SLAC-PUB - 3454
September 1984

m

UNIVERSAL FILE PROCESSING PROGRAM
FOR FIELD PROGRAMMABLE INTEGRATED CIRCUITS®

DIETRICH R. FREYTAG
DaviD J. NELSON
Stanford Linear Accelerator Center
Stanford Unsversity
Stanford, California 94305

Abstract

A computer program is presented that translates logic equa-
tions into promburner files {or the revcrse) for programmable
logic devices of various kinds, namely PROMs FPLAs, FPLSs
and PALs. The program achieves flexibility through the use of
a database containing detailed information about the devices
to be programmed. New devices can thus be accommodated
through simple extensions of the database. When writing logic
equations, the user can define logic combinations of signals as
new logic variables for use in subsequent equations. This pro-
cedure yields compact and transparent expressions for logic
operations, thus reducing the chances for error. A logic simu-

“lation program is also provided so that an independent check
of the design can be performed at the software level.

.o 1. Introduction

Programmable logic devices (PLDs) in the form of PROMs
FPLAs, FPLSs and PALs are very useful and rich building blocks
for electronic logical systems. The range and performance
of available devices is increasing every year and so is the
complexity of the problems that can be solved with program-

“mable logic.

A powerful method of describing a logic system is by means
of logic equations using true/false signals and the logical oper-
ations of ‘and’ and ‘or’. Thus a software package which trans-
lates logic equations directly into a list of fuses to be burned is
an immensely useful tool in the development of logic systems
up to the complexity of a modern micro- or minicomputer.

Manufacturers of programmable logic offer software pack-
ages which perform this translation, e.g., the PALASM pro-
gram from Monolithic Memories for PALs! or a similar program
available from Signetics for FPLAs. Since the various devices
on the market have different areas of strength, the designer
may decide in the course of development to transfer certain
logic functions from one device type to another. It is therefore
advantageous to have a program that addresses all PLDs in
an identical manner. With the rapidly expanding line of pro-
grammable logic, it is imperative to have a program structure
that can easily accommodate new devices.

1t is desirable to have the capability of translating the fuse
pattern back into logic equations in order $o keep track of the
contents of programmed devices. This operation is also very
helpful for the understanding of undocumented devices.

Finally, as an independent check of the functionality of
the design, it is useful to be able at the software level to step
" through logic sequences using test vectors.

* Work supported by the Depariment of Energy, contract
DE-AC03-76SF00515.

2. Description of the Program
2.1 SOFTWARE STRUCTURE

The program described here (named ‘PROMise’ at SLAC)
consists of an interactive section for input of information at
execution time and the processing section, which is written in
FORTRAN. This latter section uses a very basic instruction
set for maximum compatibility with different computers. The
FORTRAN program compiles without changes on an IBM or a
Digital computer.

The interactive section is written in REX executive lan-
guage for the IBM machine and in Digital’s interactive FOR-
TRAN for the VAX computer.

2.2 FILE TYPES

The program performs translations between several equiv-
alent descriptions of the device at various hierarchical levels
of language. The highest level is that of logic equations. An
intermediate level, which is often useful for checking purposes
or which may be used as a source file, is a representation in
the form of a fuse table. The description needed for burning
the device is a binary list of fuses to be blown. The types
of descriptions and the transformations between them may be
schematically represented as follows:

(Logic) « (Fuse) «» (Hex) « (Intel) ~ (Prom Burner)

For convenience, a transformation within the binary (Hex
or Intel) files is included in the package. This consists of the
breakup of a string of specified length (e.g., a 48-bit wide
instruction word) into bytes (8 bits) or halfbytes (4 bits) for
purposes of partitioning the instruction into several PROMs.

In order to minimize the amount of information that has to
be provided at the time of execution of the program,
each design file contains directions in a header specifying what
operations are to be performed. The header block contains
the device name, the source and destination file types, and
(for binary files) whether a string of bits is to be partitioned
into bytes or halfbytes. The header also contains one line of
descriptive text, which will be repeated in the destination file
and in the listing for purposes of identification. The device
name serves as a key to all the necessary information about
the device, which is contained in a master data file read by the
program. This database is the tool for expanding the program
to new devices. As long as the new device performs basically
the same functions as the ones already included, a new entry
in the table suffices. However, when a device has new fea-

tures, the program itself must be extended to accommodate- . .3

the new functions.

Presented at the Nuclear Science Symposium, Orlando, Florida, October 31 - November 2, 1984



2.3 LoGIC EQUATIONS

Logic equations are written in standard form combining
signal names or their complement by logical ‘AND' and ‘OR’
operations. The equations are written in terms of true or false
for the signals regardiess of the type of logic used (positive
or negative logic). False is indicated by a */’ preceding the
signal name. The type of logic is defined for each signal inde-
pendently in the list assigning a name to each device pin. A
signal which is negative true carries a leading ‘/’. In this way
positive or negative true signals may be mixed, or the defini-
tions changed during the design phase, without any effect on
the form of the logic equations, thus minimising the possibil-
ity for error. Examples for production files of logic equations
including substitutions (2.4) and the resulting fuse table (2.5)
are shown in Table 1.

When writing logic equations for FPLAs or FPLSs, the pro-
gram automatically takes care of the merging of expressions
with identical input conditions into one term driving multiple
outputs. This reduction process, which maximizes the amount
of logic that can be packed into a device, can be quite difficult
if done without the help of a computer. Another special fea-
ture of the program has to do with the possibility of editing
PLDs by burning out an entire fuse line and replacing it with a
new one. A special code (‘VCC=") bas been defined for logic
equations, generating an inactive fuse line, thus enabling the
user to represent the PLD through all iterations of editing.

2.4 SUBSTITUTIONS

In order to simplify the writing of complicated expres-
. sions, certain logical combinations of signals may be defined
and given a new name for use in subsequent equations. A par-
ticular form of such a building block helpful in all kinds of
counting and sequencing applications is a function defining a
group of signals as a binary number. This group of bits may
subsequently be called by the function name specifying a value
(decimal or hex), thus eliminating the need to assign true or
false to the individual signals. It is also possible to generate
®don’t care® bits using the function definition. This is accom-
plished by specifying as argument of the function the ‘OR’ of
all values resulting from the given bits being unspecified.

When programming PROMs using logic equations, the bi-
nary function definition described above can be particularly
useful. Signal names not appearing in a logic equation for a
PROM (*don’t care” bits) cause all addresses allowed by the un-
defined bita to be generated and identical output terms burned
at these addresses.

2.5 FUSE TABLES

Fuse tables have been retained as an integral part of the
programming package because they are still widely used as a
means of defining programmable devices, and are also quite
useful for checking a design because they are made to resem-
ble the electronic structure of the device. The program listing
produces a fuse table annotated with comments derived from
the logic equations. When a PROM is used as a logic device,

a fuse table resembling an FPLA is printed. Here a *don’t care”
bit means that both addresses (with the bit in question reading
0 or 1) are programmed to give identical output data.

2.6 BINARY FILES

Two different types of binary files are supported by the pro-
gram. One type is the Inte] format carrying address informa-
tion and checksum for transmission to the PROM burner. The
other type is a straight hex format which in some
applications may serve as a source file.

2.7 REVERSE TRANSLATIONS

Normally a device is defined in a bigh language (e.g., logic
equations) and the program provides the conversion into a
binary file for burning. Occasionally the reverse translation
is useful in order to determine the contents of a programmed
device. For older designs generated in fuse form, it may be
advantageous to generate a new definition in logic form in
order to make the function of the device more transparent.
The logic equations generated by the program refer to pin num-
bers which then should be replaced by signal names (using a
text editor) to make the equations easily readable.

2.8 DOCUMENTATION

Each of the file types described above defines a device
completely, shown by the fact that conversion can proceed
from logic to binary and back to logic forms. It is thus a
matter of convenience which file type is kept for documenta-
tion. Since logic equations are most easily understood and
can be richly annotated, they constitute the preferred form for
keeping records.

3. Controlling the Prom Buruer

The programming package also performs all the routine
control functions for the prom burner. This involves a three-
way communication between terminal, bost computer and prom
burner, which is handled by a microprocessor (Intel 8085)
located in a self-contained box near the prom burner. Data
received at any of the three serial ports of the interface are

modified if necessary and routed to the currently selected re-

ceiving device. The program stored in the microprocessor rec-
ognizes flags in the incoming data stream and sets up one of
the three possible two-way communications, i.e.,

(Terminal) « (Host)
(Host) « (Prom Burner)
(Terminal) « (Prom Burner)

Filtering the data through the microprocessor is a convenient
way to match the host computer to the prom burner. A further
advantage of this approach is that it provides a standardized
procedure when more than one host computer and prom burner
are utilized. (At SLAC an IBM 3081 or a VAX may serve as
a host while different models of DATA 1/0 prom burners are
used in the various laboratories). By modifying the resident
program in the microprocessor, other host computers or prom
burners can be accommodated.

[ ]



Table 1. Sample Input and Output Files

; Beader for 745288 PRON
;  RANYRITE 4s the sigzal aame at piz 1, high true.
;  RANREAD 4s the signal same at pia 3, lov trae.

745208 LOG.C TO INTEL

TEST FOR CODIKC OF 32 I 8 PRON

RANYRITE /RANREAD DATAOUT /EBABLEY 05 08 07 CND
08 A0 A1 A2 A3 A4 /E1 VCC ; End pia liet.

; Logic equations input to program.

ADDR(A4,43,42,41,00) ; Address function
DATAIR = AOsAl ; Sabstitotion
RANYRITE= ADDR(AH+BH) ; AR = decimal 10
RAMREAD=  ADDR(8+8) ; A0 is ®don't care®

DATAOUT=  DATAIN+A3+/42
ENABLEY=  ADDR(1)+ADDR(CH+DEH)+ADDR(ER) +ADDR(11H)

; Fuse table ontput generated by progras.

........... - cemcccccccmnre e

; EHEHLELE

. ADDRS ( DATA )

. 43210 76543210

00 LELE- .......A RANVRITE= ADDR (AH+BE)
01 LHLL- ...... A. RAMREAD= ADDR(8+9)
03 -B-EE ..... A.. DATAOUI= DATAIN#A3+
03 --L-- ..... i a2

04 LLLLE ....A... ERABLET= ADDR(1)+
06 LEHL- ....h... ADDR (CH+DE) +
08 LEHEL ....A... ADDR (EB) +

07 ELLLE ....A ADDR(11B)

; Header for Signetics FPLA 825100

i Setup to generate the sane fanctions as above.

FPLA100  LOGIC 70 INTEL

TEST FOR CODING OF SIGHETICS FPLA 825100

X A0 A1 42 A3 A4 I I I RAMVRITE /RAMREAD DATAOUT GND
JENABLEY XXX XXIXIXIZXXIXZXZXVCC

i Legic equations follow as before. The progras
; gemerates fuse table and bimary file for 828100.

; Header for Signetice 828106 FPLS

FPLS106 LOGIC T0 INTEL

YEST FOR 825106 FPLS

CLOCK ; 8ignal mame at pin 1

17 16 QN2 QN1 IN2 IN1 MPC START F7 F6 F6 F4 CND

¥F3 ¥2 F1 F0 PRESET RESP BSFIN ENS 112 LAST CANQ CAMI I VCC
CDN PO\PI P2 P3 P4 P6 NO N1 N2 N3 X4 U5 ; Iateraal signals

NE(NG,¥4,03,%2,01,%0) ; Fumction defimition
FF(F6,F4,F3,F2,F1,FO) ; Function definitien
PP{P6,P4,P3,P2,P1,P0) + Function definition
ILLL*/ENS*/112+/LAST ; Bubstitution

NE(0)sFF(0)= F6=/F7= PP(63)*START ; First equation
F6= F8= Xb=/PH

¥E(24)=FF(24)= F6= PG+ BSFINs LAST+CON

¥E(24)=FF(24)= F6= PE+/I12+ LAST+CON

WE(30)=FF(30)= F6=/F7=PP(80)+ BSFINs/NPC

CON= PBs P4s P3

FUNCTION TABLE

BSFIN ENS 112 LAST NPC START ¥6 N4 ¥3 ¥1 KO F7 F6 Fb6 FO

s s s - - 8L LLLLLBEBLL
y B - - L - - BELLLEBELEBEBLHE

; Fuse table output generated by progras.

H (The amnmotations to the fuse table are truncated)

OE=E,PR=L  (825104/6) L
i € 111111 (IFPUTS) PREV. NEXT (OUIPUT)
;D B432109876543210 543210 543210 76643210

00 = ~=-comcccemcec H BEHRHE LLLLLL LELLLLLL FE(O)= PP(6
[ R L-=-=- B----- ~HH----- Fb6=F6= /Pb
02 . ~H--H---o-cwceea- B----- LEHLLL -HLEHLLL NE(24)= P5s
08 . ~=-LH-==--c-cun B----- LEHLLL -BLEHLLL PEs
04 = -B-=-emomm-mee L- HENHLL LEHHHL LELEHEHL KE(30)= PP(6
06 A ------cccememene HHH--- ==eces =c==co-- CON=  PBeP
SINULATION

TEST FOR 825106 FPLS

TEST VECTOR 1 TERNS O

KRROR 1¥ VECIOR 2 EIPECT = B TABLE = L PIN = F6
ERROR IN VECTOR 2 EIPECT = L TABLE = R PIN = FO
ERROR IN VECTOR 2 EIPECT = L TABLE = B PIN = §0
TEST VECTOR 2 TERNS 1

LA d



Control of the prom burner proceeds through the inter-
active part of the program. The binary file created in the
first pass as an output file now serves as the input file to be
loaded into the prom burner. The information contained in the
file header greatly simplifies the operation of burning, because
all the necessary information about pin-out, chip size etc., is
automatically picked up from the database. The interactive
program allows these default values to be modified by the
operator as needed in special applications.

4. List of Devices

The following is a list of devices as currently handled by
the program. The device name ‘FILE’ is used for downloading
a file containing multiple PLDs for sequential burning of several
devices.

File 2708 256X4 256X4ECL 512X8 2532 2716 2732 2564
18S22 28L22 635441 825137 185030 74S288 6309

2764 27518 74188TI 7602 5330 74S188NA 10139
825100 825105 B25147 825153 825157 825159

PAL10HS8
PAL12L6
PAL16X4
PAL16C1
PAL20X8

PAL12H6 PAL14H4
PAL12L10 PALI1414
PAL16R4 PALI16R6
PAL1SL4 PAL20C1
PAL20X10

PAL16H2
PAL16L2
PAL16RS
PAL20L10

PAL1OLS8
PAL16A4
PAL16L8
PAL20X4

Acknowledgements

The original version of the microprocessor program han-
dling the communication between terminal, host computer and
the prom burner was designed by John P. Steffani of SLAC.
The treatment of logic equations and the design check using
test vectors was adapted from MMI’s PALASM programs.!

Reference

High Level Language for Programmable Array Logic

John M. Birkner
Programmable Logic Planning
Monolithic Memories

1165 East Arques Avenue
Sunnyvale,California 94086

S



