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1. Introduction -- 

Data on two-body pseudoscalar (PP) decays of the D-meson have existed in 

literature for quite some time.’ New data on the PP and the vector-pseudoscalar 

(VP) decay modes, with much higher statistics, are expected &on from MARK 

fip3 -- It-is appropriate at this time to take a fresh look at the two-body decays 

of the D-mesons. 

‘. - 

In this paper we study the Cabibbo-angle favored two-body decays. First we 

analyze the D + PP branching ratios in a model independent manner without 

final state interactions (831). In the light of this analysis we show why the 

commonly used models such as the spectator model (with color suppression) and 

the exchange model, individually, do not work. A hybrid model is then developed, 

which in the absence of FSI, provides a parametrization of D -+ PP data. We 

then go on to derive conclusions on D + PP and D + VP branching ratios 

and compute I’(D” -+ ~OQ), I’(D’ 3 x”w) and I’(D” + x04). Finally we 

show what role FSI plays in the two-body Cabibboangle favored decays of the 

D-meson. 

2, Analysis without Final State Interactions 

The hard gluon corrected Hamiltonian for the Cabibbo-angle favored charm 

decays is, 

Hw = ?- cos2 6, 
4 

[f(f+ + f-)@d)(sc) + ;(f+ - f-)(ad)(ac)] (1) 

where 6, is the Cabibbo angle in the four-quark model and the coefficients f+ 
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and f- are computed to be4-6 

f+ = 0.69 f- = 2.09 . (2) 

In the numerical work in this paper results are also computed-for f+ = f- = 1 

for the sake-of comparison. As Hw changes isospin by one unit the following sum 

rule among the decay amplitudes is satisfied, 

A(D” + In+) + &A(DO + K%rO) = A(D+ + R%r+) . (3) 

In terms of the amplitudes with final states in I = l/2 and 3/2, these decay 

amplitudes are, 

A(D” + R”no) = ‘(643 + Al) ~ 

A(D” --) K-x+) = +(A3 - fiAl) (4) 

A(D+ --) ROT+) = &A3 . 

A1 and A3 are real in absence of FSI as they would be in the spectator or the 

exchange models also. 

Using Eq. (4) we define the following ratios, 

I’(D” --) x”lro) 
JQdw = rp() 

(I + &)2 
--) Kvr+) = (fi- 42 

Ro+(W - 
r(DO -+ Ic-7r+) 1 =- 
r(D+ --) K%rr+) ( > 

1 a2 -- 
9 t 

(5) 

(6) 

where r = A3/A1 and the subindices refer to the D-meson charges in the ratios. 

Experimentally 

&o(K7r) = 0.35 f 0.07 f 0.07 112 (7) 
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&+(I&) = 3.7 f 1.0 f 0.8 . 3 (8) 

In Eq. (8), T(D+)/T(DO) = 2.5 f 0.6, all errors treated as statistical, is used. 

Using Eq. (6) and (8) one can solve for r from Rc+(Kx). We obtain two 
c - 6 

solutions - 

or 

t = -0.3 +0.07 
-0.15 6-U 

r = 0.21 +0.07 
-0.03 - (10) 

The curve marked 0” in Fig. 1 shows &+(Kr) as a function of r in absence of 

FSI. The two solutions shown in Eq. (9) and (10) are readily identified from this 

curve. 

We can also solve for r from Eq. (5) and (7) using &~(K’IF). We obtain two 

solutions again, 

r = -0.08 +Oao8 
-0.11 

or 

r = -2.23 +0.50 
-0.55 * 

(11) 

(12) 

The curve marked 0’ in Fig. 2 shows &e(Kx) as a function of r in absence of 

FSI. The two solutions shown in Eq. (11) and (12) are readily identified from 

the curve. 

From the four solutions, Eq. (9)-(12), t i is evident that there is no common 

solution that satisfies both &o(K7r) and &+(Kr) of Eq. (7) and (8) for red 

decay amplitudes. One may take the view that a common solution with r ti -0.2 
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could result from a slightly more liberal treatment of errors. Such a solution 

would imply that most of the decay occurs through the [6] of SU(3) which is 

contained in [20] of SU(4) and only a small fraction goes through [15*] of SU(3) 

contained in [84] of SU(4). Th is is indeed to be expected-on gr_unds of AI = i 

rule extended to SU(4) h w ere one would expect [20] representation in Hw to 

dominate over the [84]. There is, of course, the possibility that no common 

solution will be found with red amplitudes once data with better statistics are 

available. We show later that data require that complex amplitudes be used. We 

now turn to the commonly used models. 

Spectator Model (with color suppression): 

The model is shown in Fig. 3. 

obtains, up to an overall factor, 

A(D” + 

In this model the amplitudes are real and one 

ROlrO) = & Pf+ - f-1 

A(D” + K-?r+) = 5 (2f+ + f-) 

A(D+ + ROT+) = i 4f + 

Using Eqs. (4) and (13) one gets, 

A3 = - 4 f+ 
3* 

A1 = - & Pf+ + 3f-1 * 

(13) 

Using f+ = 0.69 and f- = 2.09, one obtains, r = -0.51. If one uses f+ = f- = 1, 

one obtains r = -1.13. Clearly both these solutions are ruled out by Eq. (9)- 

(12). For r = -0.51, Do + K”?ro is very strongly suppressed resulting in 

&;(.Kx) k: l/50. For r = -1.13, one gets Ii& k: l/18. Incidentally, in this 

model, r = -0.2 would require f-/f+ = 8.75. 
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Ezchange model: 

Normally the amplitude resulting from this process, shown in Fig. 4, would be 

helicity suppressed; however such suppression could be obviated by soft gluon 

emission from the initial state. In this model one gets real ampl$udes again, and c - 

up to an overall factor, 

9 A(D” -+ xolFo) = -- 
3fi 

A(D” + K-T+) = ; (15) 

A(D+ + ROT+) = 0 

where g is a dimensionless parameter. Clearly the exchange model gives, 

r=O. (16) 

With r = 0, &o(K r is at the margin of acceptability (see Eq. (11)) but not ) 

&+(Kr) which blows up at r = 0. Thus exchange model by itself will not satisfy 

the two ratios. 

A Hybrid model: 

One can construct a hybrid model which is a mixture of the spectator model, 

with color suppression, and the exchange model. In this model, up to an overall 

factor, one obtains the following real amplitudes, 

A(D” + ROT’) = & (2f+ - f-) - & 

A(D” + K-n+) = ; (2f+ + f-) + ; (17) 

A(D+ + ROT+) = ; f+ . 
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Defining, 

azf- 
2f+ (18) 

and using Eqs. (4) and (17) we get, 

~43 -2& r--=-. 
Al 1 + 3a (19) 

For r = -0.2 this leads to, 

and 

g = 3.95, for f+ = 0.69 , f- = 2.09 (20) 

g = 7.75, for f+ = f- = 1 . (21) 

The knowledge of g together with the assumed knowledge off+ and f- now allows 

us to study other D + PP and D -P VP decays. Consider first (Do ---) 3~) 

and (Do + ?I,‘). If we ignore r) - n’ mixing and treat q as a pure SU(3) octet 

and q’ as a singlet, then the hybrid model leads to the following real amplitudes, 

up to an overall factor, 

A(D” 4 &) = -A- (2f+ - f- + 9) 
34 (22) 

A(D” + &‘) = & (2f+ - f- + 9) * (23) 

The difference is only in the Clebsch-Gordan coefficient in the uz content of v and 

q?We caution the reader that Eq. (22) and (23) are model dependent relations. 

The two decays can be related at the S-U(4) level with a different result.’ With 
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the S-wave phase space ratio of 1.37 one obtains 

r(DO --d$ 

r(DO + IT+) 
N 0.68 . 

As the final states in both these decays involve only asingle amplitude this ratio 

will not-be-effected by FSI which we discuss later. 

If we assume that the overall factors arising from hadronization in the K?r 

and Kq final states are the same then, without FSI, one finds, 

r(DO ---* rr"q) 
= 0.28 (2f+ - f- + sJ2 

r(DO + srO) (2f+ - f- - id2 (25) 

= 0.13, for f+ = 0.68, f- = 2.09, g = 3.95 (26) 

= 0.46, for f+ = f- = 1, g = 7.75 . 

The effect of FSI on this ratio is discussed later in this paper. 

VP two-body decays: 

(27) 

Since the quark content of the final states in D + Kp and D + K*T decays is 

the same as that in D + KT decay we expect the decay amplitudes for the VP 

modes to bear a flavor-similarity to the PP modes through the hybrid model. The 

spin dependence will arise through hadronization and result in a different overall 

Lorentz structure. We then anticipate that up to an overall Lorentz structure 

factor, 

A(D” + Top’) = & (2f+ - f-1 - & 

A(D” + K-p’) = ; (2f+ + f-) + f (28) 

A(D+ + 3f”p+) = f f+ 



Similar relations can be written for the x*‘lr”, K*-~T+ and K*‘z+ modes. If 

hadronization were to result only in an overall factor then we anticipate, 

R,-,,,(K?r) k: &(Kp) M Roo(K”r)- - (29) 

-and - 

R,,+(K?r) k: &+(Kp) = h+(K*r) (30) 

where the VP ratios are defined in an analogous manner to Eq. (5) and (6). The 

data at present ’ are not very precise, 

BR(D”+Ropo) =O.lf 0.6 
0.1 

% 

BR(D’ -+ K-p+) = 7.2 f 3.0 
3.1 

% 

BR(D’ + w*“r”) 2.3 =1.4* % 
1.4 

BR(D’ + K*-n+) = 3.4 f 1.4 % . 

(31) 

_ Data on all the VP charge states are expected2” soon from Mark III. In 

particular data on D --) Kp and D + K*n will allow us to analyze the VP 

modes in the same manner as the PP modes. The data at present are quite 

consistent with Eq. (29). 

Next we estimate I’(D’ + x0$). The final state being a pure I = l/2 

state, this decay proceeds via the exchange process only, if one were to ignore the 

OZI-violating contribution. The amplitude, assuming for the moment an SU(3) 

symmetric vacuum so that s&pairs are excited with the same probability as the 
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UG or d&pair, is (up to an overall factor containing the Lorentz structure) 

A(D” + w”4) = ; . (32) 
v- - d 

If we assume that hadronization results only in an overall factor, containing the 

Lorentz structure which is the same for all VP modes, then one obtains, 

r(DO-JP$) 0.9g2 Faz 
r(Do + KOpO) = (2f+ - f - g)2 (33) 

r(DO-xO~) 0.45g2 FsB 
I’(D” --) K-p+) = (2f+ + f- + g)2 (34 

where we have used a P-wave phase space ratio of 0.45 and F,g k: l/3 is the 

inhibition factor8 for exciting an ss-pair from the vacuum. We get (without 

FSI) 

r(D"+In#g 
r(DO + F+.P) 

= 0.22, for f+ = 0.69, f- = 2.09 and g = 3.95 (35) 

= 0.4 , for f+ = f- = 1 and g = 7.75 (36) 

r(D"--+xo4 =004 
I’(D” + K-p+) ’ ’ for f-t = 0.69, f- = 2.09 and g = 3.95 (37) 

= 0.08, for f+ = j- = 1 and g = 7.75 (38) 

These ratios are comparable to those derived earlier.g 

-The decay Do + K”w can be treated in a similar way. Up to an over- 

all Lorentz factor the hybrid model, without FSI, generates the following real 
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amplitude, 

A(D” + Row) = -& (2f+ - f- + 9) (39) 

with the same assumptions as those made for Do + %?‘& onebbtains 
- - 

T(DO + FLJ) (2f+ - f- + g)2 
r(Do -+ X$0) = (2f+ - f- - gy (40) 

For r = -0.2, without FSI, one gets 

r(DO --) KOW) 
r(Do -+ KOpO) 

= 0.48, for f+ = 0.69, f- = 2.09, g = 3.95 (41) 

= 1.68, for f+ = f- = 1, g = 7.75 . (42) 

In the next section the effect of FSI on these ratios is studied. 

3. The Role of Final State Interactions (FSI) 

. FSI is expected to play an important role in D-decays since strangeness 1 

resonances are known lo-l2 to exist at 1.4-1.5 GeV. Theoretical analysis is, how- 

ever, far from clear since most of the final states are highly inelastic. For the KT 

decay mode, however, a fairly reliable analysis can be made since the s-wave K?r 

scattering in 0+ state appears “J to be elastic up to an energy of about 1.4 

GeV. The only other competing channel is KQ. The inelasticity at the D-meson 

rnEs is small. If one were to assume that KT scattering in O+ state is elastic 

at 1.86 GeV then the phases of A1 and A3 in Eq. (4) are the elastic scattering 
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phases Sr and S;. One can then write13’14 

A(D” -+ Ron’) = $ (fiA3ei6a + Ale”‘) 
3 

- -- 
A(D” + K-s+) L ?- 

6 
A3ei6S - fiAl;‘b’) - (43) 

A(D+ + ROT+) = dA3ei6$ 

The ratios &o(Kn) and &+(KT) of Eq. (5) and (6) now read, 

R. (K?r) _ {l+t/Zrcm(bl -63)}2+2r2sin2(61-&) 
0 - 

{ xh - r cos(61 - 63))” + r2 sin2(& - 63) 
(44 

&+(I+ = f zsin2(br-6) 
r2 3 - I (45) 

The I = l/2,0+ channel is known to resonate (kappa meson) at 1.4 GeVl’. The 

phase Sr crosses 90” at this energy. Ss is known to be -25’ to -30” at 1.4 GeVL1. 

It is probably very reasonable to assume Sr - & in the range of 120°-180” at the 

D-meson mass. 

. If we assume a particular value for 61 - Ss then one can solve for r from 

&~o(Kx) and &+(Kn) of Eq. (44) and (45) by using the experimental values 

for these ratios given in Eq. (7) and (8). 

We choose 61 - 63 = 150’ for numerical estimates. &+(Kx) then yields the 

following two solutions, 

= 0.29 
+0.15 r 
-0.06 (46) 

or 
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r = -0.21 
+0.03 
-0.07 (47) 

In Fig. 1 the curve marked 150’ shows &+(Klr) as a function of r for Sr - & = 

150°. The solutions shown in Eq. (46) and (47) are easily recognized from the 
c - w 

diagram, It is also seen from Fig. 1 that FSI boosts &+(Kr) for r > 0 and 

suppresses it for r < 0. 

For 61 - 63 = 150°, &c(K~r) yields the following two solutions, 

r = 0.1 f 
0.12 
0.10 

or 

r = 1.91 
+0.5 
-0.5 

(48) 

(49) 

The curve marked 150’ in Fig. 2 shows &-,(Kr), for Sr -& = 150”, as a function 

of r. The two solutions, Eqs. (48) and (49), are evident from this curve. In Fig. 

2 we have also plotted &c(Kr) for Sr - S, = 120’ and 180’. 

The solutions for r, with FSI, Eq. (46)-(49), are almost sign-reversed to those 

without FSI, Eq. (9)-(12). Th is reversal of sign would be exact for 6r- 63 = 180°, 

since for this choice of the phase shifts the decay amplitudes are again real, 

however the sign of A3 is reversed with respect to Al. For (61 - 633) = 150’ the 

situation is not much different. Comparing Eq. (46) and (48) we see that a 

common solution can almost be found for r k: 0.23. In fact, for 61 - & smder 

than 150’ there will indeed be a common solution at r k: 0.23. This, one can 

understand by looking at the trend of &o(Kx) as a function of 61- 63 from Fig. 

2. For the numerical work that follows we have used r = 0.23. 

-In Fig. 5 we show what FSI can do to the ratio &~(KK). Without FSI 

the acceptable values of r are negative; however, FSI boosts this ratio aboue the 

13 



experimental limits for all negative values of r. For positive values of r, &o(K?r) 

is too large without FSI but FSI pulls it down to within experimental limits by 

simultaneously suppressing Do + K”ro and enhancing Do --) K-T+. 

The strategy next is to use the hybrid model, which-does-not have FSI, to 

generate decay amplitudes with r = 0.23 and let FSI pull the ratio &(Kr) 

within acceptable limits. By setting r = 0.23 in Eq. (19) we obtain a = -4.43. 

This, together with Eq. (18), yields (incidentally, to generate r = 0.23 from 

spectator model alone would require f-/f+ = -8.86) 

and 

g = -8.21, for f+ = 0.69, f- = 2.09 (50) 

g = -9.86, for f+ = f- = 1 . (51) 

With these parameters one can now compute IJ(D” --) x04) with FSI, which 

plays no role in Do -+ x04 since there is only one amplitude involved, one 

obtains 

I’(D” --)R”qi) 0.9g2 Faa _ 
I’(Do + ~O#‘) = (2f+ --f- : g)2 ‘O” 

I’(D” --)x04) 0.45 g2 Fdii 
r (DO + K-p+) = (2f+ + f- + g)2 

F _ 
+ 

(52) 

(53) 

Ez. (52) and (53) are the same as Eq. (33) and (34) except for the FSJ “en- 

hancement factors” Foe and F+- for Do -+ x”po and Do + K-p+ respectively. 
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These factors are defined as, 

Foe = 
I’(D” + Hop’) without FSI 

I’(D” +x”po) with FSI 

- -- 
-(1+fir)2 r - @  

= {I+ fircos(& - #a)}2 + 2r2sin2(& - fj3) 

(54 

and 

F+- = (d - r)2 

{fi - rCOS(h - 63)}2 + r2 sin(f$r - 43) ’ 
(55) 

41 and 43 are the phases of Al and A3 respectively for Do --+ Kp decays defined 

analogously to Eq. (43) for Do -+ Kn decays. If the Kp scattering in O- state 

were elastic then r$r and 43 would be the scattering phase shifts. In contrast to 

the Kn system where phase shift analysis in the O+ state exists,ll no comparable 

phase shift analysis exists for the Kp (or K*r) O- state. Nevertheless, a radial 

excitation of the K-meson is known to exist at 1.46 GeV12 which couples to Kp, 

K*r and KE channels. Thus each of these channels is inelastic being coupled to 

other channels via K(1.46). The phase of the decay amplitude, in such cases, 

cannot be identified with the scattering phase shifts. Strictly, a coufiled channel 

analysis 14 is required with its own uncertainties and ambiguities. 

Despite the remarks of the previous paragraph it is reasonable to expect that 

for small inelasticities ~$1 and 43 would not be much different from the scattering 

phase shifts. Indeed in a model where all of the decay goes through the resonant 

state, and all of the scattering goes through the same resonant state, the phase of 

the decay amplitude will be equal to the phase of the scattering amplitude even 

in the inelastic case. Because of the presence of K( 1.46) the scattering phase 

shift in I = l/2, O- state is expected to cross 90” at 1.46 GeV. I = 3/2, O- 
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state, on the other hand, being an “exotic” channel is expected to have a small 

phase shift, possibly negative as in the Kn case. Bearing all these remarks in 

mind, it is reasonable to expect dr- 43 k: 120' - 180" at the D-meson mass. The 

“enhancement factors” are then (with r = 0.23), _ _ _ 

- -- 
41 - 43 = 120" : Foe = 2.25 , F+- = 0.59 

41-43 =150° : Foe = 3.24 , F+- = 0.54 (56) 

41 - 43 = 180' : Foe = 3186 , F+- = 0.52 

with these “enhancement factors” we obtain for 41 - 43 = 120°, f+ = 0.69, 

f- = 2.09, g = -8.21 (Eq. (50)): 

W0-tfT04) =08 
r(DO -+KOpO) ’ 

l-CD0 + K”4) = 0 26 
I’(D” --) K-p+) ’ 

For 41 - 43 = 120°, f+ = f- = 1.0, g = -9.86 (Eq. (51)): 

r(DO-+ X04) 
l?(D” + K-p+) 

= 0.18 

(57) 

(58) 

(60) 

For 41 - 43 = 180’ the ratios of Eq. (57) and (59) will rise by 70% while those 

of (58) and (60) will decrease by 12%. 

If the arguments following Eq. (55) regarding the phases of the VP-ampli- 

tubs hold then the equality of the ratios expressed in Eq. (29) and (30) is 

expected to remain intact. 
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The effect of FSI on Do + K”w can be studied in an analogous manner to 

that of Do + x04. In Do +, ‘if ‘w decay only a single amplitude is involved 

also and therefore, FSI has no effect on I’(D” + Row). One obtains, with FSI 

(r = 0.23 is used), F- - e 

- -- 
r(DO --$ FL) (2f+ -f-+9)2 
F(DO * KOpO) = (2f+ - f- - g)2 Foe (61) 

= 3.2, for f+ = 0.69, f- = 2.09, 

g = -8.21, 41 - 43 = 120" (62) 

= 1.5, for f+ = f- = 1, g = -0.86, 41 - 43 = 120' . (63) 

The Row mode should therefore be observable. 

FSI effects I’(D” + x”q)/I’(Do -+ K”?ro) in the following manner (r = 0.23 

is used), 

r(D” + x”tl) =  o 28 (2f+ - f- + g)2 
’ (2f+ - f- - g)2 Foe (64 

where Fm is given in Eq. (54); however, one should read 61 - S, for 41- 43. We 

obtain 

r(DO-x%j) 
r(D"-xo~o) 

= 0.88, for f+ = 0.69, f- = 2.09, 

9 = -8.21,& - S3 = 120" (65) 

= 0.40, for f+ = f- = 1 , g = -0.86, 61 - 63 = 120' (66) 

For ~51 - 6s = 150’ and 180°, Fm given in Eq. (56) should be used in Eq. (64). 

Note that since both Do + K”q and Do + K”q ’ involve only a single amplitude, 

FSI has no effect on the ratio I’(D” + x”q)/I’(Do + K’v’). 
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In a recent paper Scadron15 has evaluated the D + PP amplitudes in 

the vacuum saturation approximation. In this approximation the amplitudes for 

neutral decay modes, such as K”rro, are not calculable. However, the amplitudes 

for D+ + x0x+ and Do --) K-T+ calculated in Ref. l5 lead tw ,= -0.42. From 

Fig. 1 with the curve marked 0’ it is clear that this leads to &+(K?r) e 2.0 

which is acceptable. FSI will pull this ratio down to 5 1 which is below the 

lower bound for Ii&+( From Fig. 2 with the curve marked 0’ it is clear that 

r = -0.42 leads to &~(KT) B 0.05, well below the acceptable limits. The effect 

of FSI (see Fig. 5) is to boost &~(KT) above the acceptable limits. 

4. Summary 

We started this paper with a study of the three decay modes Do + K”lrO, 

Do + K-n+ and D+ -+ K”7rr+ without FSI. We found that reul decay amplitudes 

almost fail to yield a value of r E As/Al which would simultaneously fit &(KT) 

and &+ (KT). With only a slightly more generous error in Ii& and/or 

Ii&+ a solution with r = -0.2 could be found. This value of r was then 

used in the hybrid model in computing branching ratios without FSI. It could 

very well be that with better statistics data no solution to a simultaneous fit to 

&o(Kvr) and &+(KT) will b e f ound with real amplitudes and one would have 

to use complex amplitudes, 

Without FSI and with r = -0.20 we obtain 

WO+KOd =013 
r(D"-+Kw) * ' 

for f+ = 0.69, f- = 2.09, g = 3.95 (67) 

= 0.46, for f+ = f- = 1, g = 7.75 (68) 
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r(DO+ KO4) 
r(DO+ PpO) = 0.22, for f+ = 0.69, f- = 2.09, g = 3.95 (69) 

= 0.40, for f+ = f- = 1, g = 7.75 (70) 

r(DO-+ROw) 
r(DO + ROpO) = 0.48, for f+ = 0.69, f- = 2.49, g= 3.95 (71) 

- 
= 1.68, for f+ = f- = 1, g = 7.75. (72) 

Once FSI is included we found that a fit to &(KA) and &+ (Klr) could be 

found with r N 0.23 provided that the phase difference 61 - S, 2 150”. With the 

inclusion of FSI and with r = 0.23, we predict 

r(D0+X07j) 
r(D"--mw) 

= 0.88, for f+ = 0.69, f- = 2.09, 

g = -8.21, SI - s, = 120' (73) 

= 0.40, for f+, = f- = 1, g = -9.86, b1 - S3 = 120” (74) 

r(DO+ X04) 
r(DO + PpO) = 0.8, for f+ = 0.69, f- = 2.09, 

g = -8.21, 41 - 43 = 120' (75) 

= 0.56, for f+ = f- = 1, g = -9.86, dl - 43 = 120' (76) 

r(DO+KOw) 
r(DO + ROpO) =.3.2, for f+ = 0.69, f- = 2.09, 

g = -8.21, 41- 43 = 120" 

= 1.5, for f+ = f- = 1, g = -9.86, 41 - 43 = 120' .(78) 

The ratio I’(D” --) R”q)/I’(Do -+ K”q ‘) in our hybrid model, unaffected by 

FSI, is 0.68 which is determined only by the Clebsch-Gordan coefficients and the 

phase space. 
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The three rates I’(D” + x0x0), I’(D” 3 K-T+) and I’(D+ + x0,+) with 

better statistics will prove very useful in the amplitude analysis as red amplitudes 

are hard put to satisfy data already. 

Finally we don’t expect color suppression to occur for K’p%rd K*‘7r0 modes 

as it indeed does not occur for K”rro. 
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FIGURE CAPTIONS 

1. &+(K?r) versus r, plotted for Sr - & = 0’ and 150’. Shaded area shows 

the allowed region defined by Eq. 8. Curves for &- 63-z 120’ and 180’ 

are not significantly different from that for 150’. 

2. &o(K?r) versus r, plotted for 61 - & = O”, 120°, 150”, and 180’. Shaded 

area shows the allowed region defined by Eq. 7. For 6r- 63 = O”, & stays 

above 2 for all positive values of r not plotted. 

3. The spectator (a) and the color suppressed (b) graphs. 

4. The exchange graph. 

5. &(KT) versus r, plotted for 61-63 = O”, 120°, 150’ and 180’ over a wider 

range than in Fig. 2. 
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