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The Crystal Ball collaboration has recently announced the discovery of a 

new resonance, the ~(8320), which appears in T decays recoiling against a single 

photon with branching ratio of roughly 0.5% Ill . The discovery is clearly one of 

great interest, since there is no particle called for in the standard gauge theory 

of strong, weak, and electromagnetic interactions which-would be produced in 

this mode at the large rate required by the Crystal Ball data. It is therefore 

important to ask whether theoretical analysis can add any constraints on the 

nature of the c to those which follow straightforwardly from the observations. 

In this paper, we will concentrate on the one piece of experimental data which 

strikes us as unusual, not only from the viewpoint of the standard model, but 

also from the viewpoint of any likely modification of this model. The Crystal 

Ball group has reported that the c is not observed at the T’, and has placed a 

stringent upper bound: 

BR(T’ --+ 7 + s) 
BR(T-,r+c) 

< 0.22 (90% confidence). 

We do not find it plausible to interpret the $ as a b-6 state: this would require a 

hyperfine splitting at least a factor of 30 larger than that predicted by QCD, even 

though the corresponding prediction for the $~-t)~ splitting works quite well121 . 

Any other interpretation, however, requires that the b and 6 annihilate as the < 

is being produced. Conventional wisdom would then dictate that the amplitude 

for formation of the < from any T resonance would be given by a universal 

factor times l?+!~(O)l, where $(r) is th e b ound-state wavefunction of that particular 

resonance. This picture gives a definite prediction for the ratio which appears 

in (1). Let BR( cascade) be the fraction of ‘Y’ decays which involve photon or 

2pion cascades to lower resonances rather than b-6 annihilation. Including this 

correction13’ , and phase space, we find: 

BR(T’ + 7 + <) (1 - m,2/m;,> 

BR(T+7+$) 
= (1 - BR(cascade)) . 

Cl- my4 

= 0.76 f 0.05, 
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which is clearly in disagreement with (1). 

To understand why (1) is so small, we must somehow understand why the 

amplitude for < production depends on the detailed structure of each b-6 bound 

state rather than only on the wavefunction at the origin. This more involved Y - s 
dependence on the bound state wavefunctions might, in principle, arise from the 

b-6 dynamics before the annihilation or from the annihilation amplitude itself. 

To investigate how large such an effect might be, we have studied the amplitude 

for formation of the < in three different models-assuming, in turn, that the c is 

(1) a Higgs boson with scalar coupling to b-b, (2) a Higgs boson with pseudoscalar 

coupling, and (3) p a seudoscalar bound state of a pair of new colored fermions. 

We find that the last two models are clearly incompatible with the result (1). In 

the case of a scalar Higgs, we find a substantial cancellation in the amplitude for 

T’ + 7+<, making this model at least plausibly compatible with the experimental 

constraint. (An alternative, much more devious, explanation of the suppression 

of the T’ decay, can be constructed if the c is a bound state of colored scalars; 

this model has been described by one of us elsewhere PI .) 

Before analyzing these models in detail, we should comment briefly on their 

plausibility. It has been known since the work of Wilczek 151 that Higgs bosons 

might be produced in the radiative decays of the T. The expected branching ratio 

for a standard Higgs of the mass of the < is 5 x 10m5, roughly two orders of mag- 

nitude smaller than that observed for the c. However, Wilczek also observed PI 

that models with more than one Higgs boson contain an additional parameter, 

the ratio of the Higgs vacuum expectation values, which allows the rate of this 

process to be adjusted arbitrarily. This is thus a natural interpretation of the 

<, as several authors have already noted[7P81 . In most such models, the light 

Higgs is a pseudoscalar (the axion is a notable example), but this is certainly 

not necessary. Our third alternative constrains the rate for T --+ 7 + c consider- 

ably more tightly: The c is formed by annihilation of the b and b into a photon 

and two gluons and the subsequent recombination of the two gluons into a new 

fermion-antifermion pair. The large energy of the annihilation process should 
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justify estimating the rate by perturbative QCD. Using the general computation 

of this rate by Guberina and Kiihn PI , three groups [1o-121 have estimated the 

branching ratio for the radiative decay of the T into a gluino-gluino bound state 

to be roughly 5 x 10s4. For Dirac color octet fermions, this branching ratio would 

be O.l%, a number probably compatible with observation,-consaering the errors 

of both theory and experiment. This hypothesis will of course be ruled out if the 

c is confirmed to decay to r+r-. 

Let us now begin our analysis of the corrections to the picture in which 

the amplitude for b-b annihilation processes depend only on the value of the 

wavefunction at the origin. Building on eq. (2), we define a “zeta function”, 

Z(mS), by writing: 

BR(T'-,7+c) (1 - m;/m;,> 
BR(T-,r+c) 

= (1 - BR(cascade)) . 
Cl- m:lm;) 

* e4. (3) 

As with the more familiar zeta-function of Riemann, our main interest in Z(m) 

will be to locate its zeros. We would be pleased if Z(m) had a zero in the vicinity 

of mc; in any event, we must find Z(m<) < 0.3 to explain the experimental result 

(1). 

We consider first the corrections to (2) arising from the b-b bound state 

dynamics before annihilation* . Wilczek, in his original computation of the rate 

for T --) 7 + Higgsi5) , considered the simple process shown in Fig. l(a), in 

the approximation that one could ignore bound-state effects in the annihilation 

process. Later, Haber, Kane, and Sterling [141 and Ellis, Gaillard, Nanopoulos, 

and Sachraj da PI pointed out that this approximation is not adequate when 

the energy of the photon is small, since in that case, the mass of the b-b state 

after emission of the photon may be sufficiently close to the T region that one 

* After completing this analysis, we learned that a very similar computation had been done 
by Polchinski, Sharpe, and Barnes PI . This computation has also been done for the 

pseudoscalar case by Lane, Meshkov, and Wilczek I71 . 
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cannot ignore the potential binding the b and 6. These authors discussed the 

mixing of the Higgs with specific quarkonium states, but did not attempt a 

calculation valid for general Higgs masses. We will make that extension of their 

work here. We must compute the amplitude indicated schematically in Fig. 

l(b): the initial T radiates a photon by a multipolertra&ition, propagates in 

the resulting quarkonium state, and eventually annihilates to the Higgs via a 

pointlike coupling. 

Wilczek’s computation gave the width for Higgs production as+ 

In the limit of small photon energy, the process shown in Fig. l(b) gives a 

formula which differs from (4) only in that the term I$(O)I” is replaced by a 

more intricate factor M. For the case of a pseudoscalar Higgs, the photon is 

radiated via an Ml transition and the b-b intermediate state is in the ISo channel. 

Then, if Eland Z are the polarizations of the photon and T, respectively, P is the 

photon direction, and Ho is the one-body Hamiltonian on ‘SO states (including 

the relevant spin-dependent forces), and the indicated state denote the spatial 

part of the wavefunction only, we find 

MP = ; @7. (z’= 01&, 
x,z 

mHyHo(axiE.q (L3)lr)12 

(5) 

= (mr-mH)‘(i=O/,H1HolT)/2. 

For the case of a scalar Higgs, the photon is radiated via an El transition and 

the b-b intermediate state is in the 3Po channel. If Hr is the Hamiltonian in this 

t We normalize tj(r) to the convention: &O” 4?rr2dr)$(r)12 = 1 
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channel, 

Both formulae are evaluated in the simplest nonrelativistic approximation. How- 

ever, it is remarkable that both (5) and (6) tend to llc,(0)j2, the correct extreme 

relativistic limit, as the mass of the T is taken to be large compared to the Higgs 

mass. Thus, (5) and (6) are actually interpolating formulae; it is perhaps more 

correct to use these formulae for large photon energies than to add in some, but 

not all, of the relativistic corrections. 

It is straightforward to evaluate the formulae (5), (6). One method is to 

represent the energy denominator using a complete set of intermediate states. 

Let Ins>, W>, P re resent the nth state in the relevant channel and &(r) its 

radial wavefunction. Then, 

MP = (mr - mH) c ‘$,‘“zT’ 12, 
n 

9w) wlm 2 MS= ;(W-~H)C mH-E, 1. 
n 

(7) 

Alternatively, one might represent the energy denominator as a Green’s function: 

Let gl(r) be the solution to 

+ h(r) + (2mb - mH) g&T(r) = 0 1 (8) 
which is regular at 00 and tends to l/#+’ as r -+ 0. Let A = (mr - mH) . mb. 
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Then, after some algebra, one finds: 

MP = A mdr (rgo(r)) - r. &(r) 12, 
1 / 

0 

(9) - 
_ 

MS = 1;A /mdr (r2gt(r)) .,.$&)i2. 
0 

It is not difficult to predict the general form of M as a function of the mass 

of the Higgs. The amplitude for formation of the Higgs vanishes as the photon 

energy tends to zero, so the total rate, proportional to the product of M and 

3 phase space, tends to zero as E,.,. However, in the pseudoscalar case, this behavior 

applies only to a very small mass region: M contains a resonance at the mass of 

the spin-0 hyperfine partner of the T state in question, and, below this resonance, 

the energy denominator very nearly cancels the factor of E, in the numerator I161 

A detailed estimate of M(m ) 1171 . H using the Richardson potential plus a small 

short-range (- ezp(-mbr)) hyperfine interaction to adjust the T-qb splitting to 

40 MeV, is presented in Fig. 2. Actually, we plot the more useful quantity 

r(7?2H) = (1 - BR(cascade)) . (10) 

&hich is directly proportional to the branching ratio for T + 7 + H. This figure 

shows precisely the behavior expected from the argument we have just given. 

There is no particular suppression of the decay of the Y’; the ratio of the two 

curves shown is almost exactly that due to phase space alone. 

The behavior of M(~H) in the scalar case is rather different, however. Since 

there is no 3Po resonance below the T, one should expect the rate of T decay 

tLvary as E: over a wide region. This effect works in the wrong direction, 

suppressing the denominator of (1). In the case of the T’ decay, one should find 

a resonant enhancement when the mass of the Higgs is near that of the singlet 
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Xb114’151 . One might guess that below this resonance, the rate would tend rapidly 

to the value expected from phase space. Remarkably, it does not. As Fig. 3 

indicates, M(~H) for the T’ has a zero for ?Y&H = 9.2 GeV and rises only slowly 

for smaller Higgs masses. The T’ decay is then much more strongly suppressed 
Y - e 

than the T decay, just the situation needed to explain the observations. For 

completeness, we show also, in Fig. 4, the behavior of M for T” --) 7 + H as a 

function of ?‘&I. Note that, up to the effects of spin-orbit forces, which displace 

the T’ curve less than 100 MeV to the right, the predictions of Figs. 3 and 4 

apply equally well to any hypothetical l+ or 2+ resonance which couples directly 

to b-ii 

Since the zero of M(mH) found in the scalar case is of such importance to 

our analysis, it is worth pausing to understand its origin. A crucial piece of 

information is that, for reasonable quarkonium potentials, the 1P radial wave- 

function is large in the region beyond the node of the 2s wavefunction, so that 

the El matrix element between the 2s and 1P states is negative; this is shown 

in Table 1. The El matrix elements between the 2s and the higher P states are 

positive. Using this information, one can understand the presence of the zero 

in either of two ways. In the viewpoint of eq. (7), the 1P contribution to the 

indicated sum dominates near its resonance, but the weight of the contributions 

from higher states dominates as the Higgs mass becomes small and ‘the various 

energy denominators become equal. Alternatively, one can take the viewpoint of 

eq. (9) and consider the way in which the Green’s function gi(r) evolves as the 

mH changes. For mH near the 1P mass, gl(r) has the shape of the 1P state (di- 

vided by a small energy denominator), so that its overlap with the 2s is negative. 

But for mH well below the T, gl(r) falls off rapidly with t, so that it samples 

only the wavefunction at the origin; this gives a positive overlap integral. Either 

argument implies that M goes through a zero as t?ZH is decreased from the mass 

orthe 1P. 

One can also understand that the bound state corrections are much larger 



in the scalar than in the pseudoscalar case by considering the limit opposite to 

the one we have been studying so far, the limit of large photon energy. In this 

limit, one may estimate the dependence of the amplitude for T + 7 + H on the 

initial wavefunction by computing the momentum dependence of the amplitude 

for b6 --) 7 + H. One finds for the scalar case that one-mu& replace 

(11) 

to include the leading corrections, whereas in the pseudoscalar case the corre- 

sponding replacement is 

(f+= op> ---+ (F= 01 ( (5)) In 1+ 0 (12) 

One can thus see from the direction of large photon energies that the approxi- 

mation of the wavefunction at the origin should have a wide range of validity in 

the case of a pseudoscalar but should be easily spoiled in the case of a scalar. 

VysotskyL1*l has computed the leading QCD corrections to Wilczek’s formula (4) 

for a scalar Higgs and has found that they are large and negative. Much of this 

correction can be traced directly to the krl behavior of the tree amplitude dis- 

played in (11). The presence of such large corrections seems consistent with the 

fact that the curves of Figs. 3, 4 show such a slow convergence to the Wilczek 

limit. 

Though the strong suppression of the rate for T’ + 7 + H is model inde- 

pendent, the precise magnitude of this suppression depends on the details of the 

calculation. The particular estimate shown in Fig. 3 uses the Richardson poten- 

tial, plus spin-dependent forces of the form suggested by Gupta, Radford, and 

Repko 1”’ : 

V&,&) = (0.03) [” ’ “’ ’ ;*- ” - ” (1.88 + 0.18 log(r)) 

(13) 
+- E;3” (14 0.17 log(r)) - 0.13=1 

F 
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(where r is in GeV-’ and we regulate by writing f = (t2 + (1/2t71*)~) i), and 

the short-ranged hyperfine interaction described above. For these parameters, 

we find for Z(n) at the $ mass: 

Z(8.32 GeV) = 
0.97 (O- Higgs)- - 

0.52 (O+ Higgs) (14 

These values correspond to a ratio of branching fractions (eq. (1)) of 0.74 and 

0.40, respectively. The absolute value of r(m) is very sensitive to the particular 

parameters used; the value of Z(m) is somewhat less so. The value of Z(m$) 

for the scalar case can vary by 10% if one changes to the Martin PO1 or to the 

Cornell [211 potential, or if one chooses to omit the spin-dependent forces* . De- 

spite the fact that the formula (7) indicates an apparent sensitivity to highly 

excited P states, cutting off the potential at BH threshold has less than a 1% 

effect on Z(m<); this is sensible because gr(r) is quite short-ranged at mH = 

mS. Z(m$) does increase significantly (to about 0.6) if one includes the effects 

of retardation, replacing r by (?cr/6)-' . jr(lc,t/2). Using the relativistic form 

b4l- 4iP )-” for the energy denominator gives an upward correction of similar 

size. However, as we have noted below eq. (6), it does not necessarily make the 

calculation more accurate to include these effects. We should recall also that 

there are large (negative) relativistic corrections to the El transition rates in the 

charmonium system; these are expected to be small for the usual El transitions 

in the b-b system, but they grow with energy and could well give important 

corrections to value of Z(mS) for the scalar case. (The simple exercise of the pre- 

vious paragraph also indicates the possibility of large relativistic corrections in 

the scalar case.) None of these modifications has any significant effect on Z(mS) 

for the pseudoscalar case; in no case have we found a value for this quantity 

less than 0.95. We conclude that a value of .Z(m() less than 0.3, as required by 

* V. Zambetakis and N. Byers have informed us that they have repeated this calculation using 
the spin-dependent potentials of McClary and Byers 1221 ; they find Z(t+) = 0.48’2s1 . 
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experiment, is possible for a Higgs with scalar coupling to b-b but very unlikely 

for a pseudoscalar Higgs. 

It is worth noting that the suppression we have observed for the rate of 

T --) 7 + H in the case of scalar Higgs has an intriguing, and possibly disturbing, Y - I 
consequence. In a model with two Higgs doublets, the branching ratio for T 

decay to an 8.3 GeV Higgs is given by 

BR(T -+ 7 + H) = (5 x IO-~) . (15) 

where vr and wz are the two Higgs vacuum expectation values. Since our value 

of M for the ‘I’ decay is quite small, we expect (212/21r) - 12, or, since wz must 

give the bulk of the W boson mass, 111 - 20 GeV. The Yukawa coupling of this 

light Higgs to the b quark would not be so large ($/47r - &). However, if the 

< is to have a large branching fraction to hadrons, it must also have an enhanced 

coupling to C-E, and thus also to t-f, by the rule of Glashow and Weinberg PI . In 

this case, one would have Xf/47r - 0.6. (Note that this number depends on our 

result for the absolute rate of c production and so is rather poorly determined.) 

Let us now turn to the second possible source of contributions to Z(m), the 

structure of the b-6 annihilation amplitude. A concrete model which contains an 

annihilation amplitude of nontrivial structure is the formation of a bound state 

of new colored fermions F; this would proceed by the annihilation of the b and 6 

to a photon and two gluons and the subsequent recombination of the two gluons 

into the new bound state. The amplitude for this process has been extensively 

studied by Kiihn and collaborators ‘g’25-271 . However, all of this work made use of 

the approximation that the decay rate of a given T state was proportional to the 

wavefunction at the origin. It is just this approximation that we wish to check. A 

tractable way of approaching this question is shown in Fig. 5. We specialize to 

tkcase of formation of a O- bound state, since only this case can give a rate in 

T decays large enough to account for the <. Label this new state the 5. We treat 

the photon as soft and, therefore, radiated via an Ml transition. We have just 
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shown that, in this case, the factors arising from the Ml transition amplitude 

and the subsequent energy denominator cancel almost exactly, so we will ignore 

both. We will, however, treat in detail the annihilation amplitude, given by the 

2-gluon box diagram shown in Fig. S(b), and the crossed gluon diagram. We are 

interested in the dependence of this diagram on the 3-momentum of the external 

fermion& if there is no significant dependence on the b-quark momentum, the 

decay rate is exactly proportional to the wavefunction at the origin. In order to 

include variable external 3-momenta, we must take the external momenta of the 

b, b, F, and P off shell. We choose to take the b and b momenta equal to (E, fg) 

and the F and E momenta equal to (IS’, II&‘), where $ and g’ are the momenta 

appearing in the bound-state wavefunctions, and the masses of the internal b 

and F lines equal to the squares of these four-vectors. In this approximation, 

the diagram of Fig. 5(b) and the crossed graph are equal for the O- channel. 

When we report numerical values below, we set both E and E’ equal to (m~/2), 

their smallest reasonable value, and orient k’ parallel to G’. Clearly, we bias our 

estimate toward the worst case. 

In the approximation we have just described, 

where I (I?, g) is equal to (32x') times the diagram of Fig. 5(b). To evaluate 

this diagram, combine denominators using Feynman parameters zr-z4 (clockwise 

from the bottom); we parametrize these in turn as: zr = zy, x3 = x(1 - y), 

x2 = (1 - x)z, x4 = (1 - x) (1 - z). Then, after some algebra, we find 

1 +xx(l-x)jdy& 1;; + x2(yG+~2-y)1;1)2], (17) 
0 0 
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where, if k and k’ are, respectively, the b and F four-momenta, 

A = x2A2 - (1 - x)~B~, with 

(18) 
A2 = (yk + (1 - y)k’)2, B2 = ~(1 - z)$. _ 

Note that A2 and B2 are both positive. From this expression, it appears that 

there might be large cancellations between the regions where A is positive and 

the regions where it is negative, leading to a sensitive dependence on 6 and 3. 

But no such sensitivity is apparent in the decay of Y’ states to an object of the 

mass of the <. It is straightforward to perform the integral over x in (17): 

1 
A2+B2 log(!J-hL!&~;] 
(A-B)2 

+ 
(yIi + (1 - Y)I?)~ 

(A + B)3 - 2;;::)2 -i$ - 

(19) 

Now I has a relatively smooth integrand, so that the remaining integrals may 

be done numerically. One finds that the real part of I has a value within 10% of 

(1.35 x 10e3) over the whole range 0 < $1, $‘I < 3 GeV, a range which covers 

the bulk of the T and ;i wavefunctions. In Fig. 6, we graph the real and 

imaginary parts of I as a function of $1 for $‘I = 0 and 3 GeV. Unless one is 

prepared to take seriously that the singularity of I on the tail of the wavefunction 

might make a large contribution, it is difficult to arrange that Z(8.3 GeV) be 

less than 0.8. We should note that the radiative decays of C-E states to 7’ and 

L show a substantial suppression of the $’ rate relative to the II, 13981 . This is 

not inconsistent with our analysis; the singularity evident in Fig. 6 occurs at 

$1 = mG/2 and thus does greatly disturb the ratio Z(m) if the mass of the G is 

of order 1 GeV. 

We have now assessed the two major effects of the b-b wavefunction on the 

radiative decay of an T state to a new massive resonance. We have found that the 
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conventional picture, in which the decay amplitude is simply proportional to the 

wavefunction at the origin, should be quite accurate for any O- resonances, both 

those, such as the pseudoscalar Higgs, which couple directly to b-6 and those, 

such as a bound state of new colored fermions, which couple indirectly through 
Y - e 

a 2-gluon process. For heavy O+ resonance, however, there is a substantial sup- 

pression of the T’ decay rate relative to the prediction of this simple picture. 

We have argued that this suppression is plausibly, though marginally, able to 

account for observed suppression of the process T’ + 7 + c. We conclude* that 

the ~(8320) must have a scalar coupling to b-6. 

It is worth asking whether the parity of the < can be determined directly 

from experiment. With sufficient statistics, the spin of the c may be determined 

from the photon angular distribution+ , but for the formation of both O+ and 

O- states, the angular distribution of the photons is proportional to (1 + cos26). 

The photons are distinguished only by their polarization,: Photons emitted at 

90’to the beam direction, are completely polarized parallel to the beam axis in 

the O- case and perpendicular to the beam axis in the O+ case. This polarization 

is difficult to observe directly, but it may be observed indirectly through study 

of the Dalitz decay T + ce+e- * . In this process, the plane of a low-mass e+e- 

pair aligns preferentially with the direction of polarization of the parent virtual 

photon. Let M2 be the mass of the pair, % be the beam axis, ii be a unit vector in 

the plane of the pair which is perpendicular to the virtual photon 3-momentum, 

and 4(E) be an azimuthal angle, running from 0 to ?T, which specifies the direction 

of 2. Then1301 , 

-rt Barring the possibility raised in the model of ref. 4 that the < is not actually a decay 
product of the T. 

t (1+acosa8),witha=1,-i,&forJ=-0,1,2 
* For other methods of distinguishing the O+ and O- cases, see refs. 28, 29. 
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I ~+jjcos2B-(fi.$)2++$sin26 
7 

Co+) 
. 

\ 

c - e 

(l- @(;+~cos2e+(ii3)2) P-1 ' 
(20) 

The rate for such Dalitz decays is about 10m3 of the rate for T -+ ~7, so this 

experiment would require a data sample of several million T’s. This seems daunt- 

ing for the near term, but this experiment should be kept in mind as a long-term 

goal for c studies. 

We are grateful to Peter Arnold, Nina Byers, Estia Eichten, Fred Gilman, 

Howard Haber, Gordon Kane, Peter Lepage, Tung-Mow Yan, and Vasilis Zambe- 

takis, and to Elliott Bloom, Donald Coyne, Bogdan Niczyporuk, Susan Cooper, 

and other members of the Crystal Ball Collaboration for their encouragement 

and for illuminating conversations. 
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Table 1 

<- - 

El transition matrix in the dipole approximation 

47r< m3Polr(n3S1 > 

Pstate 

1P 

2P 

3P 

4P 

5P 

6P 

7P 

8P 
. . . 

1s 2s 

GeV-1 GeV-’ 

1.127 -1.637 

0.235 1.939 

0.107 0.313 

0.0637 0.129 

0.0430 0.0716 

0.0314 0.0457 

0.0242 0.0326 

0.0193 0.0244 
. . . . . . 

3s 

GeV-1 

0.013 

-2.656 

2.676 

0.369 

0.144 

0.078 

0.049 

0.034 
. . . 
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FIGURE CAPTIONS 

1. Amplitude for the process T + 7 + Higgs (a) in the hard-photon approxi- 

mation and (b) in the soft-photon approximation 

2. Behavior of the quantity r(mH), defined in the text,-for the case of a pseu- 

doscaiar Higgs. The prediction for the T’ branching ratio is given by mul- 

tiplying r$(rn<) by (BR(T -+ 7 + c)/rr(ms)). The dotted lines represent 

the prediction of phase space, or, equivalently, of the Wilczek formula for 

finite mH. We have taken BR(cascade) = 0 for T, 0.45 for T’. 

3. Behavior of the quantity r(mH) for a scalar Higgs, for decays from the T 

and ‘I”. The notation is the same as in Fig. 2. 

4. Behavior of the quantity r(mH) for a scalar Higgs, for decays from the T”. 

The notation is the same as in Fig. 2. We have taken BR(cascade) = 0.5 

for the Tn. 

5. An approximation to the amplitude for formation of a O- bound state 6 of 

new colored fermions in radiative T decays. 

6. Behavior of I(@ , G), computed using the recipe in the text, as a function 

of $1 for IPI = 0 (slid) and 3 GeV (dashed). The dotted curves show the 

shapes of +T ($I), $J~I( ICI), and $J+ ($‘I). The 6 wavefunction was computed 

as the 1S level of a bound system of color octet fermions of mass 4.91 GeV, 

bound by a potential equal to z of the Richardson potential. 
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