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Abstract 

We propose three supersymmetric nonlinear sigma models with global sym- 

metry Es. The models can accomodate three left-handed families of quarks and 

leptons without incurring Adler-Bell-Jackiw anomaly with respect to either the 

standard SU(3) x SU(2) x U(1) gauge group, or the SU(5), or SO(10) grand 

unifying gauge group. They also predict unambiguously a right-handed, fourth 

family of quarks and leptons. In order to explore the structure of the models, we 

develop a differential form formulation of the Kahler manifolds, resulting in gen- 

eral expressions for the curvature tensors and other geometrical objects in terms 

of the structure constants of the algebra, and the squashing parameters. These 
z-- results, in turn, facilitate a general method for determining the Lagrangian to 

quartic order, and so the structure of the inherent four-fermion interactions of 

the models. We observe that the Kahlerian condition U!U = 0 on the fundamental 

2-form w greatly reduces the number of the independent squashing parameters. 

We also point out two plausible mechanisms for symmetry breaking, involving 

gravity. 

1. Introduction and Summary 

..- 

Among the field theories that are useful in physics, pure gauge field theories, 

the general theory of relativity, and nonlinear sigma models distinguish them- 

selves by their elegant embodiment of symmetry. Both the particle content and 

the form of interactions in these theories are uniquely determined by symmetry, 

leaving only the magnitude of the coupling constants free. The coupling con- 

stants of gauge field theory are dimensionless while their counterparts in general 

theory of relativity and nonlinear sigma model are dimensionful. Consequently 
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only gauge field theories are renormalizable. For the other two, the dimensional 

coupling constants define the critical mass scales beyond which the theories fail; 

in other words, the underlying physical systems enter a new phase at these critical 

mass scales. 

In the nonlinear sigma model for pions ,l the dimensional coupling constant 

FT denotes the mass scale characterizing the dynamical spontaneous breakdown 

of global chiral symmetry SU(2),5 x sum to SU(2)v. The origin of the chiral 

symmetry is easily understood in terms of the quark model of hadronic matter. 

Analogously, in general relativity, the Planck mass, Mp, may be taken as a critical 

mass scale beyond which space-time enters a different phase. 
z-- 

The standard SU(3) x SU(2) x U(1) gauge theory2 for the strong, weak, and 

electromagnetic interactions is renormalizable. When it is extended to incor- 

porate the quarks, leptons, and the Higgs scalar fields, care is taken to preserve 

renormalizability. The only dimensional parameters appearing in the Lagrangian 

are the mass terms of the scalar fields. Extension to grand unified gauge theories3 

with asymptotic freedom further tames the running coupling constant of the orig- 

inal U( 1) in the ultraviolet region. The characteristic mass scales brought out 

by renormalization procedure, and at which the gauge couplings diverge, appear 

at the infrared region. We would like to retain, as far as possible, this picture 

of gauge interactions, grand unified or not, in the present paper. The standard 

formulation carries with it an implicit assumption that quarks and leptons are 

elementary, or equivalently, of the absence of a critical mass scale (A,,) in the 

ultraviolet region, around and beyond which the quarks and leptons will not be 

the proper dynamical degrees of freedom. So far there is no experimental evi- 

dence in direct conflict with the assumption of elementary quarks and leptons. 
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If A, does exist in nature, then from the (g - 2) factor of electron and muon one 

estimates A, > lo3 TeV,4 and from e+e- Bhabha scattering A, > 750 GeV.5 In 

either case A, is much greater than the known masses of quarks and leptons. 

In this paper we explore the implications of the plausible existence of & in 

terms of supersymmetric nonlinear sigma model.6 What we hope to derive ulti- 

mately is a natural explanation of some features of elementary particle physics 

not accounted for by standard renormalizable field theory.2s3 These features in- 

clude the three-family structure of the observed quark-lepton spectrum, and the 

mass matrix of quarks and leptons. The mass matrix would involve inevitably the 

scale characterizing the breakdown of the sum x U(1) symmetry to U(l),.,., 
a- 

therefore the physics flowing from A,, though perhaps necessary, is certainly not 

sufficient for this purpose. The three-family structure, in contrast, is indepen- 

dent of the mechanism for the symmetry breakdown and so might be determined 

completely by physics at A,. 

Supersymmetric nonlinear sigma model provides a field-theoretic setting that 

accommodates massless fermions, henceforth to be referred to as a-fermions; 

massless spin-0 bosons; and a critical mass scale A, in the form of a dimensionful 

coupling constant. The model assumes that the phase beyond A,,, which we shall 

call the preonic phase, possesses supersymmetry. It makes no assumption about 

the proper dynamical degrees of freedom in the preonic phase of matter. 

Each nonlinear sigma model is characterized by an abstract manifold on which 

the spin-0 Bose fields take values. 7 The collection of general coordinate transfor- 

mations on the manifold which leave the length of infinitesimal line element on 

the manifold invariant forms a group called the isometry group. A subgroup 

of the isometry group which leaves a point p of the manifold fixed is called the 
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isotropy group at the point p. Obviously the tangent space at the point p forms 

a linear representation of the isotropy group, called the isotropy representation. 

For the manifolds that interest us, both the isotropy group and the isotropy 

representation are the same for every point of the manifold. The action of a 

nonlinear sigma model is invariant under the isometry group of transformations 

of the abstract manifold. 

The abstract manifold for N = 1 supersymmetric nonlinear sigma model6 in 

(3 + 1) -dimensional space-time must perforce be a Kahlerian complex manifold.8 

The spin-0 bosons are represented by complex scalar fields, denoted by 8, and 

the a-fermions by two-component Weyl fermions, denoted by xi. Together with 
.?- 

auxiliary complex scalar field F’, I$’ and x’ form a chiral superfield 0’. The 

superspace action takes the form 

I = 
J 

d4z d28 d28 K(@‘, O*j) (1) 

where K(@‘, Q*j) is a real function of the chiral superfields @, and antichiral 

superfields @*j , which is obtained from the Kahler potential K(#, r$*j) by simply 

substituting a’ for C@ , and Q*j for 4*j. Obviously the action is invariant under 

the transformation 

K(& 4’j) + K(c$, c$*j) + F(& + F*(+*j) (2) 

where F(@) is any holomorphic function of the &. After integration over 8 and $, 

and elimination of the auxiliary fields F’, Eq. (1) yields the following Lagrangian 
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density 

i 
(3) 

-_ . . 2&J* x -j a’D,x’ + i&k*jl* (xix’) (R’x’) 

Here S;j*, &k*jL*, and Dxi are respectively the metric tensor, curvature tensor, 

and covariant derivatives defined on the Kahler manifold. We have explicitly 

gij* = aiaj*K(4,4*) (4) 

z-- 

and 

Dx’ = ax” + giL*akgjl*d&Xk (6) 

where g’l* is the inverse of the metric tensor gij*. 

A beautiful class of Kahler manifolds exist, where each can be expressed as 

a coset space G/H. Here G is a compact, connected, simple Lie group and H a 

closed subgroup which is the centralizer of a torus in G. G/H is a homogeneous 

space with isometry group G and isotropy group H. The scalar fields #, being 

a local coordinate system of the manifold, form a nonlinear realization of G. 

The a-fermions x’, transforming in the same way as d& under the action of 

G, transform like an isotropy representation under the action of H. Most of 

the a-fermions of a desirable model will be identified as the known quarks and 

leptons.lO$ll The SU(3)c x sum x U(1) g au g e interactions, and similarly the 

grand unifying gauge groups SU( 5) or SO( lo), will be obtained by gauging a part 

of H. The isotropy representation of a manifold is thus the chief means by which 

= .:.) 
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we identify the promising models. The content of an isotropy representation is 

completely determined once the G, H, and an invariant complex structure12 are 

chosen. 

In Ref. 10 we showed that, within the class of models mentioned above, 

only those with G = E7, E&3 can have an isotropy representation capable of 

accommodating three families of quarks and leptons. In the case of G = E7, the 

grand unifying gauge group can be SU(5), and there are three possible choices of 

H, namely H = SU(5) x U(1)3, SU(5) x SU(2) x U(1)2, and SU(5) x SU(3) x 

U(1).13 But they suffer from Adler-Bell-Jackiw-anomaly.14 It is not possible to 

accommodate both an H I SO(10) and three families of quarks and leptons 
. a- 

simultaneously when G = ,737. In the present paper we will show that when 

G = &3 and H = SO(10) x U(1)3, SO(10) x SU(2) x U(1)2, and SO(10) x 

SU(3) x U(l), th e corresponding models can accommodate the three left handed 

families of quarks and leptons without incurring the ABJ-anomaly with respect 

toeither SU(3)cxSU(2)~xU(l), SU(5), or SO( lO)-gauge group. An additional 

surprising prediction of the & models is that there is a right-handed, fourth 

family of quarks and leptons. The fourth family differs from the first three also 

in the U(1)3-, SU(2) x U(1)2-, and SU(3) x U(l)-representation content for 

the cases where H = SO(10) x U(1)3, SO(10) x SU(2) x U(1)2, and SO(10) x 

SU(3) xU(1) respectively. It is not possible to find an invariant complex structure 

such that all four families are left-handed simultaneously. 

The Es-, and &-models are highly interesting in yet another respect which 

we shall mention now. The isotropy representations of the associated abstract 

manifolds are reducible. Generally, a homogeneous manifold G/H, which need 

not be Kahlerian or even complex, with a reducible isotropy representation would 

I 
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allow independent resealings l5 for coframes (vielbeins) corresponding to the dif- 

ferent irreducible components of the isotropy representation without affecting the 

isometry group. The resealing act is often referred to as squashing. Thus, an 

ordinary (i.e., without supersymmetry) nonlinear sigma model based on such a 

manifold would carry as many independent squashing parameters as the number 

of irreducible components in the isotropy representation. The Kahler manifolds 

for the Es-, and &-models are indeed squashed manifolds. But we will show 

that the Kahlerian condition on the metric tensors of the manifolds greatly re- 

duces the degrees of independent resealings. Furthermore, we will show that there 

exists a unique choice of the ratio of resealings for which a Kahlerian manifold is 

. fl- Einsteinian. 

Let us now outline the order of presentation in the present paper. In Section 

2 we determine the invariant complex structures for the Es/H manifolds by 

analyzing the root space of the Lie algebra Es. We then find a proper basis for 

the algebra, and construct the commutators in terms of this basis. The isotropy 

representations, and so the field content of the E8 models, are determined in this 

section. 

In Section 3 we develop a differential form approach to Kahler manifold. 

We derive the general expressions for the various geometrical objects such as 

connection l-form, curvature 2-form, and Ricci 2-form, which are not available 

elsewhere in the literature. It is here that we find the results relating to squashing 

that we mentioned above. 

In Section 4 we propose a general method for determination of the Kahler 

potential to the quartic order. We apply the method to one of the Es models, 

namely that with H = SO(l0) x SU(3) x U(1). 

8 



In Section 5 we point out some general features of the four-fermion inter- 

actions inherent in super-symmetric nonlinear sigma model. For the &-models, 

the inherent four-fermion interactions can induce proton instability even in the 

absence of any grand unifying gauge interactions. Thus the critical mass scale 

A, of the models should be around or beyond 1015 GeV. 

In Section 6 we propose two plausible mechanisms for the explicit breakdown 

of the global symmetry G when a supersymmetric nonlinear sigma model is 

coupled to supergravity. 

z-- 

In Section 7 we conclude the paper with some further discussions. These 

include the value of the mass scale A,, and the implications of the &-models. 

Appendix I provides the commutators of Es algebra in terms of a basis 

adapted to the structure of the &-models. 

2. The Field Content of the E8 Models-Invariant 

Complex Structure and E8 Algebra 

..- 

Besides being a nonlinear realization of the global symmetry G, the complex 

scalar fields 4’ also take part in the linear representations, namely, the chiral su- 

permultiplets a’, of supersymmetry. In order to ensure that the algebra of G com- 

mutes with the supersymmetry algebra, it is necessary that G-transformations 

do not mix chiral supermultiplets with anti-chiral supermultiplets. Accordingly 

the action of G on @  which are complex coordinates on the manifold G/H, is 

characterized by a set of holomorphic Killing vectors on the manifold. In other 

words, the manifold is endowed with a G-invariant complex structure. 

The criterion12 for an invariant complex structure on Kahler manifold G/H 

can be stated in terms of some positivity and closure properties defined on a 
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system of roots of the algebra G. Let n = {WI, ~2, . . . . w,, w,+r, . . . . wm+h} 

be a system of positive roots of the algebra G such that a subset of it, say 

0 = {wn+1, wn+2, “‘, wm+h} form a system of positive roots for H. Then the 

subset @  = { WI, ~2, . . . . w, } defines an invariant complex structure if it is a 

closed system of roots. A set of roots of G is said to be closed if it contains the 

sum of any two of its elements whenever this sum is a root of G. The system of 

roots of an invariant structure, \E, can be split into further subsets each of which 

can be identified with the weights of an irreducible linear representation of the 

group H. This provides an algorithm for determining the irreducible pieces of a 

reducible isotropy representation, and thus the corresponding invariant complex 

. z-- structure. 

The root space of Es is an eight-dimensional Euclidean space.16 In terms of 

an orthogonal basis ei, i = 1, . . . ,8, the roots of E8 can be expressed as 

fei f ej , l<i#j<8, 

and 

$ (fel f e2 f e3 f e4 f e5 f eg f e7 f es) 

with an even number of plus signs in the bracket (...). We chose the following 

system of simple roots for Es, namely {ai, i = 1, 2, . . . . 8}, where 

a1 = el - e2 , (~2 = e2 - eg , a3 = eg - e4 , 

a4 = e4 - e5 , a5 = i(-el - e2 - e3 - e4 + e5 - e6 + e7 - es) , 

%3 = e6 - e7 , a7=e7 +e8, ag = e4 + e5 . 

The resulting system of positive roots of Es is 
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fl={ eiff?j, l<i<j<5, 

e6 f e8 , 

i(fel f e2 f e3 f e4 f e5 + eg - e7 - es) , 

$ (j-1 f e2 f e3 f e4 f e5 - eg + e7 - es) , 

f (fel f e2 f e3 f e4 f e!j + e6 + e7 + e8) , 

i (fel f e2 f eg f e4 f e5 + e6 + e7 - e8) -} 

Again the total number of plus signs in each bracket (...) above should be even. 

For the case G/H = Es/SO(lO) x SU(3) x U(l), one can verify that the system 

of positive roots of H is 

e6 - e7 , 

e7 + e8 . 1 

And the system of roots of invariant complex structure is 
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\k = { e6 + e7 , e6 - e8 , e7 - e8 , 

fej+e7,1<;15, 

fej-e8, l<i<5, 

~(&el f e2 f e3 f e4 f e5 + e6 - e7 - es) , 

i(kel f e2 f e3 f e4 f e5 - e#j + e7 - eg) , 

i (fel f e2 f e3 f e4 f e5 + e6 + e7 + e8) , 

i(+el f e2 f e3 f e4 f e5 + e6 + e7 - es) .} 

*- Thus the isotropy representation can be taken to be 

r = (16, 3, l/3) + (Is*, 1, 1) 

(7) 
+ (10, 3*, 2/3) + (1, 3, 4/3) 

Next one can check that \k’ = \E U {cc + es, er + es} and \k” = *’ U (e6 - e7) 

are the systems of roots of invariant complex structure for the Kahler manifolds 

E8/SO(lO) x SU(2) x U(1)2, and E8/SO(lO) x U(1)3 respectively. We have 

the regular embedding U(1)3 C SU(2) x U(1)2 C SU(3) x U(1). The isotropy 

representation of the Kahler manifold Eg/SO(lO) x SU(2) x U(1)2 with the 

structure \E’ is 

I? = (l6, 2, l/2, l/3) + (16, 1, -1, l/3) 

+ (s*, 1, 0, 1) + (10, 2, -l/2, 2/q 

(8) 
+ (10, 1, I, 2/3) + (1, 2, l/2, 4/3) 

..- 
+ (1, I., -1, 4/3) + (1, 29 3/T 0) 

12 
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with respect to SO(10) x SU(2) x U(1)’ x U(1). The isotropy representation of 

the Kahler manifold Es/SO(lO) x U(1)3 with the structure q” is 

r” = (l6, 1, l/2, l/3) + (16, -1, l/2, l/3) 

+ (l6, 0, -1, l/3) + @I!*, 0, 09 1) 

+(10, 1, -l/2, 2/3) + (10, -1, -l/2, 2/3) 

+ (10, 0, 1, 2/3) + (1, 1, l/2, 4/3) (9) 

+ (1, -1, l/2, 4/3) + (1, 0, -1, 4/3) 

. z-- 

\,.. + (1, 1, 3/2, 0) + (1, -1, 3/2, O) 

+ (1, 2, 09 0) - 

with respect to SO(10) x U(1)” x U(1)’ x U(1). 

The basis of the Es algebra can always be chosen to reflect a given isotropy 

representation. For the isotropy representation I’ of Eq. (7), we choose the basis 

{ LAB, T:, T, XI, y;lz, WI&, %, 

(10) 

Here the indices I, J = 1, 2, 3 are the SU(3) indices; A, B = 1, 2, . . . . 10 are 

SO(l0) indices; (Y = 1, 2, . . . . 16 is the SO(l0) spinor l&index; and & the m- 

index. LA,B, T$, and T are anti hermitian, and XI T/ = 0. They generate the 

SO(lO), SU(3) and U(1). Th e b arred generators are antihermitian conjugate of 

the corresponding unbarred generators. The collection { XI, YIA, W,‘, Zk } has 

the identical representation content as the I’. The explicit expressions for the 

I .-a 1 
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commutators of Es algebra in terms of the basis given by Eq. (10) are collected 

in Appendix I. 

A basis of the Es algebra which is adapted to the isotropy representation I” 

of Eq. (8) can be obtained from the basis of Eq. (10) by splitting the set of 

SU(3) generators as follows 

{ T;, I, J = 1, 2, 3) = { S; = T; - fs; k T,& i, j = 1, 2) 
1 

U { Vi CT;, Vj = Tj, j = 1, 2.) 

Similarly we obtain a basis of E8 adapted to the isotropy representation I”’ from 

Eq. (10) by further splitting of the set of SU(2) generators: 

( Sj, i, j = 1, 2) = ( N = T: - T.f) 

U { U = T;, u = T,2) 

The isotropy representations, I’, I”, and I”’ establish our claim that the 

Eg models allow three left-handed, and one right-handed family of quarks and 

leptons. They are obviously free from the ABJ-anomaly with respect to the 

group SO (lo), and so are with respect to the regular subgroups SU(5) x U(1) c 

SO(lO), and SU(3) x SU(2) x U(1)2 c SO(l0). We note that the isotropy 

representation I’ of Eg/SO(lO) x SU(3) x U(1) is not ABJ-anomaly free with 

respect to the SU(3) f ac t or of the isotropy group, nor with respect to the U(1) 

factor. We also observe that both I” and I?” incur AB J-anomaly with respect to 

I  :r 1 
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at least one U(1) factor of the respective isotropy groups. One cannot gauge these 

anomalous symmetries . The anomalous U(1) (‘g) provides naturally a Peccei- 

Quinn symmetry because of the U( 1) - SO(10) - SO(10) triangle anomaly. 

3. Geometrical Objects on Kahler Manifold 

We regard Kahler manifold G/H as a collection of right cosets {gH} parametrized 

by complex numbers (2’). The left action of g E G on a coset representative 

L(z, z*) is given by 

gL(z, z*) = L(z’, z’*) h (11) 

-.?- where h, an element of H, and L(z’, z*‘) are functions of g and L(z,z*). The 

- explicit form of L(z,z*) depends on the specific embedding of G/H in G. 

A left invariant l-form can be defined in terms of L(z, z*): 

e(z, z*) E L-l( z, z*) dL(z, z*) (12) 

It takes value on Lie algebra of G. We shall denote by {Ta} a basis for the 

algebra, adapted to an invariant complex structure. We use the following index 

convention: a, p, . . . for generic G indices; a, b, . . . for H indices; I, J, . . . for 

holomorphic flat coset indices; and i, j, . . . for holomorphic curved coset indices. 

Antiholomorphic indices are obtained by putting * on top of the corresponding 

holomorphic indices. We can write the l-form e(z,z*) as 

e(z, z*) = Tle1 + Tpe” + Taeu 

= TI ef dzi + Tpe: dzi* + Taeqdzi (13) 

+ T,e$ dzi* 
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where ef, efi, ef , and eF* are functions of both z and z*. In particular ef and 

eiz will play the role of vielbein (coframe) on the manifold G/H. It follows from 

Eq. (12) that the l-form satisfies the Maurer-Cartan equation: 

de=-eAe (14 

And from the antihermiticity of e and Ta, i.e. e+ = -e, Tt = -TI,, and 

Tz = -T,, we have (ef)* = efz and (eq)* = eF*. 

The action of g E G on the l-form is given by the transformation law 

e(z’, z’*) = h(g, z, z*) e(z, z*) h-‘(g, z, z*) 

+ h(g, z, z*) dh-‘(g, z, z*) 
(15) 

Or, equivalently, 

e’(z’, z’*) = D$(h-l) eJ(z, z*) 

e’(z’, z’*) = Di(h-‘) e*(z, z*) + (h d h-l)’ 

(16) 

(17) 

and the complex conjugate of (16). Here d(g) denotes the adjoint representation 

ofgEG: g-lT,g = d(g)Tp. The matrices D:(h-l), h E H, are block 

diagonal in our chosen basis. Each block acts on an irreducible representation of 

H. Therefore the transformation laws (16) and its complex conjugate allows the 

construction of a G-invariant hermitian metric on G/H: 

ds2 = gij’ dzi dz*’ = 421 er eI* (18) 

..- 
where CI are positive definite real numbers, but otherwise could be different for 

different H-irreducible sectors. The metric can be brought back to the canonical 

I :r 1 
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form: 

ds2 = e”’ e”I* (19) 

by adopting the resealed vielbein 

For ordinary (i.e. without supersymmetry) nonlinear sigma model based on an 

abstract manifold with a reducible isotropy representation, the Cl associated 

with each irreducible sector is in principle an independent parameter. Thus the 

model is characterized by as many independent characteristic mass scales as the 
2- 

number of H-irreducible sectors in the isotropy representation.15 The resealings 

of vielbein, Eq. (20), is often referred to as the squashings of the manifold. In 

supersymmetric nonlinear sigma model the Cl’s are constrained by additional 

conditions which will now be explained. 

To the metric defined by Eq. (18) we associate a a-form: 

A complex manifold is a Kahler manifold if and only if the 2-form is closed, i.e. 

dw = 0. By applying the Maurer-Cartan structure equation (14) and eq. (21), 

we find readily that the condition dw = 0 demands that 

CI + CJ = CK if (22) 

..- 
Here ffi is the structure constant: [TI, TJ] = ~~KJTK. If we pause now to 

examine the Es model with the isotropy group H = SO(10) x SU(3) x U(l), the 

. 
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commutators of the E8 algebra (see the Appendix) are such that the ratio among 

C, is unambiguously determined. That is Cx : Cy : Cw : Cz = 4 : 2 : 1 : 3. 

And the model has only one independent characteristic mass scale. This property 

is shared by all supersymmetric nonlinear sigma model in which the center of the 

isotropy group H has only one U(1) f ac t or; the ratio among CI is identical to the 

ratio among the eigenvalues of the U(1) g enerator in the isotropy representation. 

In the case when the center of the isotropy group H has two or more than 

two U(1) factors, CM can be any linear combination of Q”(M), the generators 

of the U(l)‘s, 

- Here the coefficients era are such that CM is positive definite for all values of M, 

but are otherwise arbitrary. Consequently, the corresponding model has as many 

independent characteristic mass scales as the number (n) of the U(1) factors. (Of 

course the condition that CM > 0 for all M puts some bounds on the mass scales.) 

Alternatively, one can parametrize with just one mass scale A,, corresponding to 

the overall squashing, plus the angles of the spherical polar coordinate system in 

12 dimensions. 

In terms of the resealed vielbein, the connection l-form I’: is given by 

d;’ + rl, A izJ = 0 (23) 

and the antihermiticity condition: 

( > r: * = -ri (24 
..- 

By applying the Maurer-Cartan structure equation, we obtain from Eq. (23) 
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that 

Substituting Eq. (25) in Eq. (26), we obtain 

& fi.7 f&N'- 

(25) 

The curvature 2-form R: can now be evaluated. By definition 

ffl-*.l fiiN* 
1 (27) -- 

CK 
f;*K f&l 

CK 

+ ~CICJCMCN 
f& f&J } EM A gN* 

Thus the nonvanishing components of the curvature tensor are of the form 

R$MN* (R5N.M = -R:MN.). The R icci tensor has the nonvanishing compo- 

nents 
SMN* = c RiMN’ 

I 

The scalar curvature can also be evaluated to yield 

(28) 

(29) 

‘, 
The nonvanishing contributions to the factor x1 fiI of Eqs. (28) and (29) comes 

..- 
only from those indices a that correspond to the generators of the center of H. 

. :r 3 
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And for such indices a, the structure constant 

where Q”(M) d enotes the ath toral U(1) charge of the generator indexed by M. 

Therefore the Kahler manifold becomes Einsteinian, i.e., SMN= a ~MN*, for the 

following value of CM: 

CM a c Q” (1) Q”(M) 
a,I 

(31) 

This choice of CM obviously satisfies the condition (22). (The proportionality 

*- constant of Eq. (31) can be shown to be positive definite.) 

4. Determination of Kahler Potential to the Quartic Order 

The Kahler potential is of interest because it determines the Lagrangian 

density, Eq. (1)) of the supersymmetric nonlinear sigma model. We have not 

yet found a practical and general method for computing the full expression for 

the Kahler potential. We have succeeded in inventing a general method for 

calculating the Kahler potential to quartic order, which will be explained in the 

following. 

-- 

Given a connection l-form for a Riemann manifold, the antisymmetric part of 

the connection is simply the torsion, which transforms as a tensor under general 

coordinate transformation on the manifold. The symmetric part is not a tensor, 

and its value at a given point may be created or annihilated by proper choice 

of a local coordinate system. A Kahler manifold has zero torsion; therefore, a 

coordinate system exists such that the connection vanishes at the origin of the 
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coordinates. We denote by (4’) th e coordinate system, and K(4,4*) the Kahler 

potential with respect to these coordinates, then 

and 

The first order, and the third order derivatives of K(+,r$*) vanish at the origin. 

Therefore the values of the metric tensor and curvature tensor at the origin of 

a- the coordinates are sufficient to determine the Kahler potential to the quartic 

- order. The metric tensor at the origin is simply Sij*, and the value of curvature 

tensor at the origin is determined by Eq. (27) in terms of the squashing ratios 

C’I and the structure constants fF+,. 

Amongst the three Es models, we have calculated K($,&) for the one 

with isotropy groups H = SO(10) x SU(3) x U(l), using the method. Let 

w, !/IA, w:, .za} be complex coordinates, consistent with our method, on the 

Kahler manifold Es/SO(lO) x SU(3) x U(1). Then, up to quartic order, the 

Kahler potential is 
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(32) 

1 IJK ------E 
fi 

YIAYJB(@K~AB~) 



where X being related to the overall squashing is undetermined, and ZI z (xl)*, & = 

(!/IA)*, etc. 

5. The Four-Fermion Interactions 

A supersymmetric nonlinear sigma model has four-fermion interactions, Eq. 

(3). The structure of these interactions is determined by the curvature tensor of 

the Kahler manifold. The general formula derived in Section 3, namely Eq. (27), 

allows a few general conclusions to be drawn about the interactions. 

For a Kahler manifold with irreducible isotropy representation, e.g. the Her- 

mitian symmetric spaces,17 the expressio n for curvature tensor, by Eq. (27), 
. z-- 

becomes 

We recall that the index a runs through all generators of the isotropy group H. 

Therefore the four-fermion interactions of the model based on such a Kahler 

manifold have the same group theoretical structure as the effective four-fermion 

interactions that would have resulted from exchange of one massive gauge boson 

of gauge group H. 

For a Kahler manifold with reducible isotropy representation, not all com- 

ponents of curvature tensor can be reduced to the form given by Eq. (33). 
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The general expression for the curvature tensor is, from Eq. (27), 

R:M~. = - & f:J f&N= - cJ fiJ f&N. 
CICMCN 

- f&J fgN* - $ (34) 

CK 

+ &ICJCMCN 
f&K f&J 

There are values of (I, J, M, N)- in d ex for which the last four terms at the 

right hand side of Eq. (34) result in four-fermion interactions which cannot be 

induced by exchange of a gauge boson of the gauge group H. A glance at the 
z- 

last six terms of the Kahler potential given by Eq. (32) immediately verifies the 

point. 

Specializing to the Es models, where H = SO(10) x SU(3) x U(l), SO(10) x 

SU(2) x U(1)2, and SO(10) x U(1)3, we conclude first that the critical mass 

scale A, may be around or beyond the usual scale for grand unification, namely 

AGUT = 1015 GeV. Otherwise, the four-fermion interactions would likely induce 

a rate of proton decays too abundant to be consistent with experimental result. 

Secondly, there are four-fermion interactions different from those induced by 

either SU(5) or SO( 10) grand unifying gauge interactions. They may be a source 

of some phenomena not predictable by the standard renormalizable theory. 

..- 

One can get a better understanding of the above mentioned property of the 

four-fermion interactions by invoking the concept of holonomy group. The cur- 

vature 2-form R: provides a representation of the generators of holonomy group. 

Furthermore the components Rp JMN* obey the symmetry relation Rp JMN* = 

RN’MJI’ . When the four-fermion interactions are pictured as current-current 
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interactions, the currents have the property of the generators of the holonomy 

group. In the case of Eq. (33), we say the holonomy group is identical to the 

isotropy group. But in general, according to Eq. (34), they are not identical. 

6. Explicit Breaking of G Symmetry by Supergravity 

The global symmetry G of a supersymmetric nonlinear sigma model has to 

be explicitly broken in order for the model to approximate reality to a higher 

order. One source of such breaking will come from the gauging of a subgroup 

S c H. It breaks G to S x R c G at the tree level, where R commutes with S. 

Further effects resulting from gauging of supersymmetric nonlinear sigma model 

. *- have been studied before. “J8 Here we point out two plausible mechanisms which 

are available when the model is coupled to supergravity. 

It is an intrinsic property of a Kahler manifold that there exists at least one 

linear combination, denoted Q, of the generators of the center of the isotropy 

group H, such that the sum of the Q-charges of a-fermions is nonvanishing i.e. 

where I runs through all a-fermions. The U(1) generated by Q is a chiral U(1) 

because the fermions are two-component Weyl fermions. Therefore it happens 

necessarily that the fermion triangle with one Q-current and two energy momen- 

tum tensors has an anomaly. The Q-current, J$, of massless a-fermions is not 

conserved, but obeys 

D, J$ = -1 c QI Ri 
384x2 I (36) 

where RE = 1/2~P~~flR~~~~R~jl, RpYaT being the usual Riemann curvature ten- 
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sor of curved space-time.lg 

Q is an element of the algebra of G. The violation of global conservation of Q 

implies the simultaneous violation of the symmetries generated by those genera- 

tors, denoted by X generically, which carry nonvanishing Q-charge, because Q is 

required for the closure of the commutators [X, X], where X denotes the antiher- 

mitian conjugate of X. For the Es model with H = SO(10) x SU(3) x U(l), Q is 

generator of the U( 1) center of H, i.e. Q = 2’ of Eq. (lo), and x1 &I = 56. The 

Es is broken explicity to SO(10) x SU(3) c H by this mechanism. In general 

one may choose &I a Cl. 

The second plausible mechanism is the following. When a supersymmetric 

nonlinear sigma model is coupled to supergravity, general Kahler invariance, Eq. 

(2), of the action can be preserved at the classical level if and only if a Kahler 

transformation, Eq. (2)) is accompanied by a chiral transformation of the Fermi 

fields: 

x’ + EXP[++ - F*)r5] xi 

(37) 
pcIp + EXP[+ - F*)751& 

where tiP is the gravitino (Rarita-Schwinger field).20 The chiral transformation, 

Eq. (37), can be traced back to a R-symmetry. Each xi carries +1/4 units of 

R-charge while T,LJ~ carries -l/4. Modulo the uncertainty caused by the field- 

dependent (F - 3”) , we expect a violation of the R-symmetry by the anomaly of 

the fermion (xi, and +,) t riangle with one R-current and two energy-momentum 

tensors. This anomaly thus breaks the Kahler invariance. The understanding of 

this mechanism is still in a preliminary stage, further progress is needed. 

26 



7. Discussions 

Contrasting the structure of supersymmetric nonlinear sigma model stud- 

ied here, particularly Sections 2 and 3, with that of ordinary nonlinear sigma 

model we cannot help but be impressed by the power of supersymmetry. Be- 

sides pairing up the Fermi fields with Bose fields, supersymmetry demands that 

the manifold, on which the Bose fields take value, should carry an invariant 

complex structure, which in turn leads to nontrivial handedness assignment of 

the Fermi fields. Furthermore, the number of independent squashing param- 

eters is greatly reduced in the supersymmetric models. Consequently, we an- 

ticipate a crucial role to be played by mechanism responsible for breakdown 
. a- 

of supersymmetry, especially in the matter of confronting the Es models with 

reality. Of course the Es symmetry, and parts of the isotropy groups H = 

SO(10) x SU(3) x U(l), SO(10) x SU(2) x U(1)2, and SO(10) x U(1)3 need to 

be broken too. We pointed out two plausible symmetry breaking mechanisms, 

which involve gravity, in Section 6. They deserve further study. 

In Section 5, through an analysis of the four-fermion interactions inherent 

in the E8 models we concluded that the characteristic mass scale A, should be 

around or beyond the grand unification mass scale AGUT M 1015 GeV. Indeed 

there is an additional argument which suggests that A, > AGUT. This argument 

originates from the fact that, in the E8 models, the SU(3)c x sum x U(1) 

gauge group as well as the grand unifying gauge group SU(5) (or SO(10)) is em- 

bedded in the isotropy group of each ES model. Spontaneous breakdown of the 

grand unifying gauge group to SU(3)c x sum x U(1) at AGUT therefore nec- 

essarily means simultaneously spontaneous breakdown of the SU(5) (or SO(10)) 

subgroup of isotropy group H. Thus, the structure Es/H loses its meaning if 
-- 
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A, 5 AGUT. This phenomenological lower bound on A, suggests naturally that 

A, may in fact be related to the Planck mass Mp. 

Now let us assume that one of the three Eg models is the correct one. What 

conclusion can one draw from it about the dynamical degrees of freedom proper 

to the matter in the preonic phase ? First of all, the model implies a supersym- 

metric preonic phase. Secondly, since Eg is not a classical group, the new degrees 

of freedom cannot be the commonly speculated point-like preons. (The global 

symmetry of ordinary preon model is necessarily a classical group, or a product 

of classical groups.) Thirdly, taking the suggestion that A, be related to MP, we 

expect the new degrees of freedom to live in a new phase of space-time. In the 

*- present state of the art, the superstrings in higher dimensional space-time seem 

to be the only plausible candidate for the new dynamical degrees of freedom. 
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APPENDIX I 

The Et3 algebra has 248 generators. In terms of the basis { LAB, T$, T, xl, Fi, 
- 

WI&, %Y, XI, tiA, w,', &t } defined in Section 2, we obtain the following non- 

vanishing commutators for the algebra. 

[LAB, LCD]=SBCLAD+~ADLBC-~ACLBD-~BDLAC 

[LAB, YE] = -@!$i~ 

[LAB, ~,Z]=-(~AB)#$ 

l-I K 
[T;, XK] = ;S,Kx’ - -a&$X 3 

1-I 
[Ti, YKA] = -&YJA + ~zSJYKA 

l-1 K 
[T;, WaK] = is,KW,I - -dJw, 3 

[T, X’] = f ; X’ 

[T, GA] = ;; fiA 

[T, W,‘] = ii W,l 

[T, Z,] = i 2, 
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[XI, rfJ] = iT; + i6,IT 

[%i, YJA] = - fi ‘fIJK(~t),~wpK 



and their hermitian conjugates. The objects rA, A = 1, 2, . . . . 10, are 16 x 16- 

dimensional gamma matrices for SO(l0). The explicit form for rA is 

, 0 -6: 0 

-6? 0 -6$ , for A = 1,2 ,..., 5; 

0 -6$ EAjkrnn 

0 -p-5 L 0 

i -4jA-5 i 0 -&t--5)i , for A=6,7 ,..., 10. 

L 0 JA-5Y 
jk E(A-5) jkmn 

where (0, i, [jk]) is the row index, and (0, !, [mn]) is the column index, in ac- 

cordance with the splitting 16 = I+ 5 + 10 with respect to SO(10) > SU(5) 

II .-.a 1 
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branching. One can introduce 32 x 32 - dimensional gamma matrices 

7A = ,A = 1,2, . . . . 10 , 

which obey the Clifford Algebra { 7A, 7~) = 26~~. The objects CAB are defined 

as 

t 
- rBrA) 

a- 
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