case of a truncated SLAC derivative; in this contest the analysis will 

turn out to be quite simple, so that the physics of the model becomes transparent. 

- - 
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i 4. The truncated SLAC derivative Schwinger model. 

There is a fairly simple physical argument that allows to solve exactly the 

Schwinger model. The argument goes as follows: we would expect that in the 

Schwinger model only fermions with momenta of order g will be excited; if we 

-divide space into elements AL < l/g, we would expect that the local Fermi sea 

will not differ much from the free Fermi sea, except that we may have local charge 

density fluctuations, that would be represented by shifts of the ‘left’ and ‘right’ 

Fermi surface (see Fig. 6). Since the number of states in the momentum interval 

Ak is Ak AL/h, we can obtain the following right and left charge densities: 

The kinetic energy contributed by the element AL is: 

TAL = :AkRpR AL + :AkL pL AL = %(p” + p52) AL (4.2) 

Since p = i3rE, p5 = doE,* and the electromagnetic energy density is given by 

g2E2/2, we obtain for the total energy density: 

H = ;((cY,E)~ + (aoE)2) + $E2 (4.3) 

which represents a free excitation with mass g2/n. 

The above intuitive argument gives the exact answer; a more rigorous deriva- 

tion is given in the Appendix. 

We will consider now a lattice version of the Schwinger model with a trun- 

cated SLAC derivative+ . Whichever truncation mechanism is chosen, the spec- 

trum will look like Fig. 7. The slope of the spectrum at momenta close to r 

* The above definition of the E field differs by a factor of g from the conventional one. 
t nuncated versions of the SLAC derivative have in fact been used in lattice calculations, 

see Ref. 6.6. 
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is of the order of the range of the derivative; as the slope goes to infinity, we 

recover the full SLAC derivative. We can define the charge densities ng, nt, to 

be the densities of fermions of type a or b with momenta close to 0, and nf, 

nb,, the densities of fermions a and b with momenta close to K. As before, we 

can calculate the contribution to the kinetic energy coming f&m fermions with 

momenta close to 0 to be equal to: 

;(Pi + PZ”, 

PO = n: -I- ni 

Pi? = nt - nt 

(4.4 

and the kinetic energy contributed by fermions with momenta close to r: 

We can now introduce two scalar fields x and 4 such that: 

PO = WJ 

Pr = &X 

(4.5) 

(4.6) 

Since pi is the charge current of fermions with momenta close to 0 we have: 

P! = a04 (4.7) 

similarly: 

Pi = -:a,, (4.8) 

The total electric field is 4 + x, and therefore the total Hamiltonian is: - - 

H= i( (ao4)2 + (a#) + c%( (w2 + $(a,x)2) + $4 + x)2 (4-g) 
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We can now define canonical fields: 

and the Hamiltonian becomes: 

(4.10) 

The independent modes of this Hamiltonian can be obtained by diagonalizing 

the matrix: 

(4.12) 

and the energy of each mode will be the square root of the eigenvalues. First, 

for k = 0, we have the eigenvalues 0 and (c + 1)g2/(2z); the corresponding 

eigenvectors are: 

where the subscript ‘0’ indicates the 0 momentum Fourier component of & and 

F. The variable conjugated to the null eigenstate is: 

ao&,,&ao~o ~~a~~~-a~~~/fia: Q!+Q", =Q5 (4.14) 

- - 

The null eigenstate is therefore the Goldstone mode associated with the lattice 

p5. For small k the evolution of the spectrum is easily obtained from first order 
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perturbation theory: 

x1 = ul 
k2 0 

ul = ck2 
0 c2k2 

i2 = (c-+ l)$ + u; 
k2 0 

0 c2k2 
u2 = (c+l)$+ 

(4.15) - 

On the other hand, for k values such that c2k2 >> cg2/n, there will be very little 

mixing, and the eigenvalues will be: 

Xl = k2 + $ 

X2 = c2k2 + cg 
7r 

(4.16) 

The two spectral branches are plotted in Fig. 8. From the figure it is clear that 

mixing between fermionic states with momenta close to 0 and those with mo- 

menta close to r becomes negligible for k >> g/G; in the same limit the upper 

branch of the spectrum reaches the free field limit. In order for the approxima- 

tions involved to be consistent, the part of the spectrum involving fermions with 

momenta around x must reach the free field limit for k < l/c, because only 

in this range the fermion spectrum is actually linear with slope c; we therefore 

obtain the bound: 

g&<l. (4.17) 

Because of the above inequality we cannot take the strict c --+ 00 limit, but we 

can consider a double limit g --$ 0, c + 00, fig = constant < 1. In this limit the 

high energy spectral branch acquires infinite energy, and the lower branch will 

converge to the continuum limit spectrum, except at k = 0. We still expect that - - 
for fig - 1 the qualitative behavior indicated in Fig. 8 will persist; in this case, 

the spectrum of the lattice theory does not match the continuum iimit spectrum 
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unless k >> g/,/Z - g2. The Hartree-Fock calculation, carried out with the full 

SLAC derivative, leads to the same conclusion; therefore, we would expect that 

the spectrum will be qualitatively represented by Fig. 8, except that it may not 

have a finite slope at the origin, and the deviation from the continuum limit 

spectrum would extend into a regionk 2 g2. 

5. Conclusions. 

We have seen that the continuum limit spectrum of the SLAC lattice Schwin- 

ger model does match the exact continuum solution; however, the operators of 

the lattice model do not correspond directly to continuum limit operators. Only 

point-split operators have a sensible continuum limit, and this holds for the chiral 

charge as well as for the electromagnetic charge. One can view lattice operators as 

the sum of two pieces, one (the point-split one) involving fermions with momenta 

close to 0, and the other involving fermions with momenta close to n; although 

one would naively expect that states with momenta close to ?r are not altered by 

the presence of an interaction, because of the high kinetic energies involved, the 

anomaly forces some nontrivial dynamics in this region. These dynamical effects 

manifest themselves in the two point functions of the fermions bilinears, for small 

values of the momenta. This is consistent with the results obtained by Rabin in 

3 + 1 QED, see ref. 7; he shows that in perturbation theory extra subtractions 

are needed in SLAC lattice QED in order to recover the continuum limit. 

The spectrum of the theory also exhibits sharp differences from the continuum 

spectrum in the low momentum region; In particular, a zero energy excitation, 

corresponding to the conserved and gauge invariant chiral charge, is present in 

the spectrum at zero momentum. Its velocity, for small couplings, is much larger 

than 1; it is not, therefore, a Lorentz invariant particle with a sensible continuum - - 
limit. For sufficiently large momenta, the spectrum of this excitation approaches 

the spectrum of the continuum limit massive particle. 
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Although the results quoted above have been derived for the simple case of the 

Schwinger model, there are good reasons to believe that they will persist, at least 

qualitatively, in higher dimensional theories. First of all, long range behavior of 

current-current correlation functions, caused by fermionic states with at least 

one component of the momentum close to 7~, should persist in higher dimensions; 

this implies that, in a confining theory, the states with momenta lying close to 

the ki = z planes, will acquire nontrivial dynamics. A second reason, is that the 

chiral anomaly in 3 + 1 dimensions has a remarkable connection to the Schwinger 

model anomaly, (see for example ref. 4); this connection originates from the fact 

that free fermions, in an external magnetic field, behave like different copies of 

one dimensional Dirac fermions, one of these copies being massless. It is in fact 

the Schwinger model anomaly of this zero mode that, in presence of an electric 

field parallel to the magnetic field, generates the 3 + 1 dimensional anomaly. 
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Consider a fermion in a one. dimensional lattice; assume that the spectrum 

has negative energy states for --R < k < 0, and positive energy for 0 < k < ?r. We 

can define a cut-off charge density associated with the fermio_n with momenta 

around. 0 as: 

pq = U:+qUk f (Ic + t?> f (‘1 (Al) 

where f(k) is constant equal to 1 for k - 0, and it vanishes smoothly at k - ff. 

For small q we have: 

[Pq, Pq’] = ~af+quk-qf; k’ - q) (-& f(k)‘) + O(q’, d2) - W) 
k 

The derivative of f(k) vanishes in a region around k = 0; therefore the fermionic 

bilinear in the sum acts only on states of high energy. Assuming that a weak 

interaction is active, only states at low energy will be altered, so that we can 
t replace: uk+quk+q I -+ 6,$(k), and Eq. (A2) becomes: 

N 
[Pq, Pq,l = -$-tq’Q G , N = number of lattice sites 

for a left mover we would have obtained: 

N 
[Pq, Pd = &Q+q Q G ’ (A4 

The same conclusion holds for a cut-off charge density involving k - ?r states. 

With a similar argument one can show that: 

uiuk + constant x c uiuk . (AS) 
k k 

when the plus sign holds for right movers, the minus sign for left movers, and the 

sums involve only small values of q and k. Equation (AS) relates the energy and 

the square of the charge density in the same way as the argument of Section 4, 
- - 

and the commutators (A3), (A4) can be used to show that the variables J and T, 

defined in Eq. (4.11) h ave canonical commutation relations with &-,& and 802. 
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1. Anomaly in continuum l+l dimensional Dirac fermions. 

2. Anomaly for Susskind fermions. 

3. Anomaly for SLAC fermions. 

4. Expectation value for the occupation number of right movers in the free 

and interacting Hartree-Fock vacuum of the lattice Schwinger model with 

SLAC fermions 

5. (a) numerical results for the expectation value of the occupation number 

of right movers for g2 = 2 and g2 = 1, 

(b) numerically determined mass to continuum limit mass ratio plotted as 

a function of g2. 

6. The local fermi sea in the Schwinger model. 

7. Spectrum associated with a truncated SLAC derivative. 

8. Spectrum of the excitations in the lattice Schwinger model with a truncated 

SLAC derivative. 

- - 
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