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ABSTRACT 

This paper presents the results obtained by applying the t-expansion to the 

case of an SU(2) lattice gauge theory in 3+1-spate time dimensions. We com- 

pute the vacuum energy density, specific heat, string tension cr, mass of the lowest 

lying O++-glueball M and the ratio R = M2/o. Our computations converge best 

for the energy density, specific heat and R, and these quantities exhibit behavior 

which agrees with what we expect on general grounds and what is known from 

Euclidean Monte Carlo calculations. In particular we see a broad lump in the 

specific heat and determine fi to be 0 = 3.5f.2, a value which lies in the ball- 

park of values obtained from Monte Carlo calculations. Our direct computations 

of the mass of the O++ glueball and string tension cannot be easily compared to 

the results of Monte Carlo calculations, but appear to be consistent with what 

one would expect. 

- - 
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1. INTRODUCTION 

We present calculations of the ground state energy density, E, the string 

tension, Q, and the mass of the lowest lying O++ glueball, M, for the case of a 

pure SU(2) gauge theory in 3+1 dimensions. These calculations make use of the 

t-ezpansion, a non-perturbative calculational tool recently introduced by D. Horn 

and M. Weinstein’ and applied to the study of simple lattice spin models. The 

purpose of this paper is to show how this technique works for an interesting 

theory in S+l-space-time dimensions. In addition to the vacuum energy density, 

string tension and O++ mass we also calculate the specific heat and the ratio 

R = M2/o. The quantity R is of interest because, on general grounds, R is 

expected to go to a constant as g2 --+ 0 well before either M or o exhibits 

perturbative scaling. Consistent with our expectations we find the vacuum energy 

density, specific heat and R can be extrapolated to the weak coupling regime with 

small errors; however, the mass of the O++ and the string tension are subject to 

larger uncertainties. In addition, we find that the specific heat peaks in the 

turnover region between strong and weak coupling. This result is consistent with 

the behavior observed in Monte Carlo calculations2. 

2. SU(2):THE t-EXPANSION IN 

THE STRONG COUPLING BASIS 

2.1 FUNDAMENTALS 

The t-expansion is a method which can be applied to arbitrary quantum 
- - 

systems defined by a Hamiltonian, H. Underlying the t-expansion is the notion 

that if I&) is a state having a finite overlap with the ground-state, then the one 
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parameter family of states 

19%) = l (tiol e-tH 1&)‘/2 e-tH’2 ‘$O) (2.1) 

contracts onto the ground state of H as t + 00. From this it follows that the 

function 

Jqt) = (hII HctH wo> 
($0 I t+* MO> 

tends to the ground-state energy in the same limit. 

that E(t) can be written as 

E(t) = 2 +“+‘jc, (2.3) 
n=O * 

(2.2) 

The key result of Ref. 1 is 

where (H”+‘)’ is defined recursively by 

lHn+‘)’ = (tioj Hn+’ I&) - ne (“) (HP+l)C (+ol p-P I,,I,~). 
p=o p 

Equations (2.3) and (2.4) lead to an expansion of the function E(t) .as a power- 

series in the auxiliary variable t. The method suggested in Ref. 1 for exploiting 

this expansion is to form Pad& approximants to the series in t and use them to 

evaluate the asymptotic value of E(t). Experience indicates that there is a best 

way in which to reconstruct such functions from their Pad6 approximants, and 

we will discuss this issue in the next chapter. 

- - 
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2.2 THE HAMILTONIAN 

The theory we will study is the 3+1-dimensional SU(2) lattice gauge theory 

defined by the Kogut-Susskind Hamiltonian 

H = f [C@ +5X(2-tr?4)], 
t P 

(24 

where g is the coupling constant and z = 4/g’. The link operators I?l and Vl 

which appear in (2.5) are conjugate quantum variables satisfying the commuta- 

tion relations 

(2.6) 

Intuitively, the operator EL” is the color electric jIuz operator associated with the 

link I!, and tt Up is the magnetic flux operator associated with the plaquette p. 

The operator Up is defined to be 

up = u~u~u$J;‘, (2.7) 

where the product of the link operators Ul is taken in the counterclockwise di- 

rection. For the case of the SU(2) gauge theory the operator tr Up is Hermitian. 

In carrying out explicit computations it is useful to work with the operator 

z= cl!?; -z~ttrup (2.8) L P 

which is related to (2.5) by an overall multiplicative and additive constant. 
- - 



i 2.3 THE TRIAL STATE 

For the computations presented in this paper the state I&,) is taken to be 

IO), the ground-state of the strong coupling Hamiltonian. This state is defined 

by the conditions 

& lo) = 0 . (2.9) 

The energy-function we calculate is 

E(t,g2) = (01 H eetH IO) 

(01 emfH (0) ’ 
(2.10) 

which is equivalent to making the change t -+ 2t/g2 in (2.1), (2.2) and (2.3). 

2.4 THE STRING TENSION 

In order to compute the string tension for the SU(2) gauge theory we begin 

by calculating the difference between the ground-state energy of the sector with 

a string of length L and the sector without any string. The tension, a(t,g2), is 

defined by dividing this difference by the length, L, of the string and taking the 

liiit L --) 00. Thus to calculate a(t,g2) we compute 

-. 

(‘1 S+H e-fES lo> _ E(t 
(01 S+e-W3 IO) ’ 

g2) 

I 

where the operator S creates a straight infinite string along one axis; i.e., 

- - 

bb090) 
s= rI ut * 

L=(-oo,o,o) 

(2.11) 

(2.12) 
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2.5 THE O++ MASS 

One can compute the mass of the lowest lying O++ state from the series for 

the vacuum energy. The way this is done is to show that the function M(t), 

defined as 

(2.13) 

tends to the mass of the lowest lying O++ state as t + 00. 

To prove this result we begin by considering the state 

I‘d = H hh> - (tit] H I$t) It,&). (2.14) 

-. 

By construction IQ) is orthogonal to the state I$t) for all values of the parameter 

t. Since the state I&) contracts onto the lowest lying state having a non-vanishing 

overlap with the initial state I&), i.e. the vacuum, it follows that the state 

obtained by normalizing lwt) contracts onto the lowest lying excitation having 

the same quantum numbers as the vacuum. With this in mind we only need to 

show that 

M(t) h“fl * Iwf) - (11, 1 H 111, ) = (w&t) f t - (2.15) 

Direct substitution of the definition of Iwt) yields 

M(q = (+tl H3 l+t) - 3 (‘h 1 H2 l?h> (‘th 1 H Itclt) + 2 (t,bfl H [tit)’ 
(Ilttl H2 I+t> - (tit1 H l$t)2 

(2.16) 

Since we used E in order to defkre I$t) and E(t) it follows that 

- - E(t) = ($01 He-fzt/u’)H It,bo) 
- ($y~l e+lUW Itio) * 

(2.17) 

Differentiating (2.17) with respect to t yields the desired equality. 
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Given this result it is obvious that having computed the series in t for the 

string tension, a(t), and M(t) one also has a series for 

R ~ Jw2 
o(t)’ (2.18) 

Obviously, the same techniques for forming Pad6 approximants to the ground 

state energy density can be applied to the series for a(t) and R(t) in order to 

reconstruct their values in the limit t + 00. 

2.6 THE COMPUTATION 

The technique developed in Ref. 1 allows us to construct E (t, g2) as a double 

power-series in t and g 2. The coefficients associated with f%ced powers of t are 

the connected matrix-elements of z: 

E(t,g’) = f$x f$ (~+‘)” + ; Np , 
n ’ 

where Np is the number of plaquettes associated with the spatial lattice. The 

vacuum energy density is defined to be 

W,s2) = f E(t, s’), 
P 

(2.20) 

in the limit Np + 00. Hence, dividing (2.19) by Np we obtain an expression for 

the ground-state energy-density as a Taylor series in t and g2 or t and x = 4/g4. 

The relation of this twwparameter expansion to conventional strong-coupling 

perturbation theory was established in Ref. 1. 
- - 

As discussed in Ref. 1 the connected coefficients appearing in the formula 

for E(t,g2) are computed by restricting attention to connected diagrams. One 
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systematic way to construct the relevant diagrams is to begin by constructing all 

connected diagrams generated by application of the potential term (x c tr Up) 

to the strong coupling state, as one would do in the perturbation expansion, and 

then decor&kg the resulting graphs by inserting arbitrary powers of the electric 

field terms, @, onto the links appearing in these diagrams. Straightforward 

computation of connected coefficients to order t6, or p’, leads to the result, 

3 2 Et3 
zt +16 

t3 (2.21) 

+ g2t5x6 
( 

-;+%, . 

The same sort of calculation for the sector containing a string, i.e. the com- 

putation of powers of p between the states (01 St and S IO), leads to the result 

3 2 t7 = i g + g2t3x2 ($ - g) . (2.22) 

This computation is simplified by the fact that every connected diagram which 

does not touch the string contributes in the same way to the vacimm energy 

and the ground-state energy for the sector with a string, and so it follows that 

in computing the difference of these energies the contributions of these graphs 

cancel. Thus, we only need to compute connected diagrams that touch the string. 

It is worth noting that due to these cancellations, one finds that the series for 

the tension systematically starts out, for a fixed power of g2, in a higher order of 

t than it does in the computation of the vacuum energy. 
- - 

As pointed out in the preceding sections, the series (2.21) and (2.22) can be 

used to generate series expansions for the quantities M(t) and R. Note that the 
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formula for M(t) is obtained by taking two derivatives of E(t), so one needs a 

series for E(t) out to order t* in order to generate a series for the mass which 

is comparable to our series for the string tension. Fortunately, connected matrix 

elements of H” up to n = 10 have been calculated by A. Duncan and R. Roskies.3 

We will make use of their results in the sections to follow. 

3. PADI? APPROXIMANTS 

3.1 GENERAL REMARKS 

To compute the ground-state energy or string tension we use Pad6 approx- 

imants. These approximants are used to extend the region in t over which our 

calculations are reliable. The eventual goal is to accurately compute these func- 

tions in the liiit t + oo . A problem which faces us is to determine how well 

this asymptotic value is reconstructed by our technique. Given a long enough 

series to allow us to form many Pad6 approximants, the best procedure is to 

compare the t-dependence of different approximants at the same value of the 

coupling constant. If, as functions of t, the different approximants lie on one 

another, then experience tells us that it is reasonable to assume the~calculation 

has converged. 

In addition to checking on the reliability of a specific calculation, there is the 

question of which Pad6 approximant to use. This becomes particularly important 

if we attempt to exploit the fact that we are dealing with a double power series 

in t and g2, and that we have exact information about the function along the 

axest = 0 or g2 + 00. Given a limited number of terms in the series expansion 
- - 

of the function, some ways of handling this double series will do a better job in 

reconstructing the function than others. 
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Methods for generalizing Pad6 approximants to the case of double power 

series are discussed in the literature; see the book by George A. Baker Jr. and 

Peter Graves-Morris” for a discussion of Chisholm, Canterbury, Hughes-Jones 

approximants, etc. In general, we found these techniques difficult to apply and 

not particularly useful for our problem. A more relevant technique, also discussed 

in Ref. 4, is the method of differential approximants first introduced by Fisher 

and Kerr’ . The method of forming Pad6 approximants to the derivative of the 

t-series, which we introduced in Ref. 1, turns out to be a special subcase of the 

general technique. What is surprising is that, to our knowledge, it is a subcase 

which has not been discussed in the literature. It is this technique, and simple 

variants thereof, that we make use of in the next section. 

To understand the relationship between thii method and the differential ap- 

proximants introduced by Fisher and Kerr, let us consider the simpler case of a 

function of a single variable. Begin by assuming we have a power series expansion 

for a function f(t) 

f(t) =  5 ajtj - (3.1) 
j=O 

The differential Pad6 approximant for this function is defined as the solution to 

the differential equation 

A@) g(t) + W) f(t) = c(t) (3.2) 

where A(t), B(t) and C(t) are polynomials of order Ml, MS and M3 respectively. 

The coefficients appearing in these polynomials are fixed by substituting (3.1) 
- - 

into (3.2) and requiring that the equation is true to terms of order tN+‘. The 

case where A(t) = 0, B(t) is a polynomial of order M and C(t) is a polynomial 
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of order L reduces to the ordinary (L/Ml-Pad6 approximant. If C(t) is chosen to 

vanish the approximants are called D-log Pad6 approximants, since in thii csse 

(3.2) instructs us to form ordinary Padk approximants to the function 

dbdf) 1 4 
dt =r(t)z (3.3) 

The method used in Ref. 1 assumes that B(t) vanishes; which amounts to forming 

ordinary Pad4 approximants to the function dj(t)/dt and then reconstructing 

j(t) by integration. For convenience we will henceforth refer to this type of 

approximant as a D-Pad6 approximant. We choose to use D-Pad6 approximants 

because for the class of problems in which we are interested we need to reconstruct 

the asymptotic behavior of functions whose derivatives vanish rapidly as t ---) 00. 

One reason why we expect the D-Pad6 approximants to yield more accurate 

results than the value extracted by forming ordinary [L/L]-approximants is that 

our knowledge of the derivative is accurate near t = 0 and becomes worse for 

increasing values oft; hence, when we reconstruct the function j(t) by integration, 

the effect of an error in the approximation to dj/dt for t = to won’t show up 

until value of t significantly greater than to. If, as is the case for the functions 

of interest to us, dj/& vanishes rapidly, then the effects of errors at large values 

of t will be small. Since the functions we are computing are assumed to take 

finite limits as t -+ 00 we know that dj/dt vanishes sufficiently rapidly so that 

s dt (dj/dt) converges. In terms of forming Pad6 approximants this means that 

the only restriction on [L/M] va ues 1 that we use is that M 1 L + 2. This points 

out a second advantage of this technique over the use of diagonal approximants, 
- - 

namely that we can form more approximants to a given series and check for 

consistency. 
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Before discussing how to exploit the information coming from a series in 

two variables, it is worth observing that the general equation (3.2) is equivalent 

to forming an [L/Ml-Pad6 approximant to the power series expansion of the 

derivative of the function f(t) = j(t)/X(t), w h ere X(t) is an integrating factor for 

(3.2) and satisfies 

1 dX B(t) 
x0x = --* A(t) 

(34 

This method shares with the D-Pad4 approximants the advantage that it re- 

constructs the full function of t by integration starting from its exact value at 

t = 0. 

3.2 FUNCTIONS OF Two VARIABLES 

In trying to exploit the theory of Pad6 approximants for functions like (2.21) 

or (2.22), we found that nothing worked better than the basic idea we adopted 

for functions of a single variable; namely, forming Pad6 approximants to the 

derivative of the function and then reconstructing the function by integration. 

Furthermore, we found that since our series tended to be sparse in the variable 

y = 2/g2 and dense in t, it proved to be best to always use Pad6 approximants to 

reconstruct only the t-dependence of the functions in question. Another reason 

for proceeding in this way is that by not attempting to use Pad6 approximants in 

both variables we do not force the asymptotic behavior of any physical quantity 

as a function of g2. 

We will proceed as follows: given a series for j(t, y), i.e. 

i=Oj=O 
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we differentiate it to obtain 

Next, we form Pad6 approximants with respect to the variable t to obtain 

pqv,t) 

and integrate this with respect to t to obtain 

‘. #‘M(y) = 7 dt’ fyyy, t’). 
0 

(3.7) 

Finally, we use this approximation to a flay to reconstruct j(y) by integration, 

We have found that for the class of functions with which we are dealing this is 

the simplest and best way to proceed. 

3.3 WHAT FUNCTION SHOULD WE PADI$ ? 

Having stated what our general approach to reconstructing physical quanti- 

ties is, one ambiguity remains; namely, for a given physical quantity is it better 

to Pad4 approximate the series for the function itself, or is it better to Pad6 ap- 

proximate the series for a function of the function? To be more specific suppose 
- - 

we have reason to believe, as we do in the case of the string tension for a pure 

gauge theory, that the quantity in question exhibits very rapid variation over 
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i the interesting range of couplings. In this event, we could proceed as we have 

indicated and construct the derivative of the string tension with respect to y and 

reconstruct the string tension be integrating in from strong coupling.An alterna- 

tive to this approach is to rework the series into an expansion for a function of 

the string tension which is expected to behave more smoothly in g2 namely’, 

-&= 
g2aa/ag2 

4g2) ’ (3.10) 

where p(g) is, at weak coupling, expected to behave like the P-function obtained 

from continuum weak coupling perturbation theory. Given long series expansions 

we would only be happy if all of the methods agreed with one another. However, 

if one has only short series, there is every reason to believe that one method will 

be more accurate than another. In the next section we will apply both methods to 

the computation of the string tension, O++ mass and the ratio of these quantities 

and compare the results. 

4. DISCUSSION OF RESULTS 

In this section we will show that our computations of E, the specific heat 

(-da& /dy2), and R show every sign of converging well into the weak coupling 

region. This is not the case for the quantities cr and M; for these quantities 

we find that only one Pad6 approximant is well behaved, and so we are not 

able to estimate the error for our extrapolation of these quantities to t = 00. 

We begin with a discussion of the well behaved quantities and then discuss the 

_ wunputations of o and M. 

15 



4.1 COMPUTATION OF dl/dy 

We already pointed out that when dealing with a series in two variables, 

in this case the series for & (y, t), we find that it is best to form the series for 

d&(y, t)/dy, reconstruct the t -+ 00 behavior of this function using D-Pad& 

approximants, and then reconstruct E(y) by integrating this result with respect 

to y. Figures l(a), (b) and (c) exh’b’t 1 1 curves obtained in thii way for a range of 

y = 2/g2 going from 0 to 3 (i.e., g2 from 2/3 to 00). The figures are essentially 

self explanatory, however there are some features of the pictures which merit 

some discussion. 

First, we observe that second order perturbation theory implies that d&(y)/dy 

is a monotonically decreasing function of y. Since the weak and strong coupling 

expansions tell us that d&/dy(O) = 2 and d&/dy(oo) = 0, it follows that d&/dy(y) 

must be a positive function of y. In figure l(a) we see a plot of [L/L+21 D-Pad4 

approximants to d&/dy. We display this set of approximants in order to give the 

reader a feeling for the rate at which they are converging. It is obvious from this 

set of curves that successively higher values of L lead to curves for d&/dy which 

appear to converge rapidly for this range of y. The highest approximant still 

undershoots and goes negative for y > 2.2 (g2 < .8); however it only does so by a 

small amount, and the Pad6 approximants appear to be converging to a function 

which tends to zero from above, in agreement with general expectations. Invoking 

the exact theorem which tells us that d&/dy must be positive, we see that our 

reconstruction of this d&/dy breaks down for y 2 2.1. We should emphasize that 

the fact that this function tends to zero is in no way built into our calculation 

by our use of Pad6 approximants; in fact, since we only use Pad6 approximants 

for the t behavior of a function, there is no particular reason of d&/dy to go to 
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a constant as y -+ 00. 

Another feature of these curves which one should remark upon is that the 

[2/4] Pad6 approximant exhibits a pole for value of y N .6. It is clear that since 

this pole occurs in only one Pad6 approximant it is of no significance, and all it 

does is make the estimate of d&/dy in the region of the pole unreliable. In fact, 

one sees that by the time y > 1.2 both the [2/4] and [3/S] Pad6 approximants 

agree quite well. 

Figure l(b) h s ows a similar set of curves, except that now we are plotting 

[L/L+31 D-Pad6 approximants. Once again we see that the functions undershoot 

zero, and one Pad6 approximant exhibits a spurious pole in y; however, the clear 

tendency of the set of Pad6 approximants is to converge to a function which is 

tending to zero from above. 

In figure l(c) we compare all of the reconstructions of d&/dy which can be 

formed from the series for &(y, t) taken to order tQ. The only restriction on 

these Pad6 approximants is that a2E/i3ydt must be integrable with respect to 

the variable t. It is our experience that the disagreement among the curves of this 

type gives a good measure of how well the approximants have converged. Once 

again we see that the reconstruction of d&/dy for y 5 2.1 is probably reasonable. 

4.2 COMPUTING THE ENERGY DENSITY 

In figures 2(a), (b) and ( c we display the results obtained by integrating the ) 

previous curves for d&/dy. Note that we have added two additional curves to our 

plot of the Pad6 approximants to the energy density, one labelled Pert. Theory 
- - 

and one labelled Mean Plaquette. These two curves are added in order to give 

the reader something to which to compare our results. The curve labelled Pert. 
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Theory represents the result one obtains from strong coupling perturbation the- 

ory carried out to a comparable order in l/g’; the curve labelled Mean Plaquette 

represents an exact upper bound on the ground state energy density obtained in 

ref. 7. Another feature of Fig. 2(a), (b) and (c) requires explanation; namely, 

that the curves for the energy density go to constants rather than turning down 

when d&/dy goes negative. In producing these curves we set d&/dy to zero after 

it goes negative for the first time. This procedure allows us to avoid plotting a 

set of curves which cross one another. This is a reasonable procedure, since we 

know that when the Pad6 approximant to d&/dy becomes negative, the calcu- 

lation is demonstrably unreliable. It is interesting to examine the behavior of 

the [2/S] approximant, since the (2/S] app roximant to d&/dy had a pole. This 

curve exhibits a property which we have generally found to hold, and that is that 

if we evaluate the integral using a principle value prescription for handling the 

pole, then we find that the reconstruction of the desired function over most of 

the range is quite satisfactory. 

4.3 THE SPECIFIC HEAT 

- Euclidean Monte Carlo calculations2 have shown that there is a peak in the 

second derivative of the ground state energy density with respect to y, which does 

not appear to be associated with a phase transition, but seems to occur at about 

the same value of y at which the string tension turns over. This region is generally 

believed to mark the crossover between strong and weak coupling behavior. In 

the Euclidean formalism this second derivative of the free energy with respect 
- - 

to the coupling constant is conventionally referred to as the specific heat, and 

we have adopted the same terminology for the analagous quantity -d2&/dy2. 
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i We do this because the ground.state energy density of the Hamiltonian version 

corresponds to the free energy of the Euclidean version of the theory. 

._ 

In figure 3 we exhibit a plot of the specific heat, -d2& /dy2, for various D-Pad6 

approximants. The dashed curves depict the results obtained by differentiating 

[L/(5 - t)] D-Pad6 approximants to d&/dy for L = 0,l; the solid curves depict 

the same function as obtained from [L/(8 - L)] D-Pad6 approximants for L = 

0, 1,2,3. Clearly, both sets of curves exhibit a peak in the specific heat in the 

region y N 1. An important feature of this set of curves is that as one goes to 

higher order in the t-expansion (i.e., from the [L/(5 - L)] to [L/(8 - L)] D- 

Pad6 approximants) the peak in the specific heat becomes somewhat lower and 

broader. This is of course just the opposite of what would occur if this peak 

indicated the existence of a phase transition. 

4.4 THE RATIO R 

The last quantity whose t-expansion is expected to have a convergent set of 

D-Pad6 approximants into the weak coupling region is the ratio R. Unfortu- 

nately, since the series for the string tension Q only goes out to order t’, the 

series for R is not as lengthy as the one for the energy density. To give a feeling 

as to how successive D-Pad6 approximants converge we can only plot [O/M] ap- 

proximants for increasing values of M. These curves are presented in figure 4(a) 

and (b). Clearly, all of these curves exhibit a marked turnover at values of g2 N 2 

(i.e., y N 1) which coincides with the region in which the specific heat exhibits a 

peak. The difference between the curves in figure 4(a) and figure 4(b) is that the 

first set of curves are obtained by forming D-Pad6 approximants to the series 

for R itself, whereas the second set of curves are obtained by forming D-Pad6 

19 
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approximants to dR/dy and then integrating. We include both sets of curves to 

give the reader some feeling for how the two techniques differ. Jn figure 4(c) we 

display the curves corresponding to the [L/5 - t] D-Pad6 approximants obtained 

in both ways. From this plot we see that all of the different ways of computing 

this quantity are consistent to ten percent in the region g’ > 1.2. 

Finally, in figure 5 , obtained from fig. 4(c), we plot the square root of R as a 

function of g ‘. From this figure we estimate the ratio M(O++)/& to be 3.5f0.2. 

In principle thii quantity, being a dimensionless ratio of physical quantities can 

be directly compared to the same quantity as computed using Euclidean Monte 

Carlo techniques. In a Monte Carlo calculation the glueball mass and the string 

tension can only be computed separately. In order to make the comparison we 

have searched the recent literature reporting Monte Carlo computations8-” of 

M(O++) and 0. The Monte Carlo computations were done using either standard 

single plaquette action or its various possible modifications g*10s13. In principle, 

if universality holds and if the computations are really in the scaling region, then 

all of the Monte Carlo computations should agree. However, even in the case of 

the single plaquette action the results quoted in the literature span a considerable 

range. The values of fi vary9 from 69 AL to 52 AL, depending on the method 

used to extract the string tension. In the same way, the values quoted for A&(0++) 

vary ‘9’ from (190 f 30)A~ to (166 f 15)A~. Hence, the values of fi which one 

obtains by combining these results vary from 3.7 f 0.6 to 2.4 f 0.2. The extended 

action computations yield a ranging from 2.8 f 0.313 to 3.6 f 0.7g. The central 

value of R obtained from Monte Carlo calculations is in good agreement with 

- our result. However, the rather large error bars on the MC data should be kept 

in mind. 
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4.5 THE MASS AND THE STRING TENSION 

Now, let us turn to a discussion of quantities which are not quite as well 

behaved; namely, the glue-ball mass and the string tension. Referring back to 

(2.22), the series for a(& g2), we see that the first t-dependent term occurs in 

order t3. Since we have only calculated to order t’, this means that only the [2/3] 

D-Pad6 approximant to this quantity can be formed. However, this approximant 

does not fall off rapidly enough in t to allow us to extrapolate to t -+ 00. For this 

reason we cannot calculate the string tension directly from (2.22). Thii presents 

us with no insurmountable difficulty since we have a full series for the mass of 

the O++ containing all terms out to t ‘. Thus we can compute A4 or M2 by 

our techniques and then reconstruct the string tension by dividing the result by 

R(t = oo,g2). We will show that although one can obtain apparently striking 

results for the string tension, the comparison of different ways of computing the 

same quantity is not as stable as the behavior seen for the quantities we have 

already discussed. We believe that this occurs because our series for the mass is 

a tad too short, and it mirrors the fact that our series for the string tension has 

gaps. 

- Let us begin by showing that only one of the possible highest order D-Pad6 

approximants leads to a reasonable behavior for the quantity M. Figure 6 (a) 

shows the behavior for mass of the 0 ++ state as reconstructed using the [O/6], 

[l/5] and [2/4] D-PadC approximants evaluated for a typical value oft, t = 2. The 

point to notice is that the [O/S] and [l/5] app roximants lie above the prediction 

of strong coupling perturbation theory, even for large values of the coupling 
- - 

constant. This is clearly incorrect and reflects the behavior of only the lowest 

order terms in the t-expansion for the mass of the O++ state. Somehow, the [O/6] 
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and [l/5] approximants force the t-dependence of the mass to fall too rapidly 

for the higher order terms in the t-expansion to play a role for any value of t. 

This leaves us with only one useful approximant, and no way of establishing 

a reliable estimate of the errors to be associated with the cakulations of the 

mass. Nevertheless, it is instructive to see what results can be obtained from this 

approximant. 

In figure 6(b) we plot a set of curves showing how the reconstruction of M 

from the [2/4] D-Pad& approximant depends upon t. Note that in obtaining 

this set of curves we have not yet made use of the technique of first computing 

the derivative of M with respect to g2 and then reconstructing the function of 

interest by integration. There are two salient features of this set of curves. First, 

we see that for small values of g2 and quite small values of t the mass goes 

negative, indicating that the results cannot be trusted in this region. This is of 

course totally consistent with the results obtained for all other quantities and 

is no surprise. Second, we see a sharp turnover developing for g2 m 1.6 which 

is the region in which all of the other calculations seem to signal the onset of 

the crossover region between strong and weak coupling. This dip can be seen 

to deepen with increasing values of t until finally, for t 2 2.3, M goes negative, 

clearly signaling the breakdown of the approximation. This breakdown occurs 

before the t-dependence of the reconstruction has slowed significantly, and so we 

cannot use it to reconstruct the t -+ oo value of M(t,g2). We can, however, use 

it at finite values oft and compare the results obtained to what is expected from 

- we& coupling perturbation theory. 

One way to compare these calculations of A4 to continuum perturbation the- 
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ory is to study the behavior of the function 

-h& = 
g2akf2 laga 

M2b2) ’ (4.1) 

On dimensional grounds, since we believe that lattice Q.C.D. is an asymptotically 

free theory with no intrinsic scale, this quantity should exhibit the same scaling 

behavior as the string tension and should therefore go over to -g/&(g); where by 

PC(g) we mean the usual continuum p function. In figure 7 we plot the curves for 

@w(g) obtained from figure 6(b) and compare it to the behavior expected from 

the leading term in weak coupling perturbation theory. We see from these curves 

that the dip in the mass corresponds to the point at which the function pw(g) 

(obtained by numerical differentiation of the [2/4] D-Pad& approximant to M) 

approaches the weak coupling curve. Thii happens for t N 2. We hasten to point 

out, however, that the fact that these curves touch at this value of t does not 

really mean that this is a correct value of t at which to stop our extrapolation. 

The truth is that in this case we really have no grounds for reliably choosing 

to stop at any finite value of t. One way to see how one can deceive oneself 

by proceeding in this way is to divide M2 for various values of t by a typical 

curve for R, say Rpl4, in order to obtain curves for the string tension. Figure 8 

shows the results of doing this for the curves shown in figure 6 and compares the 

result to both the leading order prediction from strong coupling ao = (3/8)g’, 

and to the result obtained by carrying the series out to l/g” which we took 

from a paper by Kogut and Shigemitsu “. It turns out that for t > 2 the string 

tension computed in this way departs significantly from perturbation theory in a 
- - 

region of g2 in which we expect strong coupling perturbation theory to be quite 

accurate. Computing both the p function and the string tension in a region 
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i in which there is still significant t dependence leads to the result that t can be 

chosen so as to either make the string tension agree with the results of strong 

coupling perturbation theory for g2 2 2, or the p function can be made to touch 

the weak coupling line; both things cannot be done at the same time. 

Having discussed the dangers associated with trying to draw firm conclusions 

from a calculation which is exhibiting significant t dependence, we now turn to 

the question of what happens if we use D-Pad6 approximants in t to reconstruct 

M from its derivative with respect to g 2. In fact, we will discuss the results of 

proceeding in a slightly different way in order to make the comparison with weak 

coupling perturbation theory most straightforward. In analogy with fig 6(b), in 

Egure 9 we plot the [2/4] result obtained by using the D-Pad& method to directly 

reconstruct the function -g/pMs(g) f rom its t-series. The curves in figure 9 are 

for t = .5,1,2,1000. Clearly the D-Pad4 reconstruction of thii function goes 

asymptotic for t w 2. We have found a similar behavior for the energy density 

E and the ratio R. Note that although the p function computed in this way 

never does make contact with weak coupling perturbation theory it appears to 

be attempting to become a straight line for g2 < 2. Amusingly, the sJope of this 

lie appears to parallel the weak coupling line; although the significance of this 

result is problematical. 

In figures 10 and 11 we show the plots of M(g2) and a(g2) which we recon- 

struct from this computation of the P-function. The reconstruction is done as 

follows. Prom eq. (4.1) we obtain 

- - 

(4.2) 
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where P[L/AJI stands for [L/M] Pad6 approximant to p(g)/g, MO is the leading 

term strong coupling result, MO = 3g2/2 and gk,, = 4. String tension tr is 

then obtained from M2 by dividing by a typical value of R, R[l/41. In fig. 11 

the line a0 = (3/8)g2 and the strong coupling curve, taken from ref. 15, are 

once again added to guide the eye. Obviously, for this calculation there is even 

less t dependence in the string tension than in the p function. We see that 

the reconstructed curves remain close to the strong coupling result for g2 > 2. 

In addition, despite the fact that the /? function never quite reaches the weak 

coupling curve, the string tension essentially vanishes by the time we reach g2 k: 

1.4. This result, if reliable, would seem to bode well for the computation of 

quantities like hadron masses, etc.; since, it would imply that one need not know 

too much about what is going on for very small values of g2 in order to do a 

reasonable job in computing ratios of masses. 

5. SUMMARY 

We have described the application of the t-expansion to an SU(2) lattice 

gauge theory in 3+l space-time dimensions. Both the computations of the vac- 

uum energy density and the ratio R appear to stabilize for g2 > 1, where the 

criterion for stability is that various Pad6 approximants for these quantities agree 

reasonably well. The value for R which we determine in this way seems to agree 

quite well with the best available Euclidean Monte Carlo calculations. In addition 

to these results we directly compute a p function for the mass of the O++ glueball 

and show that the direct computation of -g/BP quickly becomes asymptotic in 
- - 

t and tends to exhibit the qualitative behavior one expects from weak coupling 

perturbation theory. Since, however, we only have one good D-Pad6 approxi- 
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mant to /3w(g) we cannot establish a measure of the error in our calculation of 

this quantity or the string tension which is derived from it. 

It is clear from these results that one must carry the t-expansion out to higher 

orders in order to obtain the correct behavior of the mass and string tension at 

weak coupling. However, quantities like R, which should tend to a constant as 

g2 + 0, appear to exhibit this sort of scaling behavior for 1 5 g2 even for the 

series computed out only as far as t 6. This turnover is consistent with that seen 

in d&/dy, the specific heat and the change in character of the &function, and so 

we feel it indicates the presence of a scaling window in the region 1 5 g2 2 2. 

Although numerical predictions of this ratio (and many others) have already been 

calculated by Monte-Carlo techniques, it should be emphasized that our result 

is obtained by analytic techniques and would appear to have smaller errors than 

-. 

the corresponding Monte Carlo computations. This, coupled with the fact that 

adding fermions to this scheme is totally straightforward and merely requires the 

computation of additional graphs, raises the hope that the t-expansion method 

will be well suited to the problem of extracting low energy hadron physics from 

lattice Q.C.D. 
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FIGURE CAPTIONS 

1. Curves of d&/dy obtained using the D-Pad6 technique. 

(a) d&/dy computed by forming [L/(L + 2)]-Pad6 approximants to 

aV jay at. 
(b) [L/(L + 3)]-Pad6 approximants to d2&/dy dt. Note the pole in the 

[2/5]-Pad6 approximant. 

(c) Comparison of all [L/(8 - L)]-Pad6 approximants in order to show that 

the different sets of approximants behave similarly when computed to the 

same order in t. 

2. Curves showing the energy density E(y) obtained by integrating the cor- 

responding [L/Ml-Pad4 approximants to d&/dy. Note, that in graphing 

these curves we have set d&/dy to zero for all values y > yc, where yc is 

the first value of y for which d&/dy vanishes. 

3. Plot of -d2&/dy2 for various D-Pad6 approximants. Continuous lines cor- 

respond to [L/(8-L)] P a d 6s. Dashed lines correspond to [L/(5-L)] Pad&. 

4. Curves showing the convergence properties of the calculation of the ratio 

R as a function of g2. 

(a) [O/M] D-Pad6 approximants to R(g2). 

(b) Curves showing R(g2) obtained by forming [O/M] D-Pad6 approximants 

to the series for dR/dy and integrating the resulting expression with respect 

to y. 

(c) Comparison of all approximants to R(g2) which make use of the entire 
- - available series for dR/dt. 

5. A plot of the approximants to dm obtainable from the full series in t. 
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6. (a) Plots of the [O/6], [l/5] and [2/4] Pad& of M for t=2 (b) Plots of the 

t-dependent reconstruction of M using the [2/4] D-Pade directly on the 

series for M. The plots are for t=.5,0.8,2. MO = 3g2/2 , the leading strong 

coupling result for M. 

7. Curves showing the beta function computed from the M plots of fig. 6 

(b). Plot of weak coupling continuum perturbation theory is included for 

comparison. 

8. The string tension reconstructed by dividing the [2/4] D-Pad6 for M2 by 

a typical value of R, R[l14~. 

9. Plot of a direct computation of the [2/4] beta function by D-Padding the 

series for -g/p(g) = g2a log M2/ag2. Plots are given for t=.5, 1, 2, 1000. 

10. Curves showing M reconstructed from the p-functions of Fig. 9. 

11. String tension obtained from Fig. 10 by dividing by a typical value of R, 

%l41* 

- - 
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