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ABSTRACT 

This report studies the statistical behavior of some parameters defined in a 

graph, such as are used in pattern recognition and classification applications. 

It analyzes the changing structure, with increasing K, of the K-nearest neighbor 

(KNN) and the K-minimum spanning tree (KMST) of a graph. The results show 

that the connectivity of the KMST grows more rapidly and that the KNN is a 

subgraph of the KMST for each K. A conjecture is made on the value of the pa- 

rameters K for which the KMST becomes a complete graph. Some experimental 

results on simulated data are reported. 
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1. INTRODUCTION 

The statistical and combinatorial properties of the K-nearest neighbor and 

the K-minimal spanning tree of an undirected, weighted and complete graph 

G, as denoted by KNN and KMST respectively, havebeen ex&isively studied. 

Friedman and Rafsky [l] have shown how to apply the KNN and KMST to 

define a generalized correlation coefficient, which allows one to do predictive 

data analysis about a sample of ordered pairs (zi, yi), i = 1,. . . n. A comparison 

between the Bayesian classification function and the classification via KNN is 

given by T.H.Cover (31. Within this framework, we provide a characterization of 

some useful quantities, such as the outdegree of a node OD and the number of 

components NC of the KNN in order to use them as estimators of the degree of 

uniformity of a distribution of a set of points in a multidimensional space X. We 

ntroduce a technique that allows detection of the most significant volume in a set 

of points. This problem is of great importance with two-dimensional images for 

which the pixel-values belong to the set O,l), and they appear as sparse matrices 

(mostly zero values). Maps of the sky in 7 - ray astronomy are an example of 

such data [4], [5]. 
. . _ 

Section 2 provides the definitions and the notation used during the exposition. 

Section 3 is dedicated to the study of the statistical behavior of the parameter 

NC of the KNN of a graph G. Section 4 provides some limits about the dynamics 

of the growing of the KNN and KMST with increasing K. A conjecture on the 

value K=Kmax, for which the KMST becomes a complete graph, is formulated. 

In Section 5 we report the results of the application of the methodology to classify 

the presence of signal in a sparse image or to detect the presence of significant 

clusters in a multidimensional space. 

In the present phase of the work, simulated data have been used in order 

t-quantify the value of the results. Applications on real data will be made 

after the testing and calibration of the method. Section 5 also includes some 

implementation information. Section 6 is dedicated to final remarks. 
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2. DEFINITIONS AND NOTATIONS 

We consider undirected complete graph G =< N,W > where N is the set 

of nodes whose cardinality is denoted by INI, and W  is a weight function W  : 

N x N --+ R+. Here R is the set of positive real numbers, _ 

- Note that in this context we assume that given a node x, the set N, = N- {z} 

is ordered as follows: 

3 y, zeN, y 4 z e, W (x, y) 5 W (x, z). 

The K nearest nodes to x are the first K nodes in N,. 

DEF 1. The KNN of G is a subgraph of G such that each node is linked with 

the K nearest nodes. 

Fig.la, b, c shows a graph G and their 1NN and 2NN. 

DEF 2. The MST is a spanning tree of G, such that the sum of the weights of 

its arcs is minimal. 

Fig.2b shows the MST of G. 

DEF 3. The KMST of G is the spanning subgraph of G such that: 

. . _ KMST = MST(G) K=l 

KMST = [K - l]MST u MST(G - [K - l]MST)K > 1 

where &G - [K - l]MST” d enotes the set difference between graphs. 

Fig. 2c shows the 2MST of G. 

DEF 4. The outdegree (OD) f o a node x of G is the number of arcs linked to x. 

DEF 5. A component of a graph G is a connected subgraph G’ =< N’, W ’ > 

such that VxeN’ and VyeN there does not exist a path between x and y. 

DEF 6. A complete connected component on a graph G is a component which is 

a complete subgraph of G. 

The number of components and complete components of G are denoted by 

NC and Ncc respectively. 
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3.THEPARAMETERNcFORTHESTUDY 
0F“CLUSTERINGTENDENCY" 

The study of the clustering tendency is an important problem in exploratory 

data analysis; it becomes more diacult as the number4 of measured parameters 

-is increased or the sample size becomes small so that and the central limit theorem 

is no longer valid. Considerable work has been done to develop various methods 

based on the cooperation of mathematical, statistical and heuristic reasoning. In 

[6], W.G.S. Hines and R.J.O. Hines analyze spatial data by using the SSI (single 

sequential inhibition) process. The packing density is calculated for the case of 

uniform density and then a tendency test is performed. 

Many methods have been proposed to formalize the problem. In [7], E. 

Panayirci and R.C. Dubes provides a good review of the subject and propose a 

d-dimensional version of the Cox-Lewis statistical test. So far, the results have 

provided only partial answers and most of them are suggested by the particular 

application. 

. . _ 

One approach to the problem is to define parameters that characterize the 

distribution of the components in G. For example, V.Di Gesu’ and B.Sacco [4] 

studied the parameter NC as a function of the cutting threshold, 4, of the edges 

of the MST of a random graph G. The application of such criterion gave nice 

results when applied to the study of the r-ray sky maps as seen from the COS-B 

satellite. 

In this report, the parameter NC is considered as a function of K in the KNN 

of G, under the hypothesis of Poisson process. This is then applied to define a 

uniformity test (UT). 



3.1 STUDY OF REGULAR TOPOLOGICAL CONFIGURATIONS 

The expected number of NC(K) is, of course, a decreasing function of K, 

ranging from 1 to 1 NI: 
w 

- N40) = INI, Nc(N-1):l 

The first value K for which NC = 1 will be denoted by Kl . 

The value of NC also depends upon the topological configuration of the nodes 

in G. Consider, first, the case on which the points are arranged in a regular square 

lattice, see Fig.3a. It is easy to see that, for such configuration, the following 

results hold: 

LEMMA 1. Let G be a square regular lattice in a d-dimensional space X, with 

number of edges equal to 2” and I NI > d, then the maximum number 

of components of the KNN of G versus K is: 

NC(K) = - INIPK for 0 2 K 2 d 

1 for K > d 

This is obvious for d = 1. the proof is given by construction for the case of 

d = 2; it is easy to generalize the results for d > 2. The strategy to maximize NC 

is to increase by 1 the OD of each node at each step of the computation of the 

I$NN. Of course for K = 0, NC = INI; for K = 1, by connecting each node to its 

right neighbor in the same row starting from the left (see Fig.Sb), NC = INj/2; 

for K = 2, by linking each node to its lower neighbor of the same column starting 

from the top, NC = INI/ (see Fig.4c); for K = 3, the third nearest node of the 

corner nodes are still in the same component, but in order to compute the 3NN, 

the algorithm must link in both directions with other nodes and NC = 1 (see 

Fig.4d). 

- In order to generalize the demonstration of LEMMA 1 for d > 2 it must 

be noted that the corner-nodes of each hyperplane, J, will be connected to the 

corresponding corner-nodes of a nearest hyperplane, J’, for K > 2. 
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If INI is not a power of two, the problem cannot be stated in a simple way 

because the dependence of NC on K is more complicated, however one can show 

that 

- 
NC(K) = 5 lIw2Kl for 0 5 K 5 d 

1 forK$d- - 

Let us now consider a second limit case. 

LEMMA 2. Under the hypothesis that the nodes of a graph G, with INI = 2”, 

are grouped in hierarchical clusters forming a balanced binary tree 

(i.e, at level ‘0” there is G, at level 5” there are 2” clusters of size 

2”-9, the value of NC versus K is: 

2” for K = 0 

NC(~) = - 2n-’ for 2’-’ 5 K < 2’ i = 1,2,...,n- 1 

1 for k = 2”-’ 

In fact, the number NC decreases by a factor two whenever the components of 

KNN are completed. 

LEMMA 2 may be proved by induction: 

For 2’ 5 K < 2l. 

It is easy to see that NC = 2”-l. Suppose now that we are at a certain step 

K = 2i-1 of the computation and let the number of the component be: 

NC = 2”-’ i<n 

Before we reduce the number of components to 2n-i-1, the actual computation 

must be completed in 2’ - 1 steps, therefore: 

NC = 2”-’ for 2’-’ 5 K < 2’. 

For K = 2”-’ - 1, NC = 2 and the components are completed, therefore for 

K = 2”-’ the KNN is a connected subgraph of G. This last result may be 
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generalized for any number of nodes and with hierarical clusters arranged in. a 

non-balanced tree. 

3.2 CASE OF POISSON PROCESS 
c - e 

In the following, a rule is derived to compute the NC in the KNN under the 

hypothesis that the nodes, x = (xl, x2,. . . , zd), belong to a d-dimensional normed 

space X and the weight function W is the Euclidean distance. The nodes are 

distributed following a Poisson process. Moreover the following assumption are 

considered: 

ASSUMPTION 1. TheOD(K) f o each node x does not depend on x (uniformity 

of X). 

ASSUMPTION 2. The OD(K) f o each node x is uniformly distributed in all 

directions (symmetry of X). 

Deriving an exact law of NC(K) is difficult because of the following con- 

straints: 

(a) The process of growing the KNN does not depend only on the distri- 

bution of the points. Given a value for K, each node in the KNN must 

have at least OD = K. 

(b) The maximum and minimum number of edges in the KNN is an in- 

creasing function of INI and K, and it is not easy to derive its analytical 

form. 

Nevertheless, in the present report an empirical and simplified solution is pro- 

posed, which fits very well with experimental data. It seems, therefore, that it 

could be a good starting point for further formal studies. This rule is suggested 

by the theoretical results in 3.1. The main idea is that a Poisson process must 

have some regularity united to a hierarchical behavior. 

CLAIM 1. The mean number of components NC in a KNN of a random graph 
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G is given by: 

N,(K) = 1 + (INI - K - 1) * 2m(K) (1) 

Where OD(K) is the mean OD of KNN, empirically computed by: 

- 
m(K) = 

For K = 0 : m(K) = 0 and NC(K) = INI; for K = INI - 1 : 

m(K) = INI - 1 NC(K) = 1. 

In the following, an estimation is given of OD( K) by handling the problem 

without constraints and assuming a binomial model. 

Let p(K) be the probability of increasing by one the OD of a node in the 

KNN. Therefore the probability of having OD(K) = K + L, 0 < L < INI -K - 1 

is: 

P(OD = K + LIK) = (‘“I-;-‘> *Pi 

(2) 

* [l - ~(K)]lj’+~-~-~ 0 2 K 5 INI - 1 

CLAIM 2. If the nodes, x, are uniform Poisson distributed: 

P(K) = WWI - 1) 

and P(OD = K + LIK) may be rewritten: 

P(OD = K + LIK) = 
(‘“I-:-‘) 

* [KIWI - UIL 
(3) 

and the OD(K) is: 

* [l - K/(INI - l)]‘NI-K-L-l 

m(K) = K + (INI - K - 1) * K/(INI - 1). (4 

The expression claimed for p(K) may be explained by assuming that it is pro- 
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portional to the number of nodes included in a hypersphere surrounding each of 

the nodes in the KNN, if the density of the points is assumed constant, the num- 

ber is proportional to K, as a matter of fact that the radius of the hypersphere 

is proportional to K. The P(K) is equal to 0 for K = 0 and 1 for K = INI - 1, 

as expected, therefore P(OD = K +‘LI K) becomes a’delta fu&tion for K = 0 

and K 5 INI - 1, with value 1 for L = O.-The last property is in accordance with 

the theoretical limit values for L. 

In Fig.4, we show the results of fitting the experimental distributions obtained 

in a run of 1000 points, uniformly distributed in a 2d and 4d space with the 

claimed distribution function. The results seem to verify the assumption that 

has been made. 

Figures 5 and 6 display the experimental values of m(K) for 2d and 4d 

respectively. Also, in this case there is good agreement of the experimental data 

with the rule (4). 

Note that the fitting has been performed assuming: 

P(K) = WWI - w 

The value of the parameter a is greater than one and in the experiments 

performed its value is of the order of 1.5 and does not depend strongly on the 

dimension of X. 

The parameter takes partially into account the constraints on the sum of the 

degrees in the KNN at each K. The m(K) is of the order of K, as expected, 

and its maximum deviation from K is for: 

KM = &INI - 1) 
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3.3 THE UNIFORMITY TEST UT 

The results above suggest that a uniformity test (UT) is valid even when 

classical UT testing cannot be done (x2 -test, Kohnogorof-Smirnov, least square 

fitting, t-student,...). In fact, the probability of having -the l%(K) component 

may be drawn from ( 1) and (2)) in the general case, and from ( 1) and (3) for 

Poisson process. Prom eqn.( 1): 

log2(Nc(k) - 1) = -OD(K) + log2(lNI - K - 1) 

But for a given K log2( I NI - K - 1) is a constant and therefore: 

P[- log2(Nc(K) - l)] = P[m(K)] 

Now let fr(x) and f2( g( x)) be the probability density function of x and g(x) a 

continuous and derivable function of x. There exists the following between fr 

and f2 relation: 

fl(4 = f2M4) * SW 

In our case: 

P[Nc(K)] = P[m(K)]/(Nc - 1) (5) 

Where the value of P[m(K)] may be derived from (2), (3) and (4). 

The UT is now defined by the following procedure: 

Given a set of experimental components {NC*(K)}, K = 1,2, . ..Kl. the proba- 

bility of this set being consistent with the expected {NC(K)} is (see [8]): 

91 =Pl 

QK = PK * QK-1 * [l - In(PK * QK-I)] K = 2, . ..Kl 

where PK (which may be computed from (5)) is the probability of NC(K) clusters 

for a given K. 
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4. DYNAMICS OF THE GROWING OF THE 
KNN AND KMST 

This section shows some results concerning the quantity Kmax defined as: 

DEF 7. The Kmax is the value of K such that KNN and KMST are equal to G. 
- 

If the nodes of G are points of a normed space X, the following lemma holds: 

LEMMA 3. In the process of the computation of the KNN of G, let T be the 

subgraph added to KNN to build the [K + l]NN, then T is a forest 

(i.e. does not have cycles). 

In fact, suppose that there exists in T a cycle of order L: 

h 572, l ’ * t XL-l, Xl) 

It is easy to see that the following order must hold between the weights of the 

arcs 
W(Xi,Xi+l) > w(xi+l, xi+2) for 1 = 1,2,...,L-3 

‘. _ WXL-2, XL-l) > W(XL-1, Xl) 

W(XL-1, Xl) > W(Xl, x2) 

which cannot hold if the space X is normed. 

By using the LEMMA 3 it is easy to see: 

LEMMA 4. For the KNN, Kmax = INI - 1. 

Suppose Kmaz < I NI - 1, then: 

3K < INI - 1 such that VxcN 00, > K 

i.e., the graph T added to [K - l]NN- to compute the KNN has a cycle which 

cannot hold by LEMMA 3. 
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Note that the lemma is valid only if it is assumed that X is a normed space. 

The evaluation of Kmax for the KMST is more difficult and it depends on the 

topology of G. In this present report, only limit values are given and a conjecture 

is formulated for its mean value, in the case of a random graph, 

- The two limit configurations considered are: 

DEF 7. A graph G is said to be in a uPure Linear Configuration,” PLC, if its 

nodes are topologically configurated as follows: 

K =0 Gfoj = G And there exists an ordering of the nodes 

LI2,... $1 such that 

W(Ii, I;+l) = zg(W(I;, e)I 

K > 0 G(K) =G - KMST And there exists an ordering of the nodes 

11,129 l - * $1 such that 

W(lifl;+l) = . . . _ e~&{w(li, e)) 

DEF 8. A graph G is said to be in a UPure Star Configuration,” PSC, if its nodes 

are topologically configurated as follows: 

There exist an ordered sequence of nodes Jr,&,. . . ,ANI such that: 

t/J+, ]N]],VzeN - b1r =+ W(J.r,z) = min {W(Y, 41 
r=l W-U;=, Zr 

NOTE. The two configurations are unlikely, nevertheless they 

are the two extreme configurations which allow the establish- 

ment of the following limits for Kmax. 
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LEMMA 5. The value of Kmax for G=PLC L s N/2 and it is the minimum 

possible value. In fact, for the topology of PLC, at each step of the 

computation are added I NI - 1 edges to the KMST and therefore: 

Kmax * ([NI - 1) k INI * (INI - ‘)_Xrna’c = IN/,2 
2 - 

The value is the minimum because at each step we add the maximum 

number of edges. 

LEMMA 6. The value of Kmax for G=PSC is INI - 1 and it is the maximum 

possible value. If G is PSC at each step I, there are I NI - I added 

edges, therefore: 

Kmaz 

c (1 N 
I=1 

l I) INI*WI- 1) - = 
2 

=+ Kmax=INI-1 

possible because the maximum degree of a node in The value is the largest 

G is INI - 1. 

From LEMMAS 5 and 6, it follows: 

THEOREM 1. For a general topological configuration of G: 

IN!/2 < Kmax < INI - 1 

CONJECTURE. The mean value of Kmax for the Kmst of G depends linearly 

on INI: 

Kmax = Q. INI 

with a < 1. 

Figure 7 shows the experimental value of Kmax versus the number I NI found 

b computing the KMST of a random graph, the nodes of which follow the 

Poisson distribution (a = .58). The predicted law fits the experimental data 

quite well. 
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Note that given the nature of the algorithm for constructing the KMST, the 

results do not depend on the dimensionality of space X. 

This section is ended by stating a conclusion relation between the KNN and 

the KNMST. c - e 

-LEMMA 7. The 1NN c 1MST. 

From the definition of KMST each node is linked with the nearest 

neighbor. 

THEOREM 2. The KNN is a subgraph of the KMST for each K. 

By induction: 

K = 1 1NN c 1MST from LEMMA 7. 

suppose now that it is true that: 

K>l KNNcKMST 

Therefore the arcs of the KNN are included in KMST, however by LEMMA 3 the 

arcs added to the KNN, to compute the [K+l]NN are subtree of the [K+l]MST 

and therefore: 

. . _ [K + l]NN c [K + l]MST 

These results could be useful in evaluating the sum of the OD of the nodes of 

a KNN in order to define the constraints in the computation of the probability 

distribution function of OD(K), because in this case the combinatoric problem 

seems to be easier. For example, for K = 1 the value of such sum is 2 * (IN] - 1). 
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5. APPLICATIONS AND IMPLEMENTATION-NOTES 

The experiments have been performed on simulated data, generated by Monte 

Carlo procedures in accordance with typical images of the sky as detected from 

7 and X-ray astronomy. Multidimensional data are also considEred to show the 

behavior of-the UT proposed method by varying the dimensionality of the space. 

The graph G is still considered as a set of points in a normed space X and only 

Euclidean distance is considered at the present. 

5.1 EXPERIMENTS FOR THE UT 

The UT has been tested on samples with increasing point density (p=.5, l., 

2., 3.counts/unit volume) and for d = 2 and 4. In Fig.8, a sample for p = 1. and 

d = 2 is shown, Fig.9 displays NC versus K and the agreement with the predicted 

law seems good (Q = .49). Fig.10 shows the application of the UT for d = 4 

and p = 10S4, the agreement with the predicted law is still good (Q = .42) and 

it does not seem to hold strong dependence from the dimension of the space X, 

because of the costraints a) and b) of section 3.1. 

. . _ In order to test the performance of the UT, data has also been generated 

with increasing number of clusters (Nc1=2,3,4,5,6,30) of equal size, imbedded in 

uniform background for d = 2 and d = 4. Figure 11 shows a map with Ncl=5 

and, in Fig.12, a more complicated situation with Nc=30. Figure 13 displays NC 

vs. K for the analyzed cases on which Q < 10S4. 

Table 1 reports the results of the application of the UT under different exper- 

imental conditions. The results have been carried out after a run of 200 samples 

of size INI = 100 and p = 1. The values of Q computed by the formula (6) 

are lower for d = 2, as expected. In both cases, Q is of the order of low4 for 

S/N > .66. The result seems encouraging for the application of the method in 

rti situations. 
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TABLE 1 

- 

To study the gestaltical nature of the KNN, experiments have been performed 
. . . _ where a set of maps with an increasing number of clusters have been generated, 

as explained before. In this framework, a cluster is defined as relevant if it is a 

complete component of the KNN and, for the given K, QK < /3 (in our case, 

/3 = 10m3). Table 2 h s ows the mean number of clusters detected, Ncc versus 

the number of clusters generated, Ncl. The results show the degradation of the 

performance in the detection with the increasing of Ncl. The average has been 

performed in a run of 1000 events. 
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TABLE 2 

- 

Although number of clusters is underestimated, the position and intensity 

(number of points contained in) of those that were detected is correct. Figure 

14 shows the results of the analysis for a two-dimentional map. Five of the eight 

clusters generated were detected, the three that were missed are overlapping and 

very spread out in the picture. 

5.2 IMPLEMENTATION NOTES 

At present, the work has not optimized algorithms that have been used to 

compute the KNN of G. Many of such algorithms are available; in [9] J.H.Friedman, 

J.L.Bentley and R.A.Finkel proposed an algorithm based on the storing of the 

data in a K-d tree, which required a computation time proportional to KIN] log IN]. 

PETcompute the components of the KNN, a quick deep first search algorithm has 

been used [lo] which requires a computation time of the order of IAT]. 
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The experiments and the growing limits of the KNN obtained in Section 4 

show that to perform the complete analysis of an input sample of size IN], it 

requires computation of the KNN for K = 1,2,. . . , log IN]; therefore the average 

computation time is: 
c - 6 

- 
Tcomp = 

- y log2 INI + INI * log INI) 

6. FINAL REMARKS 

In this report, the dynamic behavior of the KNN of a graph G has been 

analyzed. It seems that good results may be obtained whenever exploratory 

data analysis, as clustering tendency, is performed on very sparse data. The 

gestaltical power of graph theoretical methods, based on the MST computation, 

has been dramatically shown by C.T.Zahn [ll], and the KNN has also shown 

adaptive properties to the topology of the data. Nevertheless, it is less sensible 

to line structure and gives better results whenever the morphology of the signal 

is compact, where’ the compactness may be defined roughly as the ratio between 

the volume and the surface. 

The exact computation of P(Nc = K + LIX) seems to be very difficult as it 

also is for standard p.d.f of the points in X, and much work remains to be done 

in that direction. 

Another interesting topic would be to explore the case in which X is not 

normed; in this case the combinatorics will be more complicated. 
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FIGURE CAPTIONS 

Figure 1. Example of KNN of a graph G. 

Figure _ 2. .-Example of KMST of a graph G. 

Figure 3. Maximum NC(K) for d = 2. 

Figure 4. Distribution of OD for K = 6 and d = 2. 

Figure 5. OD( K) versus K for d = 2. 

Figure 6. OD(K) versus K for d = 4. 

Figure 7. Value of Kmax versus I NI. 

Figure 8. Example of input data, p = 1. 
. . _ 

Figure 9. NC versus K for d = 2. 

Figure 10. NC versus K for d = 4. 

Figure 11. Input with NcZ = 5, d = 2 and p = 1. 

Figure 12. Input with NcZ = 30, d = 2 and p = 1. 

@ igure 13. Results of the application of the UT, Q = lo-‘. 

Figure 14. Example of clustering detection. 
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Distribution Of OD, K=6, d=2 ” 
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Fig. 13 Results of The, UT, Q< lO.E-4 
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