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ABSTRACT 

We analytically study the generation of longitudinal plasma waves in an un- 

derdense plasma by two electromagnetic waves with frequency difference approx- 

imately equal to the plasma frequency, as envisioned in the plasma beat-wave 

accelerator concept of Tajima and Dawson. The relativistic electron fluid equa- 

tions describing driven electron oscillations with phase velocities near the speed of 

light in a cold, collisionless plasma are reduced to a single, approximate ordinary 

differential equation of a parametrically excited nonlinear oscillator. We give 

amplitude-phase equations describing the asymptotic solutions to this equation 

valid for plasma wave amplitudes below wave-breaking. We numerically compare 

the behavior of the asymptotic equations with that of the original equation and 

with particle simulation results. 
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1. Introduction 

Since the original proposal by Tajima and Dawson,’ the plasma beat-wave 

accelerator has received much attention as a possible high energy accelerator 

because of the very high gradients thought to be possible. In this scheme, the 

electric field of a longitudinal electron plasma oscillation with phase velocity, 

?+h, near the speed of light, c, accelerates charged particles to high energies. 

The plasma oscillation is resonantly excited by the ponderomotive force of two 

collinear beating lasers with frequency difference, wr - ~2, approximately equal 

to the electron plasma frequency, wP, in an underdense plasma (WI, w2 > wr). 

Gradients of order fi eV/cm are theoretically possible, where n is the electron 

number density in units of cms3. 

If the transverse dimensions of the beating laser beams are much greater 

than the induced plasma wavelength, $’ = (kr - kz)-l, the lasers and plasma 

wave can be treated approximately as infinite plane waves. Within this approx- 

imation Rosenbluth and Liu2 analytically studied the growth and saturation of 

longitudinal plasma waves in a cold, collisionless fluid plasma assuming weak 

laser strengths (v,,~/c E eEL/ mwc < 1) and small amplitude plasma waves 

(An/n < 1 and hence eEp/mwpc < 1 if vph N c). 

Because the beat-wave generation of plasma waves is a resonant excitation, 

large amplitude plasma waves may develop even though the lasers are rela- 

tively weak. The condition eEp/mwpc < 1 can then be violated even though 

eEL/mwc < 1. In this paper we analytically study the beat-wave generation of 

plasma waves with vPh = c in a cold, collisionless fluid plasma subject to the 

more general condition eEp/mwpc 5 1. In practice particle trapping and wave- 

breaking occur even if vph c c in a cold plasma for eEp/mwpc 2 1, and the fluid -- 
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approximation breaks down. 3 

As a plasma wave is generated by two beating lasers it can scatter laser 

light up and down in frequency by integer multiples of wp (multiple Raman 

scattering). 4 The scattered light will also beat, inducing oscillations at various 

multiples of wp. However, for laser frequencies w >> wp, this sideband generation 

is negligible prior to saturation of the plasma wave. For example, when w N 

5 - 10wp, numerical simulation codes indicate that as long as eEp/mwpc 2 1 less 

than 5% of the relative laser power is scattered into sidebands for times up to 

saturation of the plasma wave amplitude.5 

Consequently, to study plasma wave generation and saturation analytically 

we will neglect the scattered laser sidebands. We then have only two beating 

electromagnetic plane waves and a plasma wave, all with phase velocities near 

the speed of light in an underdense plasma. One can then reduce the relativistic 

plasma fluid equations to an approximate ordinary nonlinear differential equa- 

tion for the evolution of the longitudinal plasma wave without recourse to the 

customary linearization procedure. Not surprisingly this equation is equivalent 

to Poisson’s equation with the electron density being modulated by the beating 

lasers and variations in the plasma wave phase velocity being neglected. The 

derivation and asymptotic solution of this nonlinear equation are the subject of 

this paper. 

The outline of the paper is as follows. In Section 2 the equations describ- 

ing nonlinear waves in a relativistic plasma are reviewed to establish notation. 

In Section 3, starting from the known solution of these equations for a single 

light wave in an underdense plasma, the approximate ordinary differential equa- 

tion describing a longitudinal plasma wave driven by two beating light waves is -- 
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derived. 

Amplitude-phase equations describing the asymptotic solutions of this differ- 

ential equation are constructed for small amplitude plasma waves (eE,/mw,c < 

1) in Section 4 and large amplitude waves (eEp/mwpc 5 1) in Section 5. The 

numerical solution of these asymptotic equations are compared with that of the 

original nonlinear differential equation. We find that our small amplitude asymp- 

totic solution agrees with the previous results of Rosenbluth and Liu in the time 

domain. 2 For large amplitude waves, our asymptotic solution accurately ap- 

proximates the numerical solution of the original equation for amplitudes up 

to eEp/mwpc N 1. Interestingly, our solutions also agree very well with two- 

dimensional particle simulation results for the temporal evolution of beat-wave 

generated plasma waves. 

We conclude the paper in Section 6 with some comments regarding the ex- 

perimental implications of our results for plasma wave generation in underdense 

plasmas. 

2. Nonlinear Waves in a Plasma 

The equations describing nonlinear waves in a cold, collisionless relativistic 

plasma with stationary ions have been previously given by Akhiezer et a1.6 The 

fluid equations for the electron velocity ii, electron density n, and the fields E 

and B are 

@  at + (B - V)p = -eE - %(ti x B) 

-- 
V.E=47re(no-n), VXB=-tg (2-l) 
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- 
V.B=O, VxB=-yeno+: g 

where jj is the electron momentum 

and no is the equilibrium electron density. 

The wave motion is a function of the single variable I . F - vpht, where 2? is a 

unit vector in the direction of propagation, and 21ph is the phase velocity. Taking 

the vector z along the .Z - axis and defining the normalized momentum p = p/me, 

Akhiezer et a1.6 obtain from Eqs. (2.1) the following equations for the electron 

momentum (in the absence of an external magnetic field) 

where 

d2p, 
dr2 + 

w;@;h @phPz 

k$h-l &j/m-p, =’ 
P-3) 

d2py w;$th &hPv 
dr2 + p;h - ’ pphdm - pz = ’ 

(2.4 

= 0 , 
z 

P-5) 

Equations (2.3) - (2.5) d escribe nonlinear plasma waves, p(r), with a given 

phase velocity, vph. Using these equations, the electron density n and the fields 

I? and B are found from Eqs. (2.1) to be 

-- 

nOPph 

n = Pph - u, = no 1 + pphd& - pz 
> 

(2J) 
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mc dpz Ez = --- mc dp, 
e dr’ 

&=-..--- 
dph dT 

mc dpy 
Ey = -ed7, mc dp, B, = --- 

@ph dr 

me d Ez = --- 
dph dr 

(pphi’z - m) , B, = 0 , 

(2.8) 

P-9) 

(2.10) 

where u, = v,/c. Hence, once Eqs. (2.3) - (2.5) are solved for the momentum 

p(r), one can immediately obtain n(r), E(r) and B(r) for the plasma wave from 

Eqs. (2.7) - (2.10). 

3. Light Waves in a Plasma 

3.1 ONE LIGHT WAVE 

Equations (2.3) - (2.5) can be used to approximately describe the generation 

of a longitudinal plasma wave by two light waves in an underdense plasma. The 

method is suggested by recalling the calculation for a single linearly polarized 

light wave in an underdense plasma as given by Akhiezer et a1.6 

-. For a single light wave in an underdense plasma, &h N 1, and the electron 

motion is described by the equations 

d2pl 
de2 + 4s - pz = ’ 

-$(pz-diT7)+$$.$~~ =o 
z 

where pl can be taken as either pz or py, and 

-- 8 = (&fh - l)-1’2 wpr . 
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With &,h N 1, one concludes from Eq. (3.2) that 

dm - pz = constant > 0 . 

Denoting this constant by C2, Eq. (3.1) becomes 

d2pl x+$=0 

(3.4 

(3.5) 

which has a solution of the form 

p1= RICO+ (3.6) 

Since the average of pz over an oscillation vanishes, the constant C2 is determined 

from Eqs. (3.4) and (3.6) to be 

c2 = (1+ $)1/2 . 

The solution for the electron motion is then 

pl = RI cos wr, pz = 
R: cos 2wr 

where 

w = wp(r$h - 1) -li2(l + 3@-‘i4 

P-7) 

(3.8) 

(3.9) 

is the frequency of the light wave. 

This is the familiar “Figure 8” motion of a single electron in the field of a 

plane wave7. Since w >> wp, low frequency plasma oscillations near wp are not 
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effectively excited, which is the physical content of Eq. (3.4). According to Eq. 

(2.10) then, E, N 0 in this approximation. Finally note that from Eq. (2.8) 

El(r) = YRlsinwr , (3.10) 

so RI is the usual quiver velocity parameter “v,,,/c” used as a measure of trans- 

verse electron motion in a laser field. We see that RI is actually a normalized 

momentum (in units of mc) rather than a velocity. 

3.2 Two LIGHT WAVES 

-. 

Now let us consider two linearly polarized light waves with frequency dif- 

ference wr - wz N wp in an underdense plasma (WI, wz >> wp). The beating of 

these two waves will excite a low frequency longitudinal plasma oscillation. This 

oscillation and the two light waves have phase velocities near the speed of light. 

Strictly speaking Eqs. (2.3) - (2.5) are only applicable to a single mode of given 

phase velocity, but since the phase velocities are nearly equal, we will attempt to 

treat these three waves in the plasma as approximately a single, coupled longitu- 

dinal - transverse mode, p(r). By choosing the initial conditions such that there 

is no longitudinal motion at, say r = 0, we would then see longitudinal plasma 

motion evolve for 7 > 0. 

Because of the beating between the two light waves, we expect the quantity 

dm - pz in Eq. (3.4) t o b ecome a slowly varying function of r rather than 

a constant as for one light wave. Consequently we define the slow dependent 

variable 

z(r) = JW - pz . (3.11) 

Recall that dz/dr is proportional to E,(r), -- so z(r) is proportional to the electric 
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potential. 

Since the phase velocities of the two light waves are nearly the same, we try 

a solution of the form 

PI = PI1 + P12 (3.12) 

for the transverse motion, where 

p11 = RI1 cos WIT, p12 = R12 cos W2T 

and 

(3.13) 

Aw 
w1=w+- 

2 
= w&3; - 1)-r/%-1/2(r) 

Aw 
(3.14) 

w2=w-- 
2 

= w&g - 1)-%-r/2(r) . 

Here Rlr,2 and w1,2 are constants, and Aw = wr - ~2. Since z(r) implies a longi- 

tudinal density modulation, the phase velocities &,J are space-time dependent, 

although they remain near unity if wr,2 >> wP. The group velocity Aw/Ak is also 

approximately c. 

The ansatz (3.12) is seen to satisfy Eq. (3.1) in the form 

d2n --p+w2Pl =o (3.15) 

to order &, where 

Wl + w2 
w= = 

2 
wp(P2 - 1)--1&-1/2(r) (3.16) 

is a constant, and p is the phase velocity of a light wave with frequency w. 

Because Aw < w, the superposition (3.12) is a very good approximation for the 

_ transverse motion. We must still determine an equation for z(r) however. 
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For simplicity we will specialize to the case of equal-intensity lasers, the 

generalization to different intensities being straightforward. It will be convenient 

to choose the overall signs of ~11 and ~12 such that 

Aw 
pl = Rl(cos wlr - cos ~27) = -2Rl sin w7 sin - 

2 r* 
(3.17) 

The corresponding laser electric field is to order & 

EL = yRl(sin wr7 - sin w27) = *Rl cos w7 sin $r . 
e 

(3.18) 

Using the solution (3.17) in Eq. (2.5) with &h = 1, we obtain an equation for 

the slow variable Z(T), 

d2x l-x2+& =. 
d(wpr)2 - 2x2 , (3.19) 

where 

Aw py = 4RT sin2 w7 sin2 -7 
2 * 

(3.20) 

-. 
As long as w >> wp, the high frequency part of pl will not excite oscillations in 

Eq. (3.19), and x(r) will indeed be a slow variable as assumed. We may then 

replace sin2 wr by its average value of $, and Eq. (3.19) becomes 

d2x 
d(wpr)2 - 

l-x2+R:(l-cosAwr) o 
2x2 

= . (3.21) 

Equation (3.21) d escribes a parametrically excited nonlinear oscillator (i.e. 

the excitation appears as a periodic coefficient rather than an inhomogeneous 

_ driving term). One can easily show that Eq. (3.21) is equivalent to Poisson’s 
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equation with the electron charge density being modulated by the beating lasers. 

If RI = 0, Eq. (3.21) d escribes free, longitudinal nonlinear plasma oscillations 

with phase velocity c. Upon solving Eq. (3.21) for x(r), one can immediately 

obtain the longitudinal electron momentum from Eq. (3.11) 

1 - x2 + p; 
P&J = 2x , (3.22) 

the electron density from Eq. (2.7) 

n(r) = no(1 + t, , (3.23) 

and the longitudinal electric field from Eq. (2.10) 

E,(T) = y$ , (3.24) 

where &h of the plasma wave is taken as unity. 

Because the plasma oscillation frequency is a function of amplitude, the ac- 

tual phase velocity of the plasma wave, wr(amplitude) / (ICI - k2), will change. 

Wave-breaking will occur if this phase velocity and the longitudinal electron 

oscillation velocity approach each other. Equation (3.21) does not exhibit wave- 
-. 

breaking because of the approximation /3*h = 1. However we can estimate from 

the solution of this equation when wave-breaking would occur simply by com- 

paring the ratio wp(amplitude)/A w and the longitudinal electron velocity, uz/c, 

assuming Aw/Ak N c. The only significant error Eq. (3.21) should make is in 

underestimating the electron density oscillation which becomes singular at the 

wave-breaking limit. Eq. (3.21) should be a better approximation for the evolu- 

tion of the plasma wave in the time domain than in the space domain since the 

frequency of a free plasma oscillation is independent of the phase velocity (and 

ce wavelength) in a cold plasma. 
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4. Small Amplitude Plasma Waves 

To study plasma wave generation with Eq. (3.21), we will use the initial 

conditions 

x(7 = 0) = 1, gpo)=o. (44 

These initial conditions correspond to 

pz(r = 0) = 0, n(r = 0) = no, Ez(7 = 0) = 0 , (4.2) 

so there is no longitudinal electron oscillation at r = 0. We then wish to solve Eq. 

(3.21) for r > 0, expecting to see longitudinal motion evolve. The exact analytic 

solution of Eq. (3.21) is not known, but one can numerically integrate it, as well 

as construct asymptotic solutions. Both approaches yield insight to the plasma’s 

behavior. 

For sufficiently weak lasers (Rt < l), the plasma wave amplitude is small 

and conventional asymptotic methods can be applied to Eq. (3.21). For small 

oscillations about x = 1 in Eq. (3.21), t i is convenient to introduce the variable 

y(r) = x(r) - 1. Expanding Eq. (3.21) in powers of y(r) yields 

. d2y 3 2 54 
4%~) 2 

+y-g/ +2y37 +**-= 2 h:(l- cosAwr)(l-2y+3y2-4y3+...), 

(4.3) 
with initial conditions y(r = 0) = $(r = 0) = 0. The asymptotic solution of Eq. 

(4.3) is straightforward using the well-known Krylov - Bogoliubov - Mitropolsky 

(KBM) method. Since the method is a standard one found in most textbooks on 

_ perturbative techniques, 8 the detailed calculation need not be given here. 
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We find that the asymptotic solution of Eq. (4.3) uniformly valid for all 

wpr < O(RI”‘“) is 

y(r) = aces (b + O(u2) . (4-4 

Here u(r) is a slowly varying amplitude, and 4(r) is a rapidly varying phase 

which satisfy the coupled equations 

da R: 
4CJpd = -Tin@ 

(4.5) 
di3 3 2 

-=a+iza + d(WP4 
T(l- Los@) . 

a 

In Eqs. (4.5), Q = A Aw wr - r$ is a slowly varying phase, and Q = - - 
WP 

1 is the 

relative frequency mismatch between the laser beat frequency and the plasma 

frequency. The constant RI/4 in dQ/d(wpr) describes the down-shift in the 

plasma frequency due solely to the lasers (cf. Eq. (3.9)). When this constant 

is negligible and Aw = wp, Eqs. (4.5) (in the time domain) agree with the 

amplitude-phase equations of Rosenbluth and Liu2 for small amplitude driven 

-. plasma waves. 

Equations (4.5) can be integrated once to yield 

(&), = (s)2 - (&+ $)a+ -&3)’ , 
(4.6) 

3 1 3 
4 

cosQ=Z u+p a+L3, 
( ) 

where we assume u(r = 0) = 0. Although Eqs. (4.6) can in fact be analytically 

integrated further to express u(r) and a( r in terms of Jacobi elliptic functions, ) 

resulting expressions are so involved for general values of Q and Rt as to 
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yield little insight. It will be sufficient to describe the general behavior of a and 

a. 

Initially a(r) grows linearly at a rate 

$(r = 0) = aR:wp . (4.7) 

The amplitude saturates primarily because of mismatch between the driver fre- 

quency, Aw, and the free plasma oscillation frequency, w,, which decreases with 

amplitude according to Eq. (4.5), 

wo = wp(1 - ; 2) . 

Since there is no damping in Eqs. (4.6), the amplitude, a, clearly oscillates in the 

range -A 5 a 5 A, where the saturated amplitude A is a solution of the cubic 

equation 

A-yR:=o. 

The frequency - response curve, A as a function of the shifted frequency mis- 
R2 match, Q + +, is sketched in Fig. 1. 

When Q = - i.e. Aw = (1 - :Rt) wp) , the amplitude saturates at 

a=Ao= (4.10) 

In this case the risetime, rr, from a = 0 to a = A0 can be easily calculated by 

integrating Eqs. (4.6), 

“: rr(u = -4) = & K (,2”) (-3”‘~;~ II 8.5R;4/3w;’ , (4.11) 

where K(k) is the complete elliptic integral of the first kind with modulus k. 
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the frequency mismatch u = (Aw/wp) - 1 is near the critical value 

The frequency - response curve in Fig. 1 exhibits a jump phenomenon when 

Forako*, the amplitude saturates at 

a = A+ = 4’j3Ao , 

(4.12) 

(4.13) 

whereas if u 2 cr*, saturation occurs at 

a = A- = 2-113 A0 . (4.14) 

Larger amplitudes can be reached when Aw < wp because the free plasma oscilla- 

tion frequency, wO, decreases with amplitude, and hence the driver and oscillator 

are nearer in resonance for finite amplitudes. One finds from the analytic inte- 

gration of Eqs. (4.6) that the saturation risetime, rr, however increases to infinity 

at B*. Beyond this point the mismatch u is so large that the driver is not strong 

enough to increase the amplitude sufficiently and reduce w, toward Aw. The 

amplitude then saturates at a lower level just as it does when Aw > wp. 

It is straightforward to numerically compare these predictions of the asymp- 

totic solution to the behavior of the exact nonlinear equation (3.21) for the driven 

plasma oscillation. For our purposes it will be easier to numerically integrate Eqs. 

(4.5) for a and ip rather than use the lengthy analytic expressions. We will com- 

pare the evolution of the following three quantities: the normalized longitudinal 

15 



electric field 

eEz(7)= dx 
mwpc 4~Pd ’ 

the normalized electron density 

n(r) d2x 
- = ’ + d(wpr)2 ’ n0 

and the longitudinal electron velocity 

vz(r) no d2x 
u=(r) = - = ~ 

C n(r) d(wpr)2 ’ 

(4.15) 

(4.16) 

(4.17) 

as calculated by numerical integration of the exact equation (3.21) and the asymp- 

totic solution (4.4)-(4.5). With y(r) given by Eq. (4.4), the asymptotic expres- 

sions for these quantities, valid for all wpr < 0 (Ri8/“) are 

e&(r) -= 
mwpc 

-asin$ + O(a2) , 

nb-) -=l-acos++O(a2), 
n0 

(4.18) 

(4.19) 

u=(r) = -acos4 + O(a2) . (4.20) 

The initial conditions used in the numerical solution of Eqs. (4.5) are a(r = 0) = 

0 and @(r = 0) = -$. 

Specifically let us consider two interesting examples: (i) RI = 0.05, u = 0 and 

(ii) RI = 0.05, u N u*, corresponding to relatively weak lasers (Rt = 2.5 x 10A3). 

For Case (i), the longitudinal electric field, electron density and electron velocity 

calculated numerically from the exact equation (3.21) and asymptotic solution 
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(4.4) - (4.5) are compared in Figs. 2 - 4. Numerical integration shows that 

initially da/d(wpr) II 6 x 10B4, as predicted by Eq. (4.7), and that the amplitude 

saturates near a N 0.23 when .r N 450wP1, as would be expected from Eqs. 

(4.10) and (4.11) since u = 0 > -Rf/4. The oscillation frequency at saturation 

is approximately 0.99wp in Figs. 2-4 for both the exact and asymptotic solutions. 

Although the electric field and velocity plots agree reasonably well, the den- 

sity plots are noticeably different at saturation as evidenced by the density spikes 

in Fig. 3a. Close inspection of Fig. 2 indicates there is wave-steepening in E,, 

which is not reproduced by the asymptotic solution. Since V . ,!? - no - n, such 

steepening is manifested by spiking of the density oscillation (and to a lesser ex- 

tent u=). The lowest order asymptotic expressions contain only single-harmonic 

trigonometric functions and do not exhibit such wave asymmetries. 

In Figs. 5 - 7 similar comparisons of the electric field, electron density and 

electron velocity are made for Case (ii). According to Eq. (4.12), the critical 

frequency mismatch should be 

-. u*(RI = 0.05) II -1.06 x 1O-2 . (4.21) 

In Figs. 5 - 7 a value of u = -9 x 10m3 (i.e., Aw = 0.991wp) was used. Since 

the initial evolution near r = 0 was essentially the same as in Figs. 2-4, only the 

behavior near saturation is shown in this case. 

As expected from Eq. (4.13), the amplitude does saturate below the value 

A+(Rl = 0.05) = 0.38. At saturation the oscillation frequency is approximately 

0.97wp for both the exact and asymptotic solutions. The risetime for the asymp- 

totic solution was rr = 730~;’ -- and increased as u approached u*. The risetime 
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for the numerical solution of the exact equation (3.21) was rr N 770~;’ at the 

value of u used. This difference is probably due to the fact that the actual value 

of u*(Rl = 0.05) for Eq. (3.21) is approximately -1.04 x 10m2 as determined 

numerically. In addition Eq. (4:14) was verified numerically when u 2 u* in the 

exact equation (3.21). Comparison of the density and velocity plots for the exact 

and asymptotic equations in Figs. 6 and 7 indicates considerable disagreement 

due to spiking. This is not surprising in that for such large amplitudes we have 

noticeable wave-steepening in the electric field. 

5. Large Amplitude Plasma Waves 

Even for relatively weak lasers, large amplitude plasma waves result when 

driven near resonance. The conventional asymptotic solution (4.4) for the plasma 

wave does not reproduce the wave-steepening in the electric field and the spik- 

ing in the density and velocity oscillations at large amplitudes. One can include 

higher order harmonics in the solution of Eq. (4.3), but this becomes very labori- 

ous for large amplitudes where several terms may be required. For example, the 

next order asymptotic solution of Eq. (4.3) uniformly valid for all wpr < 0 ( R12) 

is 

a2 
Y(r) = acos# + 4 (3 - cos24) + O(a3,R:) , (5.1) 

with a and 4 satisfying Eqs. (4.5). Th is still does not accurately reproduce 

wave-steepening, indicating that additional harmonics are needed. Thus one 

must work harder but loses the simplicity and physical insight provided by a 

single term asymptotic solution. -- 
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Wave-steepening and spiking are well-known characteristics of free, nonlinear 

plasma oscillations. Equation (3.21) with RI = 0 describes such free oscillations 

with phase velocity c, 

d?x 1 - x2 
d(wpr)2 - 222 = ’ ’ (5.2) 

and an exact analytic solution is known in terms of the incomplete elliptic integral 

of the second kind, E($, k).’ A n o b vious improvement on the conventional KBM 

approximation used earlier is to take this exact nonlinear solution, with a slowly 

varying amplitude, as the leading term in an asymptotic expansion for the driven 

plasma wave. 

Denoting the argument T,!J of E(+, k) by E-l, the inverse of the incomplete 

elliptic integral of the second kind, the solution to Eq. (5.2) can be written as9 

x(r) = a - a - - sin ( a) 2 P-’ (54 

(with initial conditions x(r = 0) = a 2 1 ,$r=O)=O),where 

k= (I--$)“~, a= (:‘:,)“’ , 

(5.3) 

(5-4 

and u, is the amplitude of the normalized longitudinal electron velocity, u,. The 

free plasma oscillation frequency (= 2z/period) is given by 

TWP 

w” = 2a1/2E(k) = 
WP 

E&4n/(l+ urn) ’ 
F-5) 

where E(k) is the complete elliptic integral of the second kind. In Fig. 8, the ratio 

wO/wp is shown as a function of urn. In the nonrelativistic and ultrarelativistic -- 
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limits, respectively, 

r (l- &UfJWp , u, -0 
wo = 

I 
*.(l - &)l/4wp , u, + 1 . 

(5.6) 

If one assumes that the R: term in Eq. (3.21) is a weak perturbation of the 

free oscillator equation (5.2), th en the leading term in the asymptotic solution 

for the driven plasma wave is, from Eq. (5.3), 

x(r) = a - a - - sin2 ( :) [E-l(&~~)]+w:) ’ P-7) 

where a(r) 2 1 is a slowly varying amplitude, and 4(r) is a rapidly varying phase. 

We can hypothesize the form of the amplitude-phase equations appropriate to 

-. 

Eqs. (5.7) based on the insight gained from our earlier interpretation of the 

small amplitude equations (4.4) - (4.5). W e s ress t that the following is only 

a physically plausible conjecture for these equations. Remarkably our intuitive 

equations provide a very good approximation to the behavior of Eq. (3.21) for 

all oscillation amplitudes eEp/mwpc 5 1. 

Comparing Eqs. (4.8) and (5.6), we replace the perturbative frequency shift 

Aa2 in Eqs. (4.5) by the exact nonlinear frequency shift l- 
2a’?E (k) 

from Eq. 

(5.5)) and the slowly varying phase becomes <p = Awr - 2ar,FE (k) 4. This insures 

that when RT = 0, and hence da/d(wpr) = 0, we correctly recover the relation 

-dQ/d(wor) = d$/d(w,r) = 1 and th e f ree oscillation solution (5.3). Since Rt 

is a weak perturbation, the dependence of the amplitude-phase equations on Rt 

need not be determined any better than in the conventional KBM approximation, -- 
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with the correspondence in amplitudes being a(Eq. (4.4)) = a(Eq.(5.7)) - 1. The 

resulting equations are then 

da 3 
4WP4 

= ---4-sin@ 

d@ Aw -=-- 
4WPd WP 2a1/:E (k) 

(5.8) 

The asymptotic solution (5.7) should be valid for all wpr < O(R;10’3) if the 

amplitude and phase are determined by Eqs. (5.8). For small oscillations about 

x = 1, Eqs. (5.7) - (5.8) correctly reduce to Eqs. (4.4) - (4.5). 

Although Eqs. (5.8) provide physical insight to the behavior of the driven 

plasma wave, the presence of the elliptic integral renders these equations in- 

tractable to further analytic integration. Consequently in order to compare the 

behavior of Eqs. (5.7) - (5.8) with that of the exact equation (3.21), we rely on 

numerical integration of the amplitude-phase equations (5.8) in the following. 

Not surprisingly, the solution (5.7) is a much better approximation than the 

conventional asymptotic solution (4.4) f or small amplitude plasma waves. For 

example, in the case of R 1 = 0.05 considered in Section 4, one finds excellent 

agreement between the numerical solution of Eqs. (3.21) and (5.7) - (5.8). It is 

more interesting however to compare the exact and asymptotic equations for large 

amplitude plasma waves where the conventional asymptotic expansion becomes 

inaccurate. 

In particular we will consider an example of relatively strong lasers, with 

RI = 0.5. We will again compare the evolution of the longitudinal electric field, 

electron density and longitudinal electron velocity in Eqs. (4.15) - (4.17) as 

calculated by numerical integration of Eq. (3.21) and the asymptotic solution -e 
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(5.7) - (5.8). Th e initial conditions used in the numerical integration of Eqs. 

(5.8) are a(r = 0) = l,Q(r = 0) = -$. 

These quantities are compared in Figs. 9 - 11 when RI = 0.5 and Aw = 

wp (i.e., u = 0). Both Eqs. (3.21).and Eqs. (5.7) - (5.8) initially have da/d(wpr) N 

0.06. The electric fields saturate when r II 22~;’ at eEz/mwpc = 0.81 for the 

exact equation (3.21) and eEz/mwpc N 0.75 for the asymptotic equations (5.7) 

- (5.8). The agreement in all the plots is quite good considering that these are 

large amplitude oscillations. The longitudinal electron velocity and oscillation 

frequency at saturation are approximately 0.62~ and 0.9wp, respectively, for both 

the exact and asymptotic solutions. 

The case of near-resonant excitation (Aw # wp) is also interesting to con- 

sider. Numerical investigation of the exact equation (3.21) and the amplitude 

- phase equations (5.8) at large amplitudes indicates that they exhibit a fre- 

-. 

quency - response behavior similar to that shown in Fig. 1 for Eqs. (4.5) if one 

identifies A with the saturated value of eEz/mwpc. The ratios Ah/A0 from Eqs. 

(4.13) and (4.14) continue to hold approximately at large amplitudes for both 

Eqs. (3.21) and (5.8). H owever, the value of the critical frequency mismatch, 

u*, for Eqs. (5.8) at a given value of R I does differ some from that for Eq. 

(3.21). For example, when RI = 0.5, we find that u*(Eq. (3.21)) A -0.18 and 

a*(Eqs. (5.8)) = -0.22. For large amplitude waves, both Eqs. (3.21) and (5.8) 

give E,(u 2 u*)/E,(u = 0) = 2, w h ereas for small amplitude waves this ratio is 

about 1.6. 

In Figs. 12 - 14, the electric field, electron density and electron velocity from 

the numerical solution of Eq. (3.21) and the asymptotic solution (5.7) - (5.8) 

are compared when RI = 0.5 and Aw = 0.86 wp (i.e., u = -0.14). The elec- -- 
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tric field saturates when r N 45~;’ at eEz/mwpc c 1.35 for the exact equation 

(3.21) and eEz/mwpc N 1.25 for the asymptotic equations (5.7) - (5.8). The 

plots agree reasonably well with the differences being due primarily to the dif- 

ferent values of u* (RI = 0.5) m en loned above. At saturation the longitudinal t’ 

electron velocity and oscillation frequency are approximately 0.83~ and 0.75wp, 

respectively, for both the exact and asymptotic solutions. Under these conditions 

the phase velocity in an actual plasma would have decreased to 0.87c, which is 

near wave-breaking. 

One can proceed further and compare the asymptotic solution (5.7) to the 

results of particle simulation codes which numerically solve Maxwell’s equations 

and the equations of motion. We will only make one such comparison here based 

on the two-dimensional plasma simulation results of Sullivan and Godfrey.5 Figs. 

15a and 15b are taken from Ref. 5 (with permission of the authors) and show 

the temporal evolution of two beating laser electric fields, 

-. 

El = yRl(sinwrr + sinwzr); w = 10wp, RI = 0.5, AW = wp , (5-g) 

and the resulting longitudinal plasma wave as calculated in a particle simula- 

tion. The lasers turn on at r = 25~;’ with a risetime we estimate to be 

iOw;‘(i.e. Rl(wpr) = RI [l - exp(-wpr/40)] ; RI = 0.5). Figs. 15c and 15d 

show the longitudinal electric field as calculated from Eq. (3.19) and the asymp- 

totic solution (5.7), respectively, with these laser parameters (and using the ap- 

propriate expression for pi(r) corresponding to El(r) in Eq. (5.9)). The agree- 

ment between the plasma simulation and our solutions is excellent. According 

our solutions in Figs. 15~ and 15d, the longitudinal electric field saturates 
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near eEz/mwPc N 0.65, while the longitudinal electron velocity and oscillation 

frequency at saturation are approximately 0.55~ and 0.94 wP, respectively. 

6. Conclusion 

The nonlinear asymptotic solution (5.7) for the driven plasma wave is a very 

good approximation to the numerical solution of the exact equation (3.21) for 

times up to saturation and amplitudes up to eEp/mwpc N 1. Wave steepening 

is correctly accounted for by this solution. Furthermore our solution agrees well 

with two-dimensional particle simulation results for beat-wave generated plasma 

waves in the time domain. The occurrence of wave-breaking for a given laser 

intensity and frequency mismatch can be estimated from our equations by com- 

paring the ratio of the oscillation frequency and laser beat frequency with the 

longitudinal electron velocity, v,/c. Our equations indicate that wave-breaking 

generally occurs for amplitudes near eEp/mwpc N 1.3. 

-. 

We conclude that our equations, which neglect scattered laser sidebands and 

variations in the phase velocity, provide an adequate fluid description of the 

essential physics governing the temporal growth and saturation of large amplitude 

plasma waves below the wave-breaking limit. According to the amplitude-phase 

equations, the basic saturation mechanism is frequency mismatch between the 

laser beat-frequency and the amplitude-dependent plasma frequency as long as 

particle trapping is small. Since the plasma frequency decreases with amplitude, 

higher longitudinal gradients can be obtained for a given laser intensity if the laser 

beat-frequency is less than wP by an amount dependent on the laser intensity. The 

risetime to saturation increases as a result, however. Fig. 16 shows the saturated 

longitudinal electric field eEp/mwpc as a function of the laser intensity parameter -- 
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Rt for different values of the relative frequency mismatch u, as calculated from 

the numerical solution of Eq. (3.21). The critical frequency mismatch Q* as a 

function of R: from this same equation is shown in Fig. 17. 

The simplicity of our equations facilitates the comparison of different experi- 

mental situations. In Table 1 we compare resonant and near-resonant excitation 

of plasma waves by two equal-intensity beating CO2 lasers (X = 10~) in a plasma 

of density 1016cm-3(0.1% of the critical density). The energy absorption by the 

plasma wave, E~/2E&,,, is seen to decrease with increasing laser intensity. The 

advantage of having Aw < wP is clear with the energy absorption increasing about 

three times over the case Aw = wP. Indeed, the allowed frequency mismatch in 

the last row of Table 1 is limited by wave-breaking. At lower laser intensities, 

where no wave-breaking would occur at the critical frequency mismatch, the en- 

ergy absorption would be about four times the case Aw = wP. The calculated 

energy absorption percentages in Table 1 are for w N 33w, and vary like wm2 for 

different w. 
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Table 1 

Comparison of resonant and near-resonant excitation of plasma waves by two 

equal-intensity beating CO2 lasers (XI = 10.6~, X2 = 10.31.1, w/wP EJ 33, no II 

1016cm-3) based on the analysis of Sections 4 and 5. The gradient in the last 

row is limited by wave-breaking. The laser quiver velocity is v,,,/c. The ratio 

of the laser beat frequency and plasma frequency is Aw/wr. The combined laser 

intensity is I = 2 X cEFMer/87r in units of wutts/cm2. 

-. 

& Aw 
C wp Iwlcm2> 

0.05 1 7 x 1013 

0.05 0.99 7 x 1013 

0.5 1 7 x 1015 

0.5 0.86 7 x 1015 

0.38 3.8 3% 

0.8 8.0 0.1% 

1.3 13 0.3% 

-- 
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FIGURE CAPTIONS 

Fig. 1 Frequency-response curve, A as a function of the shifted frequency 

mismatch 0 + Rt/4, in Eq. (4.9). The frequency u* is given by Eq. (4.12), 

and the amplitudes Ao, A+ and A- are defined by Eqs. (4.10), (4.13) 

and (4.14), respectively. The upper dashed curve represents amplitudes 

obtained by adiabatically decreasing the frequency mismatch, while the 

lower dashed curve represents unstable amplitudes. 

Fig. 2 Longitudinal electric field as a function of wpr calculated from (a) 

the exact equation (3.21) and (b) the asymptotic solution (4.4) - (4.5) for 

the case RI = 0.05, Aw = wP. 

Fig. 3 Electron density as a function of wPr calculated from (a) the exact 

equation (3.21) and (b) the asymptotic solution (4.4) - (4.5) for the case 

RI = 0.05, Aw = wP. 

-. 

Fig. 4 Longitudinal electron velocity as function of wPr calculated from 

(a) the exact equation (3.21) and (b) the asymptotic solution (4.4) - (4.5) 

for the case RI = 0.05, Aw = wP. 

Fig. 5 Longitudinal electric field as a function of wPr calculated from (a) 

the exact equation (3.21) and (b) the asymptotic solution (4.4) - (4.5) for 

the case RI = 0.05, Aw = 0.991wP. 

Fig. 6 Electron density as a function of wPr calculated from (a) the exact 

equation (3.21) and (b) the asymptotic solution (4.4) - (4.5) for the case 

RI = 0.05, Aw = 0.991wP. 

Fig. 7 Longitudinal electron velocity as a function of wPr calculated from 

-- (a) the exact equation (3.21) and (b) the asymptotic solution (4.4) - (4.5) 
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for the case RI = 0.05, Aw = 0.991wP. 

Fig. 8 Free plasma oscillation frequency ratio w,/wP as a function of the 

longitudinal electron velocity amplitude urn. 

Fig. 9 Longitudinal electric field as a function of wPr calculated from (a) 

the exact equation (3.21) and (b) the asymptotic solution (5.7) - (5.8) for 

the case RI = 0.5, Aw = wP. 

Fig. 10 Electron density as a function of wPr calculated from (a) the exact 

equation (3.21) and (b) the asymptotic solution (5.7) - (5.8) for the case 

RI = 0.5, Aw = wP. 

Fig. 11 Longitudinal electron velocity as a function of wPr calculated from 

(a) the exact equation (3.21) and (b) the asymptotic solution (5.7) - (5.8) 

for the case RI = 0.5, Aw = wp. 

Fig. 12 Longitudinal electric field as a function of wPr calculated from (a) 

the exact equation (3.21) and (b) the asymptotic solution (5.7) - (5.8) for 

the case RI = 0.5, Aw = 0.860,. 

-. Fig. 13 Electron density as a function of wPr calculated from (a) the exact 

equation (3.21) and (b) the asymptotic solution (5.7) - (5.8) for the case 

RI = 0.5, Aw = 0.86~~. 

Fig 14 Longitudinal electron velocity as a function of wPr calculated from 

(a) the exact equation (3.21) and (b) the asymptotic solution (5.7) - (5.8) 

for the case RI = 0.5, Aw = 0.86~~. 

Fig. 15 Temporal evolution of (a) two beating laser electric fields (WI = 

10.6wp, ~2 = 9.6wP, RI = 0.5) and (b) th e resulting longitudinal plasma 

-- electric field as calculated in a particle simulation (taken from Ref. 5 with 
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permission of the authors). For comparison the longitudinal plasma electric 

field as calculated numerically from (c) the exact equation (3.19) and (d) the 

asymptotic solution (5.7) with the same laser parameters are also shown. 

Fig. 16 Saturated longitudinal electric field eEp/mwpc as a function of 

the laser intensity parameter Rt when the relative frequency mismatch 

u = 13, -R;/4 and 0, as calculated from the numerical solution of Eq. 

(3.21). The critical frequency mismatch is denoted by 0’. 

Fig. 17 The negative of the critical frequency mismatch U* as a function of 

the laser intensity parameter R: from the numerical solution of Eq. (3.21). 
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