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ABSTRACT 

Leading nonperturbative corrections to the quark and gluon propagators are 

derived following the assumption that the nonperturbative QCD vacuum can 

be described in terms of non-vanishing vacuum expectation values for the com- 

posite operators [T&I and [GEY]. Th e nonperturbative quark propagator can be 

described in terms of a running quark mass and a running normalization func- 

tion. These quantities are shown to be gauge independent. The nonperturbative 

gluon propagator can be described in terms of a running gauge parameter and a 

running normalization function. 
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1. Introduction 

In this article we study quark and gluon propagation in the presence of quark 

and gluon condensates. The basic assumption underlying our analysis is that 

the nonperturbative QCD vacuum can be described in terms of non-vanishing 

vacuum expectation values (vev’s) of gauge invariant composite operators such 

as the quark condensate [T&J] and the gluon condensate [GE,]. This hypothesis 

has been used extensively in successful attempts to account for nonperturbative 

phenomena. It is the key assumption in the so called QCD-sum rules’ which 

have been used to study (among other subjects) charmonium decays, SU(3)- 

symmetry breaking effects and hadron wavefunctions2. Another application of 
. a- 

the same assumption is a recent analysis3 of the MIT bag model where it is found 

that the existence of quark and gluon condensates allows for the possibility of 

having a small strong coupling constant inside the bag. 

Mueller4 has recently shown that it is possible to define the nonperturbative 

condensates in a consistent way. Fukuda and Kazama5 have demonstrated 

condensation of [Gi,] by constructing the effective potential through the trace 

anomaly equation. However, we feel that this latter derivation remains somewhat 

ambiguous since it is not based on a rigorous definition of the gluon condensate. 

-- 

In the following analysis, the composite operators will appear in the operator 

product expansion6 (OPE) of the quark and gluon propagators respectively. The 

operators in this expansion must carry vacuum quantum numbers, and from gen- 

eral grounds one may conclude that they must be gauge singlets. The operators 

in the OPE are furthermore characterized by their dimension. The contribution 

from an operator with a higher dimension falls off more rapidly with momentum 

than a lower-dimension operator. 
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Apart from the unit operator, the operators [$$I (dimension 3) and [GE,] 

(dimension 4) are the gauge independent operators of lowest dimension in QCD. 

In the following we neglect higher-dimension operators. It should be mentioned 

that if higher-dimension operators acquire non-zero vev’s, their influence can be 

neglected only for large momenta. We also note that the OPE can be taken 

seriously only for hard momenta in the propagator to be expanded. 

In Refs. 1 and 2 the following phenomenological values for the vev’s of [d$] 

and [G$] are given: 

(!I1 [au] In) = (iI1 [zd] IfI) = 1.3 (01 [SS] 10) N -(0.25GeV)3 ; 

(al [EC] Is-l) = (f-21 [zh] In) = (i-q [Et] p-2) N 0 ; 

(h2l [%G$,] In) N +0.012GeV4 . 

(1) 

The authors of Ref. 1 use a value close to 1 for cr,, corresponding to Q2 = 0.2 GeV 

and AQCD = 0.1 GeV. 

The effect of the quark condensate on the quark propagator was analyzed in 

1976 by Politzer7 and the analysis was later revised by Pascual and de Rafael’ who 

pointed out some numerical errors in Politzers paper. Politzers main interest was 

in the derivation of the so called nonperturbative quark mass, obtained through 

the nonperturbative quark propagator. Here we revise the analysis in Refs. 7 

and 8 and we extend it to include the gluon condensate contribution to the quark 

propagator. The nonperturbative quark propagator can be described in terms of 

a running (momentum dependent) normalization function and a nonperturbative 

quark mass. We derive these quantites and compare the result to that of Refs. 7 
-- 

and 8. 
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We evaluate the nonperturbative corrections to the gluon propagator in a 

general covariant gauge. The corrected propagator can be described in terms of 

running normalization function and a running gauge parameter. 

The ghost propagator is not influenced by [&J\ or [GtY]. In the following 

our analysis will be done at the tree level and all the calculations are done in 

Euclidean space. 

2. The Nonperturbative Quark Propagator 

The operator product expansion of the inverse quark propagator in the pres- 

. 2”- ence of non-vanishing vev’s for the operators [T&/J] and [GtY] is: 

ab 
apsi; - “,“p&P) I+$3 c VP) PI hwl If-0 

(2) 
+ $@vI (PI G-4 P:vl If3 - 

The coefficients carry the spinor and color quantum numbers as indicated by 

the indices (Y, /3 (spinor) and a,b (quark color). The coefficients are calculated 

perturbatively. Here they will be calculated to first order in cyB. $Cll(p), the 

coefficient associated with the unit operator, is equal to the perturbative inverse 

quark propagator. In Euclidean space we hence have: 

:p(P) = i 6ab ($ + m). (3) 

In order to calculate $$[@I (p), we will follow the standard recipe in the litera- 

ture.g The coefficient is obtained by equating a (2+n)-point, one-particle irre- 

ducible Greens function-where two of the external legs have hard momentum 
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and the remaining n external legs are assigned zero momentum-with the coef- 

ficient times an n-point Greens function with an insertion of the operator under 

study at zero momentum. The number n corresponds to the number of elemen- 

tary fields contained in the composite operator. 

In our present case, we chose to study the quark-antiquark, one gluon ex- 

change, four-point function. The operator product expansion of the four-point 

function is illustrated in Fig. 1. It reads: 

In this equation, the one-particle irreducible Greens function $$I’(2+2)(p, p, 0,O) 

is the diagram on the left hand side in Fig. 1. The role of the contraction operator 

P$ is to ensure that the collective quantum numbers of the soft legs are those 

of vacuum. It also effectuates the necessary summation over color and spinor 

indices. In this case P$ is simply equal to Pd&,~. Note that [$$,I is defined as 

hw:1. 

The t-channel does not contribute to the left-hand side in Fig. 1 since it 

is identical to zero when the two lower legs are assigned zero momentum. The 

fact that only the s-channel enters the calculation implies that only conden- 

sates with the same flavor as the quark with hard momentum (the propagating 

quark) contributes. To second order in the coupling constant g (g2 = 47ra,) the 

s-channel, one-gluon exchange diagram is gauge independent (see the separate 

chapter on this issue) , and the correct gauge independent expression is automat- 

ically obtained in Feynman gauge. When contracted in spinor and color space, 
-- 
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the diagram on the left-hand side in Fig. 1 yields: 

P ;f ~~$J@+2)(*,*,0,0) = y g2 csab s,, -$ (5) 

An insertion of [$$I, t a zero momentum in the inverse quark propagator, I’t2) (0)) 

is obtained by differentiation with respect to minus the quark mass: 

After contraction with P,$ we have: 

P$ $x$&,,,(o) = -12 i. 

Combining (4)) (5) and (7) we now obtain: 

$@1(p) = $ i g2 6”b &, ‘. 
P2 

(7) 

-- 

In order to obtain ab clGgJ in (2), we study the expansion of a six-point function aP 
with two hard quark legs and four soft gluon legs. The OPE expansion of this 

diagram is illustrated in Fig. 2, and it reads: 
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pABCD $(pf~oDr(2+4) (p p 0 0 0 0) M ww ) , , , , , 

The contraction operator, P$TFD, plays the same role here as in the previous 

case. It ensures that the collective quantum numbers of the soft gluon legs 

are those of vacuum and it effectuates the summation over gluon color- and 

space/time- indices compatible with that requirement. PkV~FD is identical to the 

contraction operator in the four-gluon vertex: 

. *- PABCD = fABEfCDE(bppsy* - /5vvp6pc10)+ ClVPO 
(10) 

+f CBEfADE(&& - 4/p~py) + fDBEfCAE(&JpJ - SypScM). 

1’(2+41 is a one-particle irreducible six-point function and I’[,$ CO)l is the gluon Irv 
four-point vertex with an insertion of [Gi,] a zero momentum. Such an insertion t 

in a one-particle irreducible Greens function is obtained through the following 

formulalO : 

r [G$(O)] = -4 9 a ---+ + 
2 a9 G (11) 

Here, ng is the number of external gluon legs and CYG is the gauge parameter. In 

our case ng = 4. With 

ABC+(d) = -g2 pmCD Ccvw PJJPfl ’ 

we hence get: 

ABCDr(4) ABCD 
WPa [G&(o)] = 4g2 ‘/mpo 7 
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and 

pABCD ABCDr(4) 
WPC w’F [G&(O)] 

(0) = 31104 g2. 

The left hand side of (9) is evaluated to be: 

pABCD z>$ycDr(2+4) 
WPQ , (P,P,O,O,O,O) = 36 i g4 bab (p2 +lm2)3 

(15) 

x (2p2f + 3mp2 + 3m2fi + 4m3),p. 

From (9), (14) and (15) we now get: 

+ 3m2# + 4m3),p 

We are now in a position to obtain the nonperturbative inverse quark propagator. 

From (2), (3), (8) and (16) we get: 

ab 
c&L; = i bab(j + m)+ + 

+ $ i g2 6”b6,p; (f-q [li;lb] IfI) + 
(17) 

1 
+- 

864 i g2 6ab (p2 +lm2)3 

X (2p2p -t 3mp2 + 3m2j + 4m3),p (52 I [ Gt,] IfI) . 

-- 

In Fig. 3 we give a diagrammatic interpretation of this equation. The nonpertur- 

bative inverse propagator can be expressed in terms of a running normalization 

function, N,(p2), and a running mass, M(p2), in the following way: 
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(18) 

This corresponds to Politzer’s definition of the nonperturbative mass’ . We 

have: 

WP2) = (1 + g&g2 (p2 +1m2)3 (2~~ + 3m2) (nl [G:,] In))-’ (19) 

and 

WP2) = ( m + $92; PI Ii&l p-0 + 

1 1 (20) 

+ 864g2 (p2 + m2)3 (3mp2 + 4m3) (Q I [qL/l In,> Nq (P2). 

Inverting (18) we obtain the nonperturbative quark propagator: 

ab 
c&p = (21) 

For timelike momenta (p2 negative) the running mass is a positive quan- 

tity @I Wtil In> is negative). M(p2) app roaches m in both limits -p2 I+ m2 

and -p2 ++ 00. For massless quarks (m=O) M(p2) has a maximum at -p2 = 

$roB ($21 [Gi,] In). With the phenomenological value of (n] [G;“l,l In) in (l), 

the maximum occurs at G N 0.3GeV. If we let both m and (n] [GE,,] ]a) be 

zero, we see that this expression agrees with that of Ref. 8, specialized to Feyn- 

-- 

man gauge. We note that for large p2, the mass is identical to Politzers mass 

(up to a constant factor, see Ref. 8). For low momenta, where the gluon con- 

densate is important, our mass goes like p 2, differing drastically from Politzer’s 

9 
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mass which goes like s for all momenta. However we want to stress that for low 

momenta the nonperturbative quark mass might get large contributions from 

higher-dimension operators. The only region where we can feel confident about 

our results is in the asymptotic region where our result coincides with that of 

Politzer. 

3. The Nonperturbative Gluon Propagator 

The OPE for the inverse gluon propagator is: 

We evaluate this expression in a general covariant gauge where we have the 

perturbative inverse propagator: 

(23) 

Here o!G is the gauge parameter and the notation is such that oG = 1 corresponds 

to Feynman gauge. The coefficient ~fC@~](p) is obtained from the following 

equation, graphically represented in Fig. 4: 

pb AB,dq.(2+2) 
@ crv,d (P, P, 090) (24) 

..- 
Here 1’(2+2) is the sum of the two diagrams on the left-hand side in Fig. 4. The 

contraction operator I$$ is the same as that we used in the derivation of the 

10 



quark condensate contributions to the quark propagator. After contraction with 

P$ we have: 

peb A&+(2+2) 
QP w,aP (p, p, 0,o) = -12ig%m6,, 

(p2 +“d) - 

Combining with (7) and (23) we have: 

;wYP) = g26AB6,, (p2 ym2, . 

(25) 

(26) 

. a- In order to obtain the contribution from the gluon condensate, we study the 

following equation, graphically represented in Fig. 5: 

(27) 

Here 1’(2+41 is the sum of the five diagrams on the left hand side in Fig. 5. 

The left hand side in (27) is evaluated” to be (in a general covariant gauge, 

Euclidean space) : 

..- 

tf;fzEF r (2+4 
, (p,p,o,o,o,o) = ; iTAB g4 ; 

x 
( 

y(l - aG)’ - 317(1 - “G) 

- &,(I - CXG)’ + 286,,(1 - “G) - 13y + 134, 
> 

, 
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From (14) and (23) we get: 

- &v(l - QG)’ + 286,,(1 - tuG) - 13 y + 136,, . 

(29) 

We now get the nonperturbative inverse gluon propagator from (22), (23), (26) 

and (29): 

. e- 

PAL, 1 
w,AB -1 M @BP2 6 TV 

+ 6ABg26,, 
@’ b7q1 ‘n) + 

?(I - aG)2 - 31 y(l - “G) 

- &,(l - a&-)2 + 286&l - “G) - 13 7 + 136,, (i-1 [G;J 10) 

(30) 

A diagrammatic representation of this equation is given in Fig. 6. In analogy 

with the inverse quark propagator, we write the inverse gluon propagator in the 

following form: 

(DQAB)-’ = & bAB p2 (6,, - (I- 
I 

’ )““““), 
AG(P~) p2 (31) 

where we have introduced a running normalization function: 
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Ng(p2) = (1+ c 
q=duscbt 

g2;$Y;Ljn) + 
Q I ,,,, 

+ g2 F-w;lJ~) 
2304~4 (13 - (1 - %)2 + 28(1 - a,)))-‘, 

(32) 

and a running gauge parameter, A(p2). Th e expression for the running gauge 

parameter is rather complicated in a general covariant gauge. The gauge in which 

the physics is most transparent is Landau gauge where CYG = AG(P~) E 0. In this 

gauge all the nonperturbative effects are contained in the running normalization 

function and the expression for the nonperturbative gluon propagator reads: 

. c- 

D/W- _ v - (1+ c 
q=duacbt 9 99,, (33) 

4. The Nonperturbative Quark Mass 

and the question of gauge dependence 

The so called nonperturbative quark mass was introduced by Politzer7 who 

obtained the mass by first calculating the nonperturbative quark propagator 

through the operator product expansion. Politzer neglected the contribution 

from the gluon condensate and the analysis was done for massless quarks only. 

Unfortunately, the analysis was somewhat unclear and not specific on details. 

In an attempt to review Politzers analysis, Pascual and de Rafael pointed out 

some spinor and color factors missing in Ref. 7. They also claimed that the 
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nonperturbative quark mass is gauge parameter dependent when evaluated in a 

general covariant gauge. Politzers analysis was done in Landau gauge and he does 

not comment on the question of whether or not the result is gauge dependent. In 

a recent article12, Elias and Scadron argues that the nonperturbative quark mass 

is gauge independent and that the correct result is automatically obtained-as 

in Politzers analysis-in Landau gauge. 

Because of the confusion surrounding the nonperturbative quark mass, we 

want to make some comments on the issue of gauge dependence of the nonper- 

turbative quark propagator in Eq. 17. 

Suppose the derivation of the nonperturbative quark propagator is done in 

a general covariant gauge. If the gauge parameter CYG survives throughout the 

analysis the quark propagator will be gauge dependent, otherwise not. The 

truncated six-point function in Fig. 2 does not contain any gluon propagators 

and hence not CrG. Since the four-gluon vertex does not contain CXG either, this 

means that the contribution from the gluon condensate does not contain CXG. 

In the case of the contribution from the quark condensate, it would seem that 

oG is introduced through the diagram on the left hand side in Fig. 1, since it 

contains the gluon propagator. However, in that diagram, the gluon propagator is 

sandwiched between quark propagators. It is well known13 that when the quarks 

are on the mass-shell, the second term of the gluon propagator, sandwiched 

between the quark propagators, disappear by virtue of the Dirac equation for 

free quarks. We therefore know that at least in the limit of on-shell quarks, 

the diagram is gauge independent and that the correct result is automatically 

obtained in Feynman gauge. 

Furthermore, the Dirac equation can be used also in the case of off-shell 
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quarks. Compared to the case of free quarks, the equation is now modified by 

a term proportional to the coupling constant g. When the gluon propagator is 

sandwiched between off-shell quarks, the same trick as in the on-shell case can 

be used. In this case the contribution originating from the second term in the 

gluon propagator does not vanish, but it is proportional to g2, so this contri- 

bution will be of higher order in the coupling constant than the contribution 

from the first term. This means that to first order in (Y, the diagram in Fig. 

1 is gauge independent also for off-shell quarks and the correct result is that 

automatically obtained in Feynman gauge without using the Dirac equation. It 

follows that Elias and Scadron must be wrong when they claim that the nonper- 

. *- turbative quark mass should be calculated in Landau gauge without using the 

- Dirac equation to eliminate the contribution from the second term in the gluon 

propagator. 

5. Discussion 

Our main result are the expressions for the nonperturbative quark and gluon 

propagators, Eqs. (21) and (33). For low values of momenta, these expressions 

will have to be corrected by contributions from any operators of higher dimension 

than four that acquire non-zero vev’s, and from multiple insertions of [$$I and 

[Giy]. We suggest (quite arbitrarily and probably very conservatively) that as 

long as the nonperturbative corrections that we have calculated here are one 

order of magnitude smaller than the regular propagator, further nonperturbative 

corrections can probably safely be neglected. With the phenomenological values 

of the vev’s of [$+I and [Gz,] in (1)) we thus estimate that the nonperturbative 

corrections that we have calculated here can be taken seriously for G 2 0.60 
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GeV in the case of the gluon propagator and m 2 0.80 GeV in the case of the 

quark propagator. One way to lower the limit of validity of the nonperturbative 

analysis is of cause to calculate, or at least estimate, the contribution from higher 

dimension operators and from multiple operator insertions. These questions are 

subject to current research. 
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FIGURE CAPTIONS 

1. Graphical illustration of Eq.(4). Th e b ars on the lower legs indicates that 

the corresponding propagator is assigned zero momentum. The upper di- 

agram in the middle part of the equation is defined to be the graphical 

representation of the coefficient z$ &‘@ I (p) . 

2. Graphical representation of Eq.(9). Notations are the same as in Fig. 1. 

3. Graphical interpretation of Eq. (17). 

4. Graphical representation of Eq.(24). Notations are the same as in Fig. 1. 

5. Graphical representation of Eq.(27). Notations are the same as in Figs. 1 

and 2. The small quadrats in the diagram represents four-gluon couplings 

and the triangles three gluon couplings. 

6. Graphical interpretation of Eq. (30). 

. :.s 
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