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R(SsnmFd - Ap&s une introduction aux techniques de base concemant les faisceaux 
de protons polarizds (changement de spin, saut de r&onances, ‘Serpent de Siberie”), 
un rapport sur le recent atelier tenu sur 1’AccClCration et Stockage des Faisceaux de 
Protons et l!2ectrons dans les ‘I% Grandes Machines est p&sent& 
Abstract - This paper first introduces the basic techniques for polarized proton 
beams: spin flip, resonance jumps, Siberian Snakes, etc., and then concludes with 
a report on the Workshop on Acceleration and Storage of. Polarized Protons and 
Electrons in Very Large Machines. 

I. INTRODUCTION 

The purpose of this paper is two-fold. First it is to introduce the reader to the problems 
associated with the acceleration and storage of polarized protons and to discuss the solutions 
to these problems. Second, it is to review briefly the Workshop on Acceleration and Storage of 
Polarized Protons and Electrons in Very Large Machines. Notice that the discussion in the first 
part of this paper is limited to polarized protons. The basic physics of electron polarized beams 
is quite different from that for protons. In Table 1 you see the contrast between the two. For 
electrons both the spin and the orbit experience a competition between polarizing (damping) 
effects and depolarizing (quantum excitation) effects. For polarized protons the problem is quite 
different in that the polarizing ,effects (and quantum spin diffusion) are absent. For the orbit 
the aim is to transport phase space without dilution during acceleration or storage. For the spin 
degree of freedom the situation is completely analogous. We begin with a polarized beam and 
attempt to avoid depolarization. The problem, for both the orbit and the polarization and for 
both electrons and protons, is resonance. For the orbit we simply set the basic frequency so 
that resonances are avoided; however, the situation is different for the spin because the natural 
precession frequency is proportional to the energy. 

Table 1. The Comparison of Electrons and Protons 

Protons Electrons 

4-l G = 1.793 a = .00116 
Precession frequency n=yG bp = ra 
Orbit transport emittance damping + quantum 

without dilution excitation =+ emittance 
Spin transport polarization radiative. polarization + 

without depolarization quantum spin diffusion =+ 
polarization 

Problem: Orbit 

Problem: Spin 

resonances 

resonances 
n = kl + kp, + kau, + k4u, 

resonance crossing 

resonances, quantum 
lifetime, etc. 

reson antes 
uep = kl + kzu, + kau, + kru, 

enhanced diffusion 

-- 
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In the first section of the first part of thii paper the basic physics is discussed and the 
resonances enumerated. The second section treats the spin resonance in detail while the third 
discusses the standard ‘cures’ for depolarization in low energy machines (- 25 GeV). In the next 
section the cure for high energy proton storage rings, the ‘Siberian Snake,’ is discussed in some 
detail and in the final section of the first part we mention some outstanding problems and examine 
the possibilities at very high energy. The second part of the paper presents a brief report on the 
workshop on polarized beams. The topics mentioned there ‘will be covered in much more detail 
in the individual contributions to the conference proceedings. 

II. A REVIEW OF POLARIZED PROTON BEAM TECHNIQUES* 
A. The Basic Phyeice2 

To understand the basic physics consider a circular accelerator. The particles are kept on an 
essentially circular orbit by a guide field which is mostly a vertical magnetic field. In this field 
the spin of a particle precesses about the vertical with a frequency 

n = 7G = 7( f - 1) . 

i.e., for a bend angle Aa, the spin precesses by 

A8 ,+,, = 7GAB 

when compared to the bent orbit. In a perfectly vertical magnetic field the motion is a pure 
precession, and thus, the vertical projection of the spin vector # is preserved 

S, = const. (3) 

-. 

Therefore, if a vertically polarized beam were injected, the polarization would be maintained. 

However, the story is not yet complete. In order to keep particles in the neighborhood of the 
ideal orbit, focusing fields are also necessary (in particular, vertical focusing). So from time to time 
a particle must pass through horizontal magnetic fields which bend it back to the neighborhood 
of the design orbit. This causes the spin to precess out of the vertical. On the other hand, these 
horizontal fields must average to zero since the average position is nearly a planar circle. 

Thus we have the situation that the field experienced by a particle on its orbit is a vertical 
magnetic field plus fluctuating horizontal fields. This leads to a precession of the spin around 
the vertical plus small fluctuations out of the vertical. These fluctuating terms average to zero 
unless the precession frequency is the same as the frequency of oscillation of the horizontal fields 
(as seen by the particle). If these frequencies are the same, the resonance condition, then on each 
turn, the small precession around the horizontal axis adds in phase with the previous turns, a 
situation which can lead to depolarization. 

What are the frequencies at which resonance occurs ? The vertical orbit of a particle in an 
accelerator is composed of two parts. Let z be the vertical deviation from an ideal design orbit. 

I 
z = z,, + z/g (4) 

. 

An accelerator is never built quite perfectly. These errors (magnet misalignments, etc.) drive 
the oscillations in the vertical direction at the frequency with which they occur. In terms of 
the turning angle of the accelerator, the errors are periodic, and thus a Fourier decomposition 
yields all integer frequencies. Thus z,, (co - closed orbit), the Ynhomogeneous response” of this 
oscillator is a function of the accelerator only, and 
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z, + integer frequencies, k 
‘imperfection resonances* (5) 

On the other hand, not all particles are exactly on this orbit, and therefore, they oscillate about 
it with the natural frequency of the focusing system, “the homogeneous solution.” This betatron 
oscillation, zp, consists of an oscillation at a frequency u,, the vertical tune, modulated periodically 
in phase and amplitude. Thus, if the accelerator has P identical periods, then 

zp -+ frequencies kP f uZ, k an integer 
‘intrinsic resonances’ (6) 

If the imperfections in quadrupole gradients are also included, then the exact periodicity is unity, 
and we find 

Gradient errors, zp + k f u . (7) 

This discussion concerned the orbits, but since the field on the orbit is just linearly related 
to the orbit, then these are also the frequencies of the magnetic field on the orbit. Of course, 
the actual situation is even more complex since there are higher order effects also. The general 
resonance condition is 

n = 7G = kl + k2uz + k3uz + k4u, . (8) 

where ut and u, are the horizontal and synchrotron oscillation tunes respectively. 

To illuminate the problem consider just the imperfection resonances. Then during accelera- 
tion a resonance is encountered every 0.52 GeV, clearly a frequent occurrence for a high energy 
accelerator. In the next sections we give a quantitative treatment of these resonances to under- 
stand the depolarization mechanism and to understand the methods that have been developed 
for avoiding depolarization. 

B. The Spin Resonance 

1. The Equations of Motion. The spin of a particle, taken as a classical normalized vector, 
in a static magnetic field obeys the equation 

dg -= 
dt &g x [(1 + 7G)& + (1 + G)a,,] (9) 

=Sxd 

where /? is in the rest frame, t and 3 are in the lab, and ~~(B’~~) are the components of the mag- 
netic field which are perpendicular (parallel) to the instantaneous velocity. The orbit equations 
are given by 

dv’ e -= 
dt -4x2. 

7m= 

The difference between the bending of the orbit and precession of the spin in a transverse magnetic 
field is clear from the difference in the coefficients in Eqs. (9) and (10). 

-- 
It has become customary and also convenient to express the above equations in spinor nota- 

tion. To do this we let 

S=t(rb$ . (11) 

where a’ stands for the Pauli matrices and $J is a two-component spinor.Then the equation of 
. motion for $ is given by 
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(12) 

Equations (11) and (12) are exactly equivalent to Eq. (9). 

If in addition we go to a coordinate system which rotates with the velocity of the particle and 
change the independent variable to the bending angle, then Eq. (12) becomes2 

(13) 

where 

<Z‘ -( 1 + 7G)(pz” + iz’) + ip( 1 + G)(z/p)’ + higher order terms = c ek e-‘lCke . (14 
k 

Thus, the horizontal fields on the orbit of the particle have been expressed in terms of the vertical 
deviation from the ideal orbit, z, and the instantaneous bending radius, p. The primes indicate 
d/ds where s is the distance along the ideal orbit. This expression for the perturbing fields is 
convenient for calculations since commonly the orbit in an accelerator is well known. 

Notice that 5 has been expressed as a series with coefficients, ck. In general for the first order 
effects, we need to include all frequencies mentioned in the introduction. However, it is useful, 
provided the frequencies are well separated, to consider each resonance separately. To begin, 
consider a perfect machine. 
2. The Perfect Machine. For the perfect machine there is only a vertical field; thus, setting 
c equal to zero in Eq. (13) yields 

(15) 
which has the solution 8 

$~(e) = exp G / nde’a, $JO [ 1 0 

(16) 

or if we define 

x(e) = / &de’ , 
0 

then Eq. (16) becomes, explicitly, 

(17) 

This is a precession around the z axis at an instantaneous frequency, n. Thus, the projection on 
- SZ z axis is preserved, i.e. 

. 

3. An Isolated Reeonance. The problem for an isolated resonance is only slightly more 
difficult than that for a pure vertical field. For this problem let n be constant (7 = const.) and 
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consider one resonance with strength e at frequency no (no can be any one of the resonances 
discussed previously). Thus we must solve the equation 

(20) 

Now change to a coordinate system which rotates at the frequency of the perturbation, no. In 
this frame the perturbing field appears stationary rather than oscillating. Explicitly we let 

-- 
(21) 

and obtain - 

where 

The solution is simply 

(22) 

(23) 

4(e) = exp(-iA(5 . k)e/2)#o . 

This is a precession about n’ and the projection along n’ is invariant; however, now n’ is no longer 
along the vertical (see Fig. 1). (In addition if we transform back to the original coordinates, n’ is 
precessing about the vertical.) Thus the perturbation creates an effective field which is precessing 
at frequency no and tipped out of the vertical by an amount r/X. 

Consider the following thought experiment: 
let 6 be very large and negative so that n’ = 
--z. Now vary 6 adiabatically through eero (res- 
onance) to a large positive value (>> e). Then b 
n’ rotates and finally n’ and 4 change places. 
However, since it is the projection along n’ which 
is preserved, this means that the spin flips. This 
spin flip is completely analogous to that which 
takes place in Nuclear Magnetic Resonance. 

J&2 

Thus, we have an interesting situation: If 
e = 0 the resonance does nothing, and if e # 0, 
then the spin flips (provided we change 7 and 
thus n slowly enough to be adiabatic). This is 

10-84 4!IG?Al 

quite a contrast to orbit resonances which can Fig. 1. The rotation of ri in the neighbor- 
drive the beam out of the beam pipe. In fact hood of a resonance. 
this process of adiabatic spin slip has been used 

_ successfully at the Argonne ZGS, Saturne II, and 
the AGS at BNL. - 

The question is now to understand what “adiabatic” is in the context of acceleration through 
a spin resonance. In any system an adiabatic variation is one which occurs during a time which 
is large compared to the inverse of the frequency. Near a spin resonance the frequency X is - e; 
in addition E is the Owidth” of the resonance since it determines the variation in 6 necessary to 
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I 
flip n’. Thus if we change 6 at rate Q = d(~ - no)/de, the atime”, A#, for passage through the 
resonance is 

A8 = 2E/& . (25) 

For this passage to be adiabatic there should by many oscillations within this ‘time,” i.e. 

Therefore, the resonance must be sufficiently strong or the rate of passage sufficiently slow for 
spin flip to take place. On the other hand it is clear that if c is small enough, the resonance 
has no effect at all. The question is then what happens in the intermediate cases; the answer is 
depolarizationS 
4. Passage Through Reeonance. The depolarization effect of a single isolated resonance 
can be calculated in terms of known special functions in the case of linear variation of the energy 
and the precession frequency n. The result is particularly simple if we integrate the spin motion 
from --oo to co; i.e. if we start far from the resonance and end far from the resonance on the 
opposite side. The depolarization in this case is given by3j2 

sfinol = (2e-x2/2a _ 1) s~ilitd . 
2 (27) 

Thus, we see again that the parameter c2/cr plays the key role. Notice also that both spin flip 
and no spin flip are contained in this formula; if E~/Q is small enough then the polarization is 
unchanged, while, if c2/o is sufficiently large, we find the spin flip described previously. In the 
first case the spin precession frequency is changing so rapidly that the spin vector does not have 
time to follow the change in direction of the effective field; while for the second case the change 
in frequency is sufficiently slow to allow the precessing spin to follow the reversal of the effective 
field. 

C. Cures for Small Machines 

There are basically four approaches based on the Froissart and Stora formula, Eq. (27), for 
eliminating the depolarizing effects of resonances. 

1. Make E Small (spin transparency or harmonic matching). In the case of imperfection 
resonances this is accomplished by tuning out the harmonics of the closed orbit which are causing 
the trouble by using correction dipoles. In practice, the change in the orb,it is so small that the 
polarization of the beam must be used as an indicator. This method was used quite successfully 
at the Argonne ZGS, is now used at Satume II for some of the depolarizing resonances,’ and 
has been recently tested once again at the AGS at BNL.5 In addition this method has now also 
been used successfully for electrons at PETRA where the polarization was improved from 20% 
to 80%fo6 

In principle this idea can also be used to tune out the effects of intrinsic resonances.’ In 
this case, correction quadrupoles are necessary and the correction requires a calculation with the 
existing lattice. Correction quadrupoles are also necessary to eliminate the resonances due to 
errors in quadrupole gradients. Thus far, correction quadrupoles have been used successfully at 
Satume II to correct errors in gradients; however, this method has not yet been attempted with 
intrinsic resonances. 

- a. Increase a. From Eq. (27) we see that decreasing the strength of the resonance, 6, is equiv- 
alent to increasirig the rate of passage through the resonance, a. Since there are limitations on the 
acceleration rate in any accelerator, this method is not very useful for imperfection resonances. 
However, this method can be and has been used quite successfully for intrinsic resonances. The 
important difference here is that for intrinsic resonances, the frequency depends upon the vertical 
tune u,. 



Therefore, it is possible to cross resonances 
by changing the tune of the machine abrupt- 
ly as the precession frequency comes close 
to a resonance. This is illustrated in Fig. 2. 
Note that it is necessary to maintain the 
tune shift for some time until the normal 
acceleration rate has separated the spin pre- 
cession frequency from the resonance. 

Normal acceleration 

x, = k’-U, 

This method has been used quite suc- 
cessfully at the Argonne ZGS and is now 
being used at the AGS at BNL.’ There are, 
however, limitations to this method in that 
the tune shifts must be small enough not 
to damage the orbit of the beam yet large 
enough to clear the ‘tails” of the resonance. 
Of course, the rate of the tune shift must 
be quite high also. The design at the AGS 
is probably close to the feasible limits. In 
this case the tune shift is 0.25 in a time 
of about 2 psec. With these finite changes 

insert A L’z at resonance 

in frequency, it is also necessary to use a / 
modified formula for calculating the depo- 
larizing effects.‘?’ Fig. 2. The resonance jump. 

3. Make E larger. If an individual resonance is quite strong, then, provided that other reso- 
nances are well separated, it is possible to use the resonance to flip the polarieation of the beam. 
This can be accomplished in the case of imperfection resonances by the same method of closed 
orbit correction; however, in this case the “correction” is shifted in phase to enhance the reso- 
nance. This method is used successfully at Satume II (100% spin flip) and has been successfully 
tested also at the AGS at BNL. 

4. Decrease Q. By similar arguments one can change the rate of passage through a resonance 
to enhance its effect. One can, of course, vary the acceleration rate, but in addition it is possible 
to again use a tune shift to change the rate of passage through the resonance. This method was 
used with only moderate success at the Argonne ZGS. It has been tested also at the AGS at BNL 
and preliminary results yielded 80% depolarization.’ 

Finally we should mention that there have been new interference effects observed at Satume II 
which have now been understood theoretically. r”y4 These are caused by synchrotron oscillations. 
These effects have not limited performance at Satume II and have so far not been observed at 
the AGS. 

D. The Cure for Large Machines - The “Siberian Snake” 

For high energy accelerators or storage rings such as FNAL and the SPS at CERN, there 
are hundreds of resonances which are stronger than those for lower energy machines. Thus, the 
standard approaches of resonance jumping and spin flip are not so attractive. In particular, 
resonance jumping becomes technically unfeasible. -One can imagine a spin flip at each resonance; 
however, a global solution which would eliminate all the resonances is desirable. This solution 
exists in the form of the Viberian Snake.“rl 

. 

- + The Single Siberian Snake. To understand the basic principle consider Fig. 3 (taken 
from Ref. 12). Assume that at the point SU on the circumference of the accelerator there is a 
device which: a) precesses the spin by 180” around the longitudinal direction, and b) yields 
no net orbit deflection or displacement. 

Now imagine the spin of a particle pointing in some arbitrary direction traversing the ring 
once, from the point A and back. During this circuit the spin gets precessed first by an angle 
around the z axis 



I 
z 

A 

42 =7Gr , 

then it gets precessed around the longitudinal 
axis by 

Ai?=s, 

and finally it once again precesses by A61/2 in 
returning to its starting point. Figure 3 shows 
how each of the three projections of the spin are 
treated by such a succession of transformations. 
The key point is that the snake effectively re- 
verses the vertical direction so that the two A0112 
precessions exactly cancel, with the net effect 
that the spin is rotated about the longitudinal 
direction by 180”. Thus, as you see in Fig. 3 the 
longitudinal projection of the spin is preserved at 
the point A. In addition, the spin tune, has been 
changed to vP = l/2 independent of energy, be- 
cause the other projections each repeat after two 
revolutions.. 

Thus the normal precession frequency has 
been changed to a non-resonant point indepen- 
dent of energy and the mode of operation has 
been changed; a polarized beam is injected so 
that it is longitudinal at the point A. Knowing 
the polarization at A, it is then easy to calculate 
it (as a function of energy) at other points in the 
ring. 
2. The Double Siberian Snake There is an- 
other possibility which has some advantages over 
the single Siberian Snake. In this case there are 
two snakes directly opposite (180” bending be- 10-84 

tween the snakes). One snake, S, rotates 180” 4962A3 

about the longitudinal direction while the other, 
S, rotates 180” about the horizontal direction. Fig. 3. Spin motion with a single Siberian Snake.12 

Figure 4 demonstrates how each projection of the spin moves in a ring with a double Siberian 
Snake. 

For this scheme the spin tune is again changed to l/2 independent of energy; however, now it 
is the vertical projection of the polarization which is preserved, up in one-half of the ring and down 
in the other half. This has the distinct advantage that the invariant spin direction is independent 
of energy at all points along the circumference. 

The key point about both snake schemes is that they shift the spin tune to a non-resonant 
point independent of the energy. This places the spin tune on an equal footing with betatron 
and synchrotron tunes; however, there are still problems not solved by the snake. 

_ LNon-linear Spin Resonance with a Snake In the presence of a snake the resonance 
condition in Eq. (8) becomes 

1 
i = kl + km + kg/, 



where kdu, has been suppressed. Equation (30) 
is valid for a coasting beam and approximately 
valid if Y, is sufficiently small. (For u, larger the 
following analysis is easily extended.) Written 
as in Eq. (30) the spin resonance condition be- 
comes a restriction in two dimensional betatron 
tune space. In Fig. 5 you see a set of possible 
resonance lines which must be avoided. This in- 
cludes all resonances which satisfy 

lkzl+lk3(<3 . (31) 

All of thei lines correspond to higher order 
betatron resonance lines if one includes both sum 
and difference non-linear betatron resonances. For 
example the resonance with 1 k2 I=1 k3 I= 1 cor- 
responds to betatron resonances given by 

f2Y, + f2u, = odd integer . (32) 

This is a subset of the stable and unstable cubic 
bet at ron resonances. 

In addition each of these resonance lines has a 
width which depends strongly on the k’s. Those 
resonances in which kl is a multiple of the period- 
icity are strong and should be avoided by a judi- 
cious choice of a working point. The previous dis- 
cussion is especially relevant to storage rings. If 
the working point is chosen on a (low order) res- 
onance then even if the resonance is very weak, 
the beam will eventually depolarize. In fact slow 
non-linear resonance has been experimentally ob- 
served at the ZGS where a small shift in the ex- 
traction energy eliminated the problem.r3 

The calculation of the widths of these non- 
linear resonances is difficult; however, recent prog- 

4962A4 

ress with tracking both orbit and spin at DESq 
to discover non-linear effects will help consider- Fig. 4. Spin motion in a double Siberian Snake. 
ably for testing individual storage rings.” These 
non-linear resonances are also excited by the beam- 
beam effect. 

4. Spin !‘lJune Shifts in Siberian Snakes If the arcs of a storage ring were just bends, then 
all of the previous discussion would be exact. However, we know that the horizontal fields can 
have large .cumulstive effects near the spin resonances discussed in the first section. This means 
that near the ‘old’ spin resonances given by Eq. (8), the horizontal fields must be taken into _ 

- account. 

Following Ref. 15 consider an isolated resonance of complex width c. Then if the precession 
frequency in the arcs is exactly the frequency of the perturbation, the spin tune is 
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up = f + 1 fz 1 CO8 $6 w 

Single snake: 

Double snake: 

cos “Up = cos(24) sin2(r I c I /2) (34) 

where 4 is a phase factor. In addition to the 
change in tune there is a change in the n’ direc- 
tion also. Thus, the old resonances which were 
eliminated by the Siberian Snake scheme cannot 
simply be forgotten. They lead to two important 
effects: 

1) integer resonance can reappear if I e I> l/2 
for the single snake or if I c I> 1 for the 
double snake and 

2) they shift the non-linear resonance condi- 
tion in Eq. (30) and thus shift also the 
intercepts of the resonance lines in Fig. 5. 

P*l 

vi! t 

Fig. 5. Nonlinear spin resonances with 
a Snake. 

Therefore the choice of a working point must also include the choice of an energy which is 
far enough from large resonances to ensure that the snake works properly. If, however, the spin 
resonances are quite strong, integer resonances occur in spite of the snake. 
5. Scaling for E The resonance strengths ck of the linear resonances mentioned can be calcu- 
lated for any given machine. 2 The details of the sizes depend upon the layout of the linear lattice 
and upon the size of the errors. This strong dependence can be exploited to correct the lattice 
and diminish the effects.7 As was mentioned earlier this has been demonstrated in both proton 
and electron machines and goes by several names, spin transparency, harmonic matching, etc. In 
addition, though, there are some scaling factors which are valid for any machine. Inspecting Eq. 
(14 one finds for intrinsic resonances 

%t H EO( &/fO)"2(~/~o)112(E/Eo)l12 (35) 
where E, p, and E are the invariant emittance, average beta function and energy respectively. 
The magnetic fields scale linear with particle energy; however, adiabatic damping reduces the 
effect on the spin by a factor E -li2. For imperfection resonances 

GO 
Cmp N CO 

( > El 
ww * (36) 

rfflr 

In this case the scaling is linear with energy for given closed orbit. To estimate the c’s for a 
high energy storage ring consider a calculation for the AGS at BNL.2 Then assuming that the 
invariant emittance, beta functions and closed orbits vary little one finds 

-- Cinl 1! (1 - 15) X 10m2 

-- 

_ . . 
These scaling laws compare well with actual calculations done in Ref. 15 for a 400 GeV storage 

ring. 
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It is clear that at energies higher than 400-500 GeV it will be necessary to use the snakes and 
harmonic matching to keep the e’s well below unity. 
6. A -pica1 Snake Design Many combinations of transverse bends have been invented to 
create the rotation of the spin direction by A while returning the orbit. One of the best designs 
for a snake of type S, is by Steffen. lb The problem is to use a combination of bends which keeps 
the excursion of the orbit small at injection energy. At higher energy, since the snake magnets do 
their job at fixed field, the orbit excursion in the magnets drop inversely with the energy. 

The detailed design here is taken from Ref. 17 which also appears in the proceedings of the 
Workshop on SP fixed target physics. la It consists of a series of ten dipoles and has a total length 
of 20.5 m. Table 2 presents the basic parameters of such a snake. 17*lg Notice the large aperture 
necessary. This is due to the relatively low injection momentum of 14 GeV/c. Otherwise the 
snake presentsno technical problems and fits easily into the SPS. 

Table 2. Snake Dipole Magnets for the SPS27128 

5Pe Short Dipole Long Dipole 
Number 
Spin rotation angle 
J Bdl 
Gap diameter 
Overall 

length 
width 
weight 

6 4 
A/4 f/2 

1.375 Tm 2.75 Tm 
20.0 cm 20.0 cm 

125 cm 200 cm 
160 x 85 cm 160 x 85 cm 

8.4 t 15.5 t 

Total snake power 1.5 MW 
Power for SPS physics 80 MW 

E. Some Outstanding Problems 
There are two very important outstanding problems which are essential for the operation of a 

high energy polarized proton storage ring: Beam intensity and measurement of the polarization. 
There are standard methods for the measurement of the polarization for protons which can 

be applied up to about 25 GeV. 2o However, at higher energies there have been a few proposals 
but no clear cut winner as yet. 21 There is much work to be done here both for high energy fixed 
target experiments or for polarized storage rings. 

The maximum intensity of a proton storage ring is limited in normal operation by either 
coherent instabilities or the beam-beam effect. For polarized operation this is also true; however, 
so far, sources have not yet supplied enough current to reach these limits. The solution chosen at 
the AGS at BNL is H- 7 injection. With the present source current, the intensity is in excess of 
10” p r. Saturne II has a similar intensity. However there are plans to increase the intensity of 
both these machines by an order of magnitude. One interesting new development at CERN uses 
polarized stable atomic hydrogen to obtain intense atomic beams. 22~23 This holds great promise for 
application to polarized sources. For application to storage rings intensities should be increased to 
levels approaching those obtained with unpolarized beams (AGS N 1013p). However, if stacking 
techniques are combined with low emittance polarized beams, somewhat lower intensities should 
be accept able. 

-- 

. 

_ . . 

Finally, if we assume we have high intensity and can measure polarization, will the beams 
remain polarized while in collision in a storage ring? The field due to the other beam not only 
changes the orbit of the particle, it alzo directly precesses the spin by a small amount. For 
electrons there is experimental evidence that depolarization takes place near the beam-beam 
limit;’ however, there is no experimental data on polarized colliding proton beams! There have 
been theoretical studies that also suggest that beam-beam depolarization should occur near the 
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beam-beam limit:’ and there is a new proposal for a method to make the spin immune to the 
effects of the beam-beam force.25 

The Siberian Snake “cures” these beam-beam effects also; however, the non-linear resonances 
discussed earlier are further enhanced by the beam-beam effect. 

Can these techniques discussed here be extended to very high energy, say 20 TeV? If we 
examine the scaling laws in Eqs. (37) and (38), we see that the resonance strengths will be 
considerably greater than unity. However, there has been work by Kondratenko which suggests 
that these large resonances can be cured by multiplying the number of snakes. The number of 
snakes in this case scales roughly linear with the energy of the machine. Thus, a 20 TeV SSC 
might need about 50 Siberian Snakes. However, there is much work to be done before this issue 
can be settled. 

Summary 1 

The summary to this part of the paper can be very brief. The standard techniques for curing 
depolarization are well understood both theoretically and experimentally. We look forward to 
new source developments to bring polarized intensities up to those for normal operation or least 
sufficient for injection into large storage rings. The cure for large machines, the ‘Siberian Snake: 
is well understood theoretically but now needs an accelerator or storage ring as a home. The 
quest ion is: who will take the next step, polarized protons at about 300 GeV? 

III. WOREStiOP ON ACCELERATION AND STORAGE OF POLARIZED PRO- 
TONS AND ELECTRONS IN VERY LARGE MACHINES 

The program of the workshop at the symposium consisted of four parts: 

1. Introductory Talks 

2. Exotic Spin Manipulation 

3. Problems Specific to Electrons 

-. 

4. Problems Specific to Protons and Scaling to Very High Energy 

The emphasis was to have been on the last section; however, the contributions covered all 
topics roughly equally. The format left time for informal discussion as well as contributed talks. 
There were many talks, and thus it was necessary to meet the next Monday, Sept. 17, to continue 
the discussion on beam-beam depolarization. In the next section I will highlight some of the 
contributions made at the workshop. For the details of the contributions below, please refer to 
the conference proceedings. 

Discussions and Talks at the Mini-Workshop 

A. L. NAKACH 

A. Nakach discussed some very interesting experimental and theoretical results from Satume 
II concerning the depolarization from intrinsic resonances. They have shown that the correlation 
between betatron amplitude and spin flip can be exploited to obtain a partial recovery of the 
apparent depolarization. This is done by crossing two successive intrinsic resonances. In this 
case the large betatron amplitude particles experience a double spin flip while those at very small 
amplitude do not flip at all. It is only those at intermediate amplitudes that suffer depolarization, 
and thus the ‘depolarization’ is partially recovered. This has also been shown to happen at Satume 
if they accelerate through an intrinsic resonance and decelerate through the same resonance. 

- L.RATNER 

Larry Ratner discussed the recent successof the AGS at BNL in accelerating polarized protons 
up to 16.5 GeV with 40% polarization and intensities of about 10”. They have found that spin 
flip does work at imperfection resonances; however, spin flip for intrinsic resonances yields some 
depolarization. Their choice for controlling depolarization is, therefore, to correct imperfection 

. resonances and to jump intrinsic resonances with fast tune jump quadrupoles. They so far have 
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only 8 tune jump quads powered in the AGS, but they plan to add more power supplies soon to 
bring the number up to 12. 

D. BARBER 

Barber discussed the possibility of a solenoidal spin rotator for HERA. He has shown that 
it is possible to match such a rotator both for the spin and for the orbit. In doing this he has 
developed some very general techniques making use of algebraic programs such as REDUCE. The 
rotator suggested consists of about 40 meters of 7 Tesla solenoids. This. option has not yet been 
adopted for HERA. In spite of the high fields necessary, this scheme may be attractive because 
the geometry of the device is independent of energy and helicity orientation. 

J. BUON 

Jean Buon-discussed several problems which he has been studying recently. He first talked 
about the general optimization of fully anti-symmetric mini-rotator schemes for LEP and HERA. 
Although Siberian Snakes have been suggested primarily for solving depolarization for large proton 
storage rings, they might also be used to control some aspects of depolarization in electron storage 
rings. Jean studied some aspects of this problem and found that they do not solve the problem of 
depolarization for electrons. To treat the problem of beam-beam depolarization, Jean suggested 
at the 12fh International Conference on High Energy Accelerators a scheme for curing the problem 
which cancels the effect in one damping time. In the talk here he showed that this technique is 
incompatible with normal spin matching techniques. Finally he discussed some attempts at using 
spin matching to reduce or enhance intrinsic resonances for the AGS. This work was done with 
Philip Bambade. They had only moderate success because of the lack of freedom in the AGS 
lattice. 
BEAM- BEAM DISCUSSION ( J . KEWISH) 

The talk by Jean Buon stimulated a discussion of the effect of the beam-beam interaction on 
the beam polarization. The discussion was led by J. Kewish but many people contributed. Alex 
Chao made the point that the linear part of the beam-beam effect could be cancelled using the 
normal spin matching conditions but with the linear part of the beam-beam force present. Jean 
Buon further discussed his technique which differs in that it attempts to cancel the beam-beam 
effect over many revolutions. Kewish however pointed out that the nonlinear beam-beam kick 
yields a beam blow up before a damping time. This implies strong nonlinear effects on the spin 
-motion. It was generally agreed that the problem needs further study. This is of course hampered 
by the general lack of understanding of the beam-beam effect on the orbit since it is the fields on 
this orbit which cause depolarization. 

R. D. RUTH 

_ I gave a general introduction to techniques for maintaining polarization for protons up to 
about 500 GeV. At very much higher energies, say 20 TeV, the resonances become very strong. 
So far these strengths have not been calculated, but there are some scaling laws which suggest 
that the techniques which work at low energy (tune jumps, orbit corrections and two Siberian 
Snakes) will not work at such high energies. It has been suggested that many Siberian Snakes 
could be used to solve the problem. The number of snakes needed rises linearly with energy, thus 
one would need on the order of 50 snakes for an SSC. 

E. D. COURANT 

Ernest Courant led a discussion on the scaling of techniques to very high energy. There is 
now a long list of possible accelerators for high energy polarized protons: the SppS, the Tevatron, 
ZHSK, the Large Hadron Collider (LHC) and the SSC. It is clear that terrain following for the 
large machines -is essentially incompatible with polarization. It is also clear that the simple 
multiplication of snakes may not work at energies much higher than 1 TeV. There is also the 
unsolved problem of beam-beam depolarization. In spite of this there are good reasons to believe 
that with multiple Siberian Snakes, polarized beams at very high energy will be possible; however, 
the problem needs much more study. 
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