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1. Introduction

Data on two-body pseudoscalar (PP) decays of the D-meson have existed in
literature for quite some time. ! New data on the PP and the vector-pseudoscalar
(VP) decay modes, with much higher statistics, are expected soon from MARK
L2 1t is é.ppropriate at this time to take a fresh look at the two-body decays

of the D-mesons.

In this paper we study the Cabibbo-angle favored two-body decays. First we
analyze the D — PP branching ratios in a model independent manner without
final state snteractions (FSI). In the light of this analysis we show why the
commonly used models such as the spectator model (with color suppression) and
the exchange model, individually, do not work. A hybrid model is then developed,
which in the absence of FSI, provides a parametrization of D — PP data. We
then go on to derive conclusions on D — PP and D — V P branching ratios
and compute T'(D° — KO), I(D° — K°w) and T'(D° — K °4). Finally we
show what role FSI plays in the two-body Cabibbo-angle favored decays of the

D-meson.

2. Analysis without Final State Interactions

The hard gluoh corrected Hamiltonian for the Cabibbo-angle favored charm

decays is,

Hy = %2 0 [5Us + S ) (se) + 5 (1 — 1) BD)E)] ()

where 6. is the Cabibbo angle in the four-quark model and the coefficients f4
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and f_ are computed to be*™®

f+=069 f_=209. ()

In the numerical work in this paper results are also computedfor f4 = f_ =1
for the sake of comparison. As Hy changes isospin by one unit the following sum

rule among the decay émplitudes is satisfied,
A(D® - K~ %) + V2 A(D®° —» K% = A(D* - K %) . (3)

In terms of the amplitudes with final states in I = 1/2 and 3/2, these decay

amplitudes are,

A(D® - K% = —\}3(\/5143 + A;)
A(D° - K™7%) = —=(43 — V2 Ay) (4)

A(DT - K% %) =v34;.
-A; and A3 are real in absence of FSI as they would be in the spectator or the

exchange models also.

Using Eq. (4) we define the following ratios,

I'(D° - K% (1++2r)?

FoolKm) = Fv S &%) ~ (VB -r)? )
O L K—gt 2
R ®

where r = A3/A; and the subindices refer to the D-meson charges in the ratios.

E@erimentally

Roo(K7) = 0.35 + 0.07 + 0.07 112 (7)
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Ro+(K7)=8.7+1.0+08.3 ' (8)

In Eq. (8), 7(D*)/7(D°) = 2.5 £ 0.6, all errors treated as statistical, is used.

Using Eq. (6) and (8) one can solve for r from Ro.(K7). We obtain two

solutions
+0.07
=03 9
r —0.15 (9)
or
4+0.07
=0.21 . 10
r=021 o3 (10)

The curve marked 0° in Fig. 1 shows Roy(K7) as a function of r in absence of

FS1. The two solutions shown in Eq. (9) and (10) are readily identified from this

curve.

We can also solve for r from Eq. (5) and (7) using Roo(Kw). We obtain two

solutions again,

+0.08
=_0.08 11
r —0.11 (11)
or
+0.50
=_-223 . 12
r=-223 85 (12)

The curve marked 0° in Fig. 2 shows Rgo(K ) as a function of r in absence of
FSI. The two solutions shown in Eq. (11) and (12) are readily identified from
the curve.

From the four solutions, Eq. (9)-(12), it is evident that there is no common
solution that satisfies both Roo(K7) and Roy(K7) of Eq. (7) and (8) for real

decay amplitudes. One may take the view that a common solution with r ~ —0.2
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could result from a slightly more liberal treatment of erro“rs. Such a solution
would imply that most of the decay occurs through the [6] of SU(3) which is
contained in [20] of SU(4) and only a small fraction goes through [15*] of SU(3)
contained in [84] of SU(4). This is indeed to be expected on grounds of AI = 1
rule extended to SU(4) where one would expect [20] representation in Hy to
dominate over the [84]. There is, bf course, the possibility that no common
solution will be found With real amplitudes once data with better statistics are
available. We show later that data require that complex amplitudes be used. We

now turn to the commonly used models.
Spectator Model (with color suppression):
The model is shown in Fig. 3. In this model the amplitudes are real and one

obtains, up to an overall factor,

A(D® ~ K°n°) = - (2f+ - 1)

AD° - K~ n%) = % (2fs + 1) (13)
+_, 0, +) _ 4
AD* RO =11,
Using Egs. (4) and (13) one gets,

4 1
A3 = — Ay = ——=(2f+ +3f-). 14
=375 f+ 1 3 \/(—5( f++3f-) (14)
Using f4 = 0.69 and f_ = 2.09, one obtains, r = —0.51. If one uses f, = f_ =1,
one obtains r = —1.13. Clearly both these solutions are ruled out by Eq. (9)-
(12). For r = —0.51, D° — KO is very strongly suppressed resulting in
Ro:(Kw) ~ 1/50. For r = —1.13, one gets Roo(K~) ~ 1/18. Incidentally, in this

model, r = —0.2 would require f_/f, = 8.75.
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Ezchange model: |
Normally the amplitude resulting from this process, shown in Fig. 4, would be
helicity suppressed; however such suppression could be obviated by soft gluon
emission from the initial state. In this model one gets £eal_amp§tudes again, and

up to an overall factor,

A(D® » K% = -2
(0~ K%)= -2

AD®° - K~ 7t) = (15)

Wi

A(D* - K°%*)=0

where ¢ is a dimensionless parameter. Clearly the exchange model gives,
r=0. (16)

With r = 0, Ryo(Kn) is at the margin of acceptability (see Eq. (11)) but not
Ry (K7) which blows up at r = 0. Thus exchange model by itself will not satisfy

the two ratios.
A Hybrid model:
One can construct a hybrid model which is a mixture of the spectator model,

with color suppression, and the exchange model. In this model, up to an overall

factor, one obtains the following real amplitudes,

S NN
A(D° — K- n*) = 2 (2f4 + f) + 2 (17)
4

ADT 5 K%)= 3/+-

6



Defining,

f-+g
a= 18
and using Egs. (4) and (17) we get,
r= As _ 22 . (19)
A1 1+ 3a
For r = —0.2 this leads to,
g=3.95 for f =0.69,f =2.09 (20)
and
g="1.75, for fr=f_=1. (21)

The knowledge of g together with the assumed knowledge of f, and f_ now allows
us to study other D — PP and D — V P decays. Consider first (D° — fon)
and (D° — T(-On ). If we ignore n — n' mixing and treat » as a pure SU(3) octet
and n' as a singlet, then the hybrid model leads to the following real amplitudes,

up to an overall factor,

A(D° - R°n) = ;1/—5 (2fs — f- +9) (22)
A(D° = E'n') = o= (2fe = 1-+3) (23)

The difference is only in the Clebsch-Gordan coefficient in the u% content of  and
1*” We caution the reader that Eq. (22) and (23) are model dependent relations.

The two decays can be related at the SU(4) level with a different result.” With
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the S-wave phase space ratio of 1.37 one obtains

r(D° —#Ron)
(D% — _I?On')

~ 0.68 . (24)

As the final states in both these decays involve only asingle amplitude this ratio

will not be effected by FSI which we discuss later.

If we assume that the overall factors arising from hadronization in the K=

and K1 final states are the same then, without FSI, one finds,

I(D° = Kn) _ e (2fs—f-+9)?

I(D° — E'n°) (2f+ — f- — 9)* (25)

=0.13, for fy =0.68, f_ =2.09, g = 3.95 (26)
=046, for fr=f-=1,¢g="1.75. (27)

The effect of FSI on this ratio is discussed later in this paper.

VP two-body decays:
Since the quark content of the final states in D — Kp and D — K*« decays is
the same as that in D — K7 decay we expect the decay amplitudes for the VP
modes to bear a flavor-similarity to the PP modes through the hybrid inodel. The
spin dependence will arise through hadronization and result in a different overall

Lorentz structure. We then anticipate that up to an overall Lorentz structure

factor,
0 — KO, = _1___ — — __g_
A(D® — K=p%) =3 (2fs + 1) + (28)

- 4
A(DT 5 K%™) = 3+



Similar relations can be written for the K *°7%, K*~#* and K *°x% modes. If

hadronization were to result only in an overall factor then we anticipate,

Roo(K) = Roo(Kp) = Roo(K*x)™ 7 (29)
and

Ro.(K) = Roy (Kp) ~ Ros (K*r) (30)

where the VP ratios are defined in an analogous manner to Eq. (5) and (6). The

data at present1 are not very precise,

BR(D° - K%% =01+ g? %
- 3.0
BR(D° - K p )=7.2i31 %
' (31)
0 -—*0 0 2.3
BR(D® - K 7r)=1.4:i:14 %

BR(D° - K* nt)=34+14% .

Data on all the VP charge states are expectedz’3 soon from Mark III. In
particular data on D — Kp and D — K*x will allow us to analyze the VP
modes in the same manner as the PP modes. The data at present are quite

consistent with Eq. (29).

Next we estimate I'(D° — K%p). The final state being a pure I = 1/2
state, this decay proceeds via the exchange process only, if one were to ignore the

OZl-violating contribution. The amplitude, assuming for the moment an SU(3)

symmetric vacuum so that s3-pairs are excited with the same probability as the
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uT- or dd-pair, is (up to an overall factor containing the Lorentz structure)

A(D° - K%)= % . (32)
K we assumie that hadronization results only in an overall factor, containing the

Lorentz structure which is the same for all VP modes, then one obtains,

I(D° - K%) _ A0.9 §* Fy (33)
I'(D° —» K%% (2f+—f—g)?
[(D°—> K%)  045¢°Fg (34)

T(D%— K-p%) ~ (2f+ + f- +g)?

where we have used a P-wave phase space ratio of 0.45 and F,3 ~ 1/3 is the

inhibition factor® for exciting an ss-pair from the vacuum. We get (without

FSI)

(D°—K°%)
T'(D° — K ) -

0.22, for f4 =069, f-=2.09and g=3.95 (35)

=04, for fy=f_=1and g="17.75 (36)

r(D° - K%) _
T(D° = K-p)

0.04, for f{ =069, f- =2.09 and g =3.95 (37)

=0.08, for f=f.=1andg="175 (38)

These ratios are comparable to those derived earlier.’

" The decay D° — K% can be treated in a similar way. Up to an over-

all Lorentz factor the hybrid model, v;rithout FSI, generates the following real
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amplitude,

AD® > K%)= o= (2f 4 — - +) (39)

with the same assumptions as those made for D° — K %¢; onevbtains

I(D° - K%)  (2f+ — f-+4)?
I(D° - K%  (2f+ — f-—g)?

(40)

For r = —0.2, without FSI, one gets

I'(D° - K %)
T(D° — K 99)

=048, for f4 =069, f_ =209, g=3.95 (41

=168, forfy=f_.=1,¢g="1.75. (42)

In the next section the effect of FSI on these ratios is studied.

3. The Role of Final State Interactions (FSI)

- FSI is expected to play an important role in D-decays since strangeness 1
resonances are known'* *? to exist at 1.4—1.5 GeV. Theoretical analysis is, how-
ever, far from clear since most of the final states are highly inelastic. For the K=
decay mode, however, a fairly reliable analysis can be made since the s-wave K

0,11

scattering in Ot state a.ppears1 to be elastic up to an energy of about 1.4
GeV. The only other competing channel is Kn. The inelasticity at the D-meson
mass is small. If one were to assume that K scattering in 0% state is elastic

at 1.86 GeV then the phases of A; and Az in Eq. (4) are the elastic scattering
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phases 6; and 63. One can then write >

1
V3

A(D® > K%)= ‘\;—g (Ase™ - VZ Are™)

A(D® = KOn°) = — (VZAse™ + A1e)

-

(43)
A(DY = K% ) = V3 43"
The ratios Roo(K7) and Ro+(Kx) of Eq. (5) and (6) now read,

{14+ V2rcos(b1 — &)} + 2r2sin® (61 — &)

Roo( Km
o(K) {\/i—rcos(él —53)}2+r2 s'mz(él — &)

(44)

2
Ro+(Km) = % {1 - \/Técos(& - 63)} + %sinz(& —63)] . (45)

The I =1/2, 0% channel is known to resonate (kappa meson) at 1.4 GeV'!. The
phase §; crosses 90° at this energy. 63 is known to be —25° to —30° at 1.4 GeVl,

It is probably very reasonable to assume §;, — 83 in the range of 120°-180° at the

D-meson mass.

. If we assume a particular value for §; — 63 then one can solve for r from
Roo(K7) and Ry (Kn) of Eq. (44) and (45) by using the experimental values
for these ratios given in Eq. (7) and (8).

We choose §; — 63 = 150° for numerical estimates. Roy(Kn) then yields the
following two solutions,
-_— +0.15

=0.29 46
§ —0.06 (16)

or
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+0.03
= —0.21 47
r=-021_407 (47)

In Fig. 1 the curve marked 150° éhows Ry (K) as a function of r for 6; — 6 =
150°. The solutions shown in Eq. (46) and (47) are easily recognized from the
diagram. It is also seen from Fig. 1 that FSI boosts Ry (K) for r > 0 and

suppresses it for r < 0.

For 6; — 63 = 150°, Roo(K ) yields the following two solutions,

0.12
=0.1 48
r *0.10 (48)
or
10.5
=1.91 49
T ~0.5 (49)

The curve marked 150° in Fig. 2 shows Roo(K ), for 6, — 63 = 150°, as a function
of r. The two solutions, Eqs. (48) and (49), are evident from this curve. In Fig.

2 we have also plotted Roo(K) for 6 — 83 = 120° and 180°.

The solutions for r, with FSI, Eq. (46)-(49), are almost sign-reversed to those
without FSI, Eq. (9)-(12). This reversal of sign would be exact for 6§, — 63 = 180°,
since for this choice of the phase shifts the decay amplitudes are again real,
however the sign of A3 is reversed with respect to A;. For (6; — 63) = 150° the
situation is not much different. Comparing Eq. (46) and (48) we see that a
common solution can almost be found for r ~ 0.23. In fact, for 6; — 63 smaller
than 150° there will indeed be a common solution at r ~ 0.23. This, one can
understand by looking at the trend of Roo(K7) as a function of §; — 83 from Fig.

2. For the numerical work that follows we have used r = 0.23.

“In Fig. 5 we show what FSI can do to the ratio Roo(K7). Without FSI

the acceptable values of r are negative; however, FSI boosts this ratio above the
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experimental limits for all negative values of r. For positive values of r, Roo(K )
is too large without FSI but FSI pulls it down to within experimental limits by

simultaneously suppressing D° — K °7° and enhancing D® —» K~ =*t.

The strategy next is to use the hybrid model, which " does not have FSI, to
g-éheraté décay amplitudes with r = 0.23 and let FSI pull the ratio Roo(K)
within acceptable limits. By setting r = 0.23 in Eq. (19) we obtain a = —4.43.

This, together with Eq. (18), yields (incidentally, to generate r = 0.23 from

spectator model alone would require f_/f; = —8.86)

g =-821, for f4 =0.69, f_ =2.09 (50)
and

g=-986, for fy=f_=1. (51)

' With these parameters one can now compute I'(D° — K %¢) with FSI, which
plays no role in D° — K¢ since there is only one amplitude involved, one

obtains

L(D°—»K%) _ 09¢°Fg
I(D° - K%% (2f+—f-—g)?

Foo (52)

I'(D°—-K%)  045¢°F,;
T(D° > K-p*) (2fs+/_+g)2

(53)

Egs. (52) and (53) are the same as Eq. (33) and (34) except for the FSI “en-

hancement factors® Foo and Fy_ for D° — K %° and D° —» K~ pt respectively.
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These factors are defined as,

__ T(D® — K °°) without FSI

Foo = T'(D° — K 9% with FSI
| (54)
_ _@+ven?r C T
S {1+ V2rcos(¢s — ¢a)}’ +2r2sin? (41 — o)
and
2
- (V2-r) (55)

- {\/§ — rcos(¢y — <;133)}2 + r?sin(¢ — ¢3) '
¢ and ¢3 are the phases of A; and Aj respectively for D° — Kp decays defined
analogously to Eq. (43) for D° — Kn decays. If the Kp scattering in 0~ state
were elastic then ¢; and ¢3 would be the scattering phase shifts. In contrast to
the Kn system where phase shift analysis in the 0" state exist:s,ll no comparable
phase shift analysis exists for the Kp (or K*x) O~ state. Nevertheless, a radial
excitation of the K-meson is known to exist at 1.46 GeV'? which couples to Kp,
K*m and Ke channels. Thus each of these channels is inelastic being coupled to
other channels via K(1.46). The phase of the decay amplitude, in such cases,
cannot be identified with the scattering phase shifts. Strictly, a coupled channel

. 14, . 1 s . e ey
analysis™ is required with its own uncertainties and ambiguities.

Despite the remarks of the previous paragraph it is reasonable to expect that
for small inelasticities ¢; and ¢3 would not be much different from the scattering
phase shifts. Indeed in a model where all of the decay goes through the resonant
state, and all of the scattering goes through the same resonant state, the phase of
the decay amplitude will be equal to the phase of the scattering amplitude even

in the inelastic case. Because of the presence of K(1.46) the scattering phase

shift in I = 1/2, 0™ state is expected to cross 90° at 1.46 GeV. I = 3/2, 0~
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state, on the other haﬁd, being an “exotic” channel is expected to have a small
phase shift, possibly negative as in the K7 case. Bearing all these remarks in
mind, it is reasonable to expect ¢; — ¢3 &~ 120° — 180° at the D-meson mass. The

“enhancement factors” are then (with r = 0.23),

— - =

o $1—¢3=120° :  Fpo=1225,  Fi_=0.59
$1—¢3=150° :  Fpo=2324, F,_ =054 (56)
é1 — ¢3 = 180° : Foo = 3.86 , Fi_ =052

with these “enhancement factors” we obtain for ¢; — ¢3 = 120°, f, = 0.69

3

f- =2.09, g = —8.21 (Eq. (50)):

I(D° - KO%)

DT =08 (57)
I'(D° — K%) _
DTS K= = 028 (58)

4For é1 — ¢3 =120°, f1 = f- = 1.0, ¢ = —9.86 (Eq. (51)):

I(D°—K%) _ ~

S ST - 0.56 (59)
I'(D° - K%) _
DS K~ 18 (60)

For ¢; — ¢3 = 180° the ratios of Eq. (57) and (59) will rise by 70% while those
of (58) and (60) will decrease by 12%.

If the arguments following Eq. (55) regarding the phases of the VP-ampli-
tudes hold then the equality of the ratios expressed in Eq. (29) and (30) is

expected to remain intact.
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The effect of FSI on D° —» K%y can be studied in an analogous manner to
that of D° — K%. In D° — K% decay only a single amplitude is involved
also and therefore, FSI has no effect on I'(D° — K %w). One obtains, with FSI
(r = 0.23 is used), : - - - =

I(D° - %) _ (2fy — J- +9)?
T(D° — K%0) (2f+— f-—g)?

Foo (61)

=3.2, for f4 =0.69, f_ = 2.00,

g = —8.21, ¢1 - ¢3 = 120° (62)
=15, forfy=f_=1, g=—-086, ¢ — $3 = 120° . (63)

The K % mode should therefore be observable.

FSI effects I'(D° — K %) /T(D° — K %) in the following manner (r = 0.23
is used),

T(D° - K°%) _ 0.0 (2f+ = f-+9)?
I(D°— K%  (2f+— f- —g)?

Fyo (64)

where Fy is given in Eq. (54); however, one should read 6; — 63 for ¢; — ¢3. We

obtain

I'(D° — K %) .
T'(D° —» Kx%)

0.88, for fy = 0.69, f_ = 2.00,

g=—-821,8 — & = 120° (65)
=040, for fy =f_=1,g=-086, 6; — 63 =120° (66)

For 6, — 63 = 150° and 180°, Fyo given in Eq. (56) should be used in Eq. (64).
Note that since both D° — K % and D° — K %y’ involve only a single amplitude,

FSI has no effect on the ratio I'( D® — K %) /T'(D° — K °p").
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In a recent paper _Sca,dron15 has evaluated the D — PP amplitudes in
the vacuum saturation approximation. In this approximation the amplitudes for
neutral decay modes, such as K °7°, are not calculable. However, the amplitudes
for D¥ — K%t and D° —» K~ 7% calculated in Ref. 15 lead tor = —0.42. From
Fig. 1 with the curve marked 0° it is clear that this leads to Ry, (Km) =~ 2.0
which is acceptable. F SI will pull this ratio down to S 1 which is below the
lower bound for Ry (K). From Fig. 2 with the curve marked 0° it is clear that

= —0.42 leads to Ryo(K7) =~ 0.05, well below the acceptable limits. The effect
of FSI (see Fig. 5) is to boost Roo(Kn) above the acceptable limits.

4. Summary

We started this paper with a study of the three decay modes D° — K 90,
D° —» K~#% and D* — K %+ without FSI. We found that real decay amplitudes
‘almost fail to yield a value of r = A3/A; which would simultaneously fit Roo(K)
and Ry (K7). With only a slightly more generous error in Roo(K7) and/or
Ro+(Km) a solution with r = —0.2 could be found. This value of r was then
used in the hybrid model in computing branching ratios without FSIL It could
very well be that with better statistics data no solution to a simultaneous fit to

Roo(K7) and Ry (Kn) will be found with real amplitudes and one would have

to use complex amplitudes.
Without FSI and with r = —0.20 we obtain
— T(D°-K%)

T(D° — K°%x%)
=046, for fr=f_-=1,9g="17.75 (68)

0.13, for fi = 0.69, f_ = 2.09, g = 3.95 (67)
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T(D° — K%)
— " —p. =0.69, f_ =2.09, g = 3.95 6
P(DO — K°p°) 0.22, for fy =0.69, f 2.09, ¢ ( 9)

=040, forfy=f_=1,¢="175 (70)

I'D° - K w)
— ) 048, = 0.69, f_ = 209, g¢-= 3.95 7
(DY = R9,) 0.48, for f4 .0 f 209, g= (71)

=168, for fy=f_=1,¢9="1.75. (72)

Once FSI is included we found that a fit to Roo(Kn) and Roy (K ) could be
found with r =~ 0.23 provided that the phase difference §; — 65 S 150°. With the
inclusion of FSI and with r = 0.23, we predict

I'(D® - K°) _
Ny ok 0.88, for f, =0.69, f_ = 2.09,

g=—821, 6§ — & = 120° (73)
=040, for fy=f_=1, g=—9.86, & — & = 120° (74)

T(D° —»K%)
T(D° = K00

0.8, for f; =0.69, f_ = 2.09,
g=—821, ¢; — ¢3 = 120° (75)
=0.56, for fy=f_ =1, g= —0.86, ¢; — ¢3 = 120° (76)

T'(D° - K %) _
T(D° - K%

3.2, for fy =0.69, f_ = 2.09,
g=—821, ¢1 — ¢3 =120° (77)

=15, for fy =f_=1, g=~9.86, ¢; — ¢3 = 120° . (78)

The ratio T'(D° — K °9)/T(D° — K°') in our hybrid model, unaffected by

FSI, is 0.68 which is determined only by the Clebsch-Gordan coefficients and the

phase space.
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The three rates I'(D® — K °2°%), I'(D° — K~#t) and T'(D* — K %) with
better statistics will prove very useful in the amplitude analysis as real amplitudes

are hard put to satisfy data already.

Finally we don’t expect color suppression to occur for K °p%*and K% modes

_— .

it indeed does not occur for K %7°.
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FIGURE CAPTIONS

. Ry (K) versus r, plotted for 6, — é3 = 0° and 150°. Shaded area shows
the allowed region defined by Eq. 8. Curves for 6;.— 83-= 120° and 180°

are not significantly different from that for 150°.

. Roo(Kn) versus r, plotted for é; — & = 0°, 120°, 150°, and 180°. Shaded
area shows the allowed region defined by Eq. 7. For é; — é3 = 0°, Ry stays

above 2 for all positive values of r not plotted.
. The spectator (a) and the color suppressed (b) graphs.
. The exchange graph.

. Roo(K ) versus r, plotted for §; — 83 = 0°, 120°, 150° and 180° over a wider

range than in Fig. 2.
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