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ABSTRACT 

We use the infrared fixed point structure of the SU(3) x SU(2) x U(1) 

renormalization group equations to derive predictions for the masses and mixings 

of heavy families in perturbatively unifiable grand unified theories. We show 

that the sum of the squares of all quark (or lepton) masses must be less than 

(355 GeV)2. This implies that theories with NH heavy families must have at 

least one new quark and one new lepton of mass less than 250/a GeV. We 

-- also find that the Cabibbo mixings and isospin splittings of heavy quarks tend 

to be small. 
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1. Introduction 

The coming generation of particle accelerators will start to probe the physics 

beyond the standard SU(3) x SU(2) x U(1) model of the strong, weak and 

electromagnetic interactions. While it is certainly possible that nothing new will 

be found, a variety of theoretical arguments suggest that new quarks and leptons 

should appear below the TeV scale. 

In this paper we derive strong constraints on the masses and mixings of extra 

standard-model families in grand unified theories. Our results follow from a 

renormalization group analysis of the usual SU(3) x SU(2) x U(1) gauge and 

Yukawa couplings. We make only two assumptions. The first is that of a desert. 

We assume that SU(3) x SU(2) x U(1) is the effective gauge theory between 

the weak scale Mw and the grand unification scale Mx. The second is that of -* 
perturbative unification. We require all gauge and Yukawa couplings to be small 

enough for perturbation theory to be valid all the way up to the scale Mx. This 

second assumption is an essential requirement for grand unification. Subject to 

these restrictions, we place rigorous upper bounds on the sums of the squares of 

the quark masses, 

c 
Mg2 5 (355 GeV)2 , (14 

Q 

and of the lepton masses, 

c 
ML~ 2 (330 GeV)’ . (14 

L 

The inequalities (1.1) and (1.2) 1 ea immediately to stringent upper bounds d 

on the masses of individual quarks and leptons. In theories with extra heavy 

families, equations (1.1) and (1.2) imply that the lightest new quarks or leptons 

must obey the following relations, 

mQ 5 (250/m) GeV 

mL 5 (235/m) GeV , (l-3) 

3 



where NH denotes the number of new heavy families. 

The above bounds should be compared with the naive bound of MQ = 

SQ (4) s 2 Tev, which follows from insisting that perturbation theory be valid 

at the weak scale. The 2 TeV limit holds for each quark and lepton individ- 

ually, so the sum over all quarks and leptons is even less restrictive. Other 

limits on fermion masses follow from partial-wave unitarity [l], from the fact 

that the p parameter is so close to one [2], and from SU(2) x U(1) vacuum 

stability [3]. Partial-wave unitarity gives the restrictions MQ 2 500/m GeV 

and ML 2 lOOO/fi GeV, where No denotes the number of nearly degenerate 

standard-model families. Measurements of the p parameter limit isodoublet mass 

splittings to be less than 500 GeV, but they do not restrict individual fermion 

masses. Finally, SU(2) x U(1) vacuum stability implies the bound c MQ~ 5 

(900 GeV)4. In comparison to these bounds, we see that the renormalization 

group constraints (1.1) through (1.3) are really quite restrictive. They imply 

that extra standard-model families-if they exist at all-should soon be found. 

Our renormalization group analysis implies much more than the bounds dis- 

cussed above. It also demonstrates the following features of the heavy quark and 

lepton mass spectra: 

l The bounds (1.1) and (1.2) are rigorous for grand unified theories with any 

number of perturbatively unifiable families. If there are fewer than eight such 

families, the bounds can be tightened still further. For most initial conditions, 

the lepton bound (1.2) is far from being saturated. As a consequence, lepton 

masses tend to be much smaller than quark masses. 

l The Cabibbo mixings of heavy families with each other and with light 

families tend to be small. This implies that some heavy quarks in a wide range 

of models should have relatively long lifetimes. 

l Each heavy up-type quark tends to form a weak doublet with the down- 

-- 
type quark closest in mass. That is to say, isospin breaking tends to vanish in 

the heavy quark limit. 
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These results follow from an extensive analysis of the renormalization group 

equations for Yukawa couplings in grand unified theories. They rely on the fact 

that these equations have a rich infrared fixed point structure [4,5,6]. In the next 

section we give a general analysis of this fixed point structure. We distinguish 

mathematical from physical fixed points, and discuss the implications of each. 

In Section 3 we discuss what we call the radial fixed point. We demonstrate 

that the radial fixed point leads to the bounds mentioned above. In Section 4 

we define the angular fixed point. We show that the angular fixed point controls 

the evolution of the Cabibbo angles and the isospin breaking. In Section 5 we 

illustrate the role of initial conditions in determining the low energy spectrum of 

a grand unified theory. In Section 6 we examine the evolution of light quarks and 

leptons in the presence of heavy families. We show that light quark and lepton 

mass ratios renormalize by constant, calculable amounts that depend only on the 

number of heavy families, and not on their masses. We conclude with a summary 

of our most important results in Section 7. 

2. Infrared Fixed Points of the Renormalization Group Equations 

In this section we begin our discussion of the renormalization group equa- 

tions for Yukawa couplings in grand unified theories. We consider grand unified 

theories in which a simple group G breaks to SU(3) x SU(2) x U(1) at a mass 

scale Mx of order 10 l5 GeV. We assume that the spectrum of the theory below 

Mx contains NF standard-model families, along with one Higgs doublet and the 

usual SU(3) x SU(2) x U(1) gauge bosons. We denote the NF x NF Yukawa 

coupling matrices Y by U, D, E, and N, for up quarks, down quarks, charged 

leptons, and neutrinos, respectively.* 

In this notation, the one-loop renormalization group equations for the Yukawa 

* We assume, for generality, that the low energy theory contains right-handed neutrinos. If 
there are no such neutrinos, then N = 0. 
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couplings take the following form [ 71, 

-- 

Y-ldY - G 
dt - ’ 

-T- 5 
2 y’ (2.1) 

where 

su = du - Db ) GJ = 8gs2 -I- ;gz2 -I- 
17 
pa ; 

SD = Db - UtU , 
9 

GD = &a2 + qg22 + ;g12 ; 

SE = EtE - NtN , GE = ; gz2 -t ; g12 ; 

s, = NtN - EtE, GN = ;gz2 + ;g12 ; 

- T = Tr 3UtU + 3DtD + EtE + NtN 1 . 
Here ga, g2, and gr are the SU(3) x SU(2) x U(1) gauge couplings, and+ 

t=-7 lcir log 

(24 

(2.3) 

It is important to note that the gauge contributions to (2.1) tend to increase the 

fermion masses at low energies, while the Yukawa contributions tend to make 

them smaller. It is this competition between the gauge and Yukawa terms that 

leads to a fixed point behavior in the low energy theory. 

To understand this fixed point structure, we shall neglect the hypercharge 

coupling gi. For the moment, we shall also neglect the evolution of g2 and gs. In 

this case, we have GU = GD = CQ and GE = GN = EL, where ?.YQ and CL are 

constants. When CQ and CL are constant, it is easy to show that the equations 

(2.1) have two distinct fixed points: 

+ We have defined t such that an increase in t corresponds to a decrease in the energy M. 
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1) The quark fixed point, with 

T = CQ (radial quark fixed point) 

UtU = DtD (angular quark fixed point) 

E=N=O; 

2) The lepton fixed point, with 

T = CL (radial lepton fixed point) 

EtE = NtN (angular lepton fixed point) 

U=D=O. 

(2.4 

P-5) 

(2.6) 

(2.7) 

Equations (2.4) and (2.7) are incompatible, so the two fixed points cannot be 

realized simultaneously. Only one of the fixed points is reached in the mathemat- 

ical limit t + 00. If the quark fixed point is reached, equation (2.4) determines 

the overall scale of the quark masses. In this case equation (2.5) implies that all 

left-handed Cabibbo angles and CP-violating phases vanish. It also implies that 

each up-type quark has a degenerate down-type partner. 

Precisely which of the two fixed points is reached depends on their relative 

stability and on the initial values of the gauge and Yukawa couplings at t = tx = 

0. For physical gauge couplings, we shall see that the quark fixed point is strongly 

preferred. It has a much larger domain of attraction than the lepton fixed point. 

-_ 

It is important to note that the fixed point conditions (2.4) - (2.9) do not 

completely determine the spectrum of the low energy theory. Some physical 

parameters are determined by the initial conditions. At the quark fixed point, 

the physical masses, mixing angles and CP-violating phases are completely de- 

termined by the matrices U t U and DtD. These NF x NF hermitian matrices 
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contain NF~ + 1 physical parameters. However, equations (2.4) and (2.5) give 

NF~ - NF + 2 relations between the parameters. The remaining NF - 1 relations 

are not determined by the fixed point conditions. They correspond to conserved 

quantities that must be specified as initial conditions at the grand unification 

scale Mx. 

There are three important differences between the mathematical fixed points 

defined by equations (2.4) - (2.9) and the physical fixed points of a realistic grand 

unified theory. In a realistic theory, gr does not vanish, the gauge couplings are 

not constant, and the physical range of t is finite-not infinite. 

How do these changes affect our previous conclusions? Let us address each 

in turn: 

I 2. 1) The fact that gr does not vanish is unimportant because gr is much smaller 

_ than g2 or gs. 

2) The evolution of the gauge couplings with t can be taken into account 

[5] by replacing GQ and GL with appropriate averages CQ and CL. This can 

be done because the physical range of t is rather short, spanning the interval 

between tx = 0 and tw = -(1/167r2) log(Mw/Mx) - l/5. In this range, the 

gauge couplings are essentially constant. 

3) The finite range of t suggests that the Yukawa couplings might not reach 

fixed points in the limited “time” available [5]. Physical fixed points can only 

be reached if the Yukawa couplings are sufficiently large. The critical magnitude 

depends on the fixed point under consideration, and must be found by numerical 

analysis. As we will see in the next few sections, the radial quark fixed point 

tends to be reached for a wide range of initial conditions. The angular fixed 

point, however, is only reached if the initial Yukawa couplings are large. 
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3. The Radial Fixed Point 

In this section we shall begin to discuss the physical fixed points that arise in 

realistic grand unified theories. We will start with an analysis of the radial fixed 

point. To that end, we define 

Ty = Tr YtY 

TQ = Tu -I- TO 
(3.1) 

TL = TE + TN 

T = 3Tg + TL, 

. *- where Y = U, D, E or N. Neglecting gr , we take GU = GD = GQ, GE = GN = 

GL, where GQ and GL depend on t, and run according to the standard evolution 

equations for the gauge couplings. In this limit, the evolution of TQ and TL is 

given by [6] 

dTQ _ -- 
dt 

2 (Gg - T) TQ - 3Tr (Su2) (3.2) 

dTL - = 2 (GL - T) TL - 3Tr (SE2) . 
dt P-3) 

Equations (3.2) and (3.3) show that the evolution of TQ and TL depend not 

only on TQ and TL themselves, but also on the matrices Sy. To simplify the 

analysis still further, we drop the terms that depend on Sy. (They will be 

included later in this section.) With Sy = 0, equations (3.2) and (3.3) take the 

following form, 

dTQ _ - - 2(Gg - T)Tg dt P-4 

dTL - = 2(GL - T)TL . dt P-5) 
a 

9 
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The new equations involve only the traces TQ and TL. They do not depend on the 

matrix structure of U, D, E or N. The equations (3.4) and (3.5) can be solved 

numerically. Their solution depends implicitly on the total number of families 

through the gauge couplings GQ and GL. 

In Figure 1 we have plotted the solution of (3.4) and (3.5) in the eight family 

case. We follow the evolution of TQ and TL from tx to tw for a variety of 

initial conditions, and we see that equations (3.4) and (3.5) possess a rich fixed 

point structure. There is a radial quark fixed point, corresponding to CQ = 12.3 

in equation (3.4). There is also a radial lepton fixed point, corresponding to 

CL = 10.8 in (3.5). 

As is evident from Figure 1, an overwhelming majority of initial conditions 

evolve to the quark fixed point. Most initial conditions reach the radial fixed 
. a- 

point EQ = ~TQ in the physical time 0 < t < l/5. In contrast, the lepton 

- fixed point is approached for only a small range of initial conditions. The lepton 

fixed point is approached only for initial conditions that correspond to very large 

lepton masses and very small quark masses. 

It is easy to show that the quark fixed point of equations (3.4) and (3.5) is 

stable, whereas the lepton fixed point is not. This is clear in Figure 1; several 

trajectories are initially drawn towards the lepton fixed point, but as time goes 

on, they are pushed gradually away. The fact that the radial quark fixed point is 

reached in physical times for most initial conditions has important phenomeno- 

logical consequences. It implies that new heavy quarks should be significantly 

heavier than their leptonic partners. 

Why is the radial quark fixed point reached in such a short time? The 

answer lies in equations (3.4) and (3.5). F or constant gauge couplings ??y , these 

equations can easily be solved. In the limit TL = 0, one finds 

GQ = { 1 - [l - 3cGxJ] exp(--2Gpt)} . 
3TQ (t) 

P-6) 

The fixed point corresponds to GQ = T = ~TQ. With eight families, ??‘Q = 12.3, 



and similarly, with four families, CQ = 8.1. In either case the exponential is 

strongly damped. Unless TQ (tx) is very small, the second term is negligible even 

at t = tw = l/5. When this is the case, the fixed point is reached in physical 

time. 

As we have seen, equations (3.4) and (3.5) exhibit fixed point behavior. If 

the initial traces are large, the fixed point CQ = ~TQ is reached in physical time. 

If the initial traces are small, the fixed point is not reached in the available time. 

This is shown in Figure 2(a), where we have set Sy = TL = 0, and have graphed 

TQ at the weak scale as a function of TQ at the grand unification scale. It is 

immediately apparent that the fixed point behavior of TQ can be summarized in 

the form of a bound, -dQ 2 ~TQ, where EQ is evaluated at the the quark fixed 

. a- point (indicated by the dotted line in Figure 2(a)). Including the terms TL and 

Sy does not violate this bound, because they enter equations (3.2) and (3.3) with 

a negative sign. The quark fixed point gives a rigorous upper bound on the value 

of TQ at the scale tw. 

A similar analysis can be made for the lepton fixed point TL (see Figure 2(b)). 

It leads to a rigorous upper bound on TL. In the eight family case, the bounds 

on TQ and TL are given by 

TQ 5 4.1 

> 
for eight families. 

TL 2 3.6 

In the four family case, we find 

TQ 5 2.7 

TL 2 3.4 
for four families. 

(3.7) 

(3.8) 

These bounds hold at the weak scale tw. They are equivalent to the following 

mass inequalities: 
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c 
MQ2 2 (355 GeV)2 

c ML~ 6 (330 GeV)’ 
for eight families, (3-g) 

and 

c 
MQ’ 2 (290 GeV)2 

c ML~ 5 (325 GeV)2 
for four families, (3.10) 

where all masses are evaluated at the weak scale A+. For five, six or seven 

families, the results interpolate between those given above. Theories with more 

than eight families are not perturbatively unifiable (see Figure 3). Thus the 

eight-family bounds are strict upper bounds for the quark and lepton masses at 

the weak scale Mw. They are rigorous upper bounds that are independent of the 
a- 

- 

total number of families. They allow us to conclude that if no new quarks and 

leptons are found below 355 GeV, the possibility of new (perturbatively unifiable) 

standard-model families is automatically excluded. 

The bounds (3.7) and (3.8) imply more than the inequalit ies (3.9) and (3.10). 

They also give an upper bound on the mass of the lightest heavy family. If a  

theory has NH heavy families, this bound is found by replacing the sums over 

MQ~ and ML~ by 2  NH times  m Q  and mL, where m Q  and mL denote the masses 

of the lightest heavy quarks and leptons. This gives 

m Q  5 (250/a) GeV 

mL 5 (235/e) GeV . 
(3.11) 

Equation (3.11) implies that if there are any extra standard-model families, at 

least one new quark and one new lepton must be found below 250 GeV.* Fur- 

thermore, perturbatively unifiable eight-family models must contain at least one 

new quark and one new lepton below 110 GeV! 

* Except, of course, for the top quark. 
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To further illustrate the radial fixed point, and to improve the bounds in 

special cases, we now turn to two examples. In these examples we use the com- 

plete renormalization group equations (2.1). Th ese equations include the terms 

Tr (Su2) and Tr (S’E~) that we dropped in deriving equations (3.4) and (3.5). 

We shall see that for Yukawa couplings of order 0.5 (or greater), the extra trace 

terms make very little difference. For large Yukawa couplings, the bounds (3.7) 

and (3.8) on TQ tend to be saturated by the sum over all heavy quarks. 

For our first example, we consider the four-family case. We assume, however, 

that three of the families are light, so the one heavy family dominates the mass 

matrices and traces. We also assume that the fourth heavy family has negligible 

Cabibbo mixing with its three light partners. 

. -=- To follow the evolution of the Yukawas, we first set E = N = 0. This 

is entirely consistent with our previous observation that the quark fixed point is 

reached for most initial conditions. We denote the Yukawa couplings of the heavy 

up- and down-type quarks by u and d. The evolution of u and d is plotted in 

Figure 4 for a variety of initial conditions. Each line carries an arrow indicating 

the flow of t, from tx to tw. 

The first thing we note is the presence of the radial fixed point, indicated by 

the dotted circle in Figure 4 [5]. The dotted circle corresponds to TQ = 2.7, as 

given in equation (3.8). Wh en both Yukawa couplings are large, on the order 

of 0.5 or greater, the bound (3.8) is saturated in physical times. When both 

Yukawas are small, TQ never reaches the bound. And when one Yukawa is large 

and the other is small, the bound (3.8) is almost achieved-but not quite. This 

is no surprise, for when either u or d is small, equation (3.2) gives an even tighter 

bound on TQ: 

TQ E u2 2 1.6 (d = 0) . (3.12) 

This tighter bound is saturated for trajectory (a) in Figure 4. Equation (3.12) 

restricts the mass of a single extra heavy quark to be less than 220 GeV [8]. 



In Figure 5 we graph the evolution of TQ with energy for the initial conditions 

of Figure 4. We see that the fixed point is approached very rapidly. For most 

initial conditions, the radial fixed point is reached by 1012 GeV, in about 0.04 

units of time. Note that below lo5 GeV, the value of TQ at the fixed point 

gradually rises. This reflects the fact that the average coupling CQ gradually 

changes with t. The rise of TQ can be understood with the help of Figure 6, 

where we have sketched T and GQ versus energy. Above lo5 GeV, we see that 

T > GQ. In this regime, equation (3.4) implies that TQ must decrease. At about 

lo5 GeV, the two curves cross. Below that scale, T < GQ, and the value of TQ 

slowly increases. 

Finally, we discuss the leptons of the heavy fourth family. For simplicity, we 

assume that the neutral lepton is massless. In this case, equation (3.3) reduces 
. a- to the following form, 

de 52 - 
dt 

= e GE - 3u2 - 3d2 - -e 
2 1 . (3.13) 

where e denotes the Yukawa coupling of the fourth charged lepton. From our 

previous discussion we know that u2 + d2 runs rapidly to the quark fixed point 

TQ. Since ~TQ >> GE, it is clear that equation (3.13) has no fixed point. This 

is evident in Figure 7, where we have graphed the evolution of e for a variety of 

initial conditions (with ~TQ = CQ at the scale Mx). Note that below 1013 GeV, 

e runs with a constant logarithmic velocity, as expected from equation (3.13). 

For our second example, we consider two heavy families and three light fam- 

ilies. As before, we use the full renormalization group equations (2.1). Since the 

effects of weak mixing will be treated in the next section, we set all mixing angles 

to zero. Family conservation ensures that this condition is stable under radiative 

corrections. 

We define ~1, dl and 2~2, d2 to be the Yukawa couplings of the first and 

second heavy families, respectively. For the sake of presentation, we set ur = 

dr and u2 = d2 as initial conditions, and plot the evolution of && versus 

.z ..J 
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&&. Because of isospin symmetry, the conditions ur = dl and 112 = da are 

also preserved by renormalization (up to small hypercharge effects). 

The plot of && versus && is shown in Figure 8. The radial fixed point 

is indicated by the dotted circle of radius squared TQ 3 c(ui2 + di2) = 2.9. As 

expected, the fixed point is reached in physical times. Note, however, that the 

Yukawa couplings appear to converge to a smaller circle than that indicated by 

the dots. This is an illusion. What really happens is that the Yukawa couplings 

quickly run to the minimum radius, and then turn around and run back to the 

dots at time tw. As in the previous example, the Yukawas turn around because 

CQ gradually increases with time. To see how quickly the radial fixed point is 

reached, we plot TQ z c(ui2 + di2) versus energy in Figure 9. As in Figure 5, 

we see that the radial fixed point is reached very quickly. 
c 

With two heavy families, there is only one renormalization group invariant. 
- 

In the absence of Cabibbo mixing, it is given by 

1 1% (3.14) 

This constant of the motion preserves the polar angle in Figure 8. At the scale tw, 

the overall magnitudes of the Yukawa couplings are determined by the radial fixed 

point TQ. The ratio uldl/u2d2, however, is determined by the initial conditions. 

4. The Angular Fixed Point 

In this section we discuss the angular quark fixed point,* 

UtU = DfD . (4.1) 

As expected, the angular fixed point (4.1) d oes not restrict the unphysical right- 

handed Kobayashi-Maskawa matrix. This is because right-handed rotations do 

* We do not analyze the lepton fixed point since it is unstable. 
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not affect the fixed point condition. In contrast, equation (4.1) severely restricts 

the physical left-handed mixing matrix [6]. It implies that the same left-handed 

unitary matrices diagonalize UtU and DtD. I n an appropriate basis, this simply 
t says that the left-handed Kobayashi-Maskawa matrix VL G L,LD = 1. 

It is important to note that equation (4.1) implies more than the vanishing 

of the mixing angles. It also implies that each up-type quark has a down-type 

partner degenerate in mass. The mass doublets, however, do not necessarily 

correspond to the weak doublets. Barring degeneracies, equation (4.1) contains 

NF! fixed points, one for each possible pairing of the quark masses. Only one 

pairing identifies the mass doublets with the weak doublets. We shall see that 

this is the only stable fixed point. The SU(3) x SU(2) x U(1) renormalization 

group equations prefer properly paired weak doublets. 
. a- 

The standard SU(3) x SU(2) x U(1) Lagrangian does not conserve either - 
isospin or family number. The stable fixed point, however, preserves both SU(2)v 

isospin and U(1) NF family symmetry. The fixed point has greater symmetry 

than the Lagrangian itself. The SU(3) x SU(2) x U(1) renormalization group 

equations provide a new and important example of an infrared restoration of a 

global symmetry [9]. 

The angular fixed point implies that all flavor mixings and isospin splittings 

vanish in the limit t ---) 00. However, in a realistic grand unified theory, the story 

is more complicated. There might not be enough time for the mathematical fixed 

point to be reached. To investigate this question, we turn to numerical analysis 

and examine the evolution of the Cabibbo angles and isospin breaking. These are 

logically independent quantities, and there is no reason to assume that they run 

at the same rates. In fact, we shall see that the Cabibbo mixings run somewhat 

faster than the isospin splittings. 

In the remainder of this section, we examine the angular fixed point for the 

cases of one and two heavy families. These are the same examples that we used 

previously to illustrate the radial fixed point. We shall see that the angular fixed 

16 



point is approached more slowly that the radial fixed point of Section 3. 

To begin, we consider one heavy family and three light families. As before, 

we assume that the one heavy family has no Cabibbo mixings with the three light 

families. In this case the angular condition (4.1) implies that the heavy Yukawas 

u and d must be equal. The rate of approach to the angular fixed point is given 

by 

$ log (Z) = - 3 (u2 - d2) + ;g12 , (44 
where gr is the hypercharge coupling. The evolution of u versus d is shown in 

Figure 4. This figure was introduced previously to illustrate the radial fixed 

point. Note that all large Yukawas reach the radial fixed point, but very few 

of them also achieve the angular fixed point, given by u = d in Figure 4. This 

. T- can be understood by comparing equations (3.2) and (4.2), and noticing that in 

- general ]u2 - d2 ] < IGQ - T 1. The approach to the angular fixed point is shown 

in Figure 10, where we plot u/d versus u2 + d2 for a variety of initial conditions 

(withd=latt=O). I SOS m violations of order 1000% decrease to about 50% p’ 

by the time tw. The evolutions of TQ and u/d with energy are compared in 

Figure 11. 

We now turn to the case of two heavy families and three light families. As 

before, we assume there are no mixings between the heavy and light families. 

In this case, the angular fixed point reduces to three conditions. One sets the 

Cabibbo angle to zero, and the others equate the up and down eigenvalues. 

The evolution equation for the Cabibbo angle is given by [lo] 

d 3 
z sin ec = - z sin ec ~0s~ ec (d12 + h2) (1:: 1 ;:2’) 

(4.3) 

+ (U12 + u22) 

where the notation is as in Section 3. For reasonable values of the Yukawa 

couplings, the terms in parentheses tend to divide out, and the velocity of sin8c 
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is approximately proportional to the trace TQ. For heavy quarks, TQ is rather 

large, so the Cabibbo angle runs fairly quickly. 

In Figures 12 and 13 we compare the running of the Cabibbo angle to that 

of the trace TQ. In Figure 12 we see that the radial fixed point is reached for 

most initial conditions. We also see that sinBc is strongly renormalized. As 

long as there is not a misidentification of families at the grand unification scale 

(corresponding to sin 8c > l/t/z), th e 1 ow energy Cabbibo angles renormalize 

by at least a factor of two. Note that the heavier the quarks, the greater is the 

renormalization of sin 8c. The variations of sin 8c and TQ with energy are shown 

in Figure 13. Again we see that for heavy quarks, the Cabibbo angle renormalizes 

quickly, but not as fast as the trace TQ. 

a- Equation (4.3) 1 a so applies to the Cabibbo mixing between one heavy quark 

and one light quark. If ur B uz and dl >> d 2, equation (4.3) reduces to the - 
following form, 

d 3 
% 

sin& = - z sin Bc cos2 9~ TQ . 

This shows explicitly that the mixings between heavy and light quarks tend to 

vanish just as quickly as the mixings between the light quarks themselves. 

Equation (4.1) d oes not necessarily imply that Cabibbo angles vanish at the 

quark fixed point. They can also approach 7r/2. This can be seen from equation 

(4.3). If the lightest up-type quark is not predominantly the weak partner of 

the lightest down-type quark, then (ur - uz)(dr - d2) < 0, and 8c increases 

with time. This is also clear in Figure 14, where we have plotted sin6c against 

(w - w)(& - dz). D epending on the sign of the product, the Cabibbo angle 

runs either to zero or 7r/2. We see that the weak multiplet structure at the grand 

unification scale does not determine weak multiplet structure at the fixed point. 

With two heavy families, the multiplet structure at the fixed point is governed 

entirely by the mass spectrum at Mx. Up- and down-type quarks closest in mass 

run together to form properly paired weak doublets. 
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Whether the Cabibbo angles approach 0 or 7r/2 is essentially a matter of 

convention. In what follows it is most convenient to define 0c to run to 0. In 

this case, there are many fixed points, corresponding to all possible pairings of 

the mass eigenvalues . With two heavy families, there are two fixed points, one 

with 0~ = 0, ~1 = dr, uz = d2, and the other with 6~ = 0, ur = da, 142 = 

dr. The first corresponds to properly paired weak doublets, and the second to 

maximal mixing. We have seen that the first fixed point is stable, and that the 

second is not. A similar analysis can be carried out in the general case of NF 

total families. Barring degeneracies, there are NF! fixed points, related to each 

other by permutations. Expanding the Kobayashi-Maskawa matrix around unity, 

VL = 1 + 0, it is easy to show that 

d@ij - = 
dt 

(4.5) 
+ (Ui2 + “j2) ($ 1 9:)) , 

This equation implies that the only stable fixed point is the one with properly 

paired weak doublets. All the other fixed points are unstable. 

Our final topic will be that of isospin breaking in the case of two heavy 

families. The evolution of ui/dj is as follows [lo], 

- dj2) + cos2 Bc (uj2 - di2) 

+ sin2 ec (ujt2 - dit2)} + i 91” , 
(4.6) 

where i’ # i and j’ # j. In Figure 15 we plot ul/dl for a variety of initial 

conditions. As before, we see that the isospin breaking renormalizes subtantially 

between the grand unification scale MX and the weak scale Mw. 
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5. Fixed Points and Initial Conditions 

In this section we illustrate the role played by the initial conditions in deter- 

mining the low energy spectrum of a grand unified theory with NH heavy families. 

We assume that the theory has NH heavy quark doublets, no Cabibbo mixings, 

and we neglect all lepton masses. This system is completely characterized by 

~NH diagonal Yukawa couplings ui and d;, where i = 1,. . . , NH. (The vanish- 

ing of the Cabibbo angles at all energies is guaranteed by family conservation.) 

In this case, the evolution equations (2.1) reduce to 

d 
iit ui = ui 

Gu _ T _ ; (ui2 - 

(5.1) 

. a- 
- T - ; (di2 - ui2) 

- where T and Gy are given in (2.2). In the usual approximation GU = GD = GQ, 

equations (5.1) imply 

; log z = - 3 (ui2 - di2) . 
a 

The radial fixed point condition (2.4) is given by 

3 2 (z&i2 + di2) = G, , 
i=l 

while the angular fixed point condition (2.5) is simply 

ui = d; . 

Equation (5.2) admits NH - 1 conservation laws, 

; log f$i = 0, 
j j 

where no sum on i or j is implied. 

(5.3) 

(5.4) 

(5.5) 
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At the fixed point (5.3) and (5.4), the 2 NH low energy Yukawa couplings are 

determined by the NH + 1 hxed point conditions, 

6 5 qi2 = CQ, 
i=l 

together with NH - 1 initial conditions 

(5.6) 

a- 

_ Here u;’ and die are the 2 NH initial Yukawa couplings at the scale Mx. Com- 

bining (5.6) and (5.7), one can solve for the low energy spectrum in terms of the 

initial conditions ui” and die, as well as the effective gauge coupling -d,: 

‘Iii CQ . (5.8) 

Equation (5.8) gives the full low energy spectrum of a grand unified theory with 

NH heavy quarks and no Cabibbo mixings. It is valid to the accuracy to which 

the fixed point is reached. 

6. Light Fermions in the Presence of Heavy Families 

For our final topic we study the renormalization of light fermions in the pres- 

ence of NH heavy families. We assume that there are no Cabibbo mixings be- 

tween the light and heavy generations. This assumption is physically reasonable 

in light of the results of Section 4. 
1 ..I 
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Let u and d denote the matrices of the Yukawa couplings of the light up- and 

down-type quarks. They obey the following evolution equations, 

;u = u(GU - T] 

id = d[GD - T], 

where T is defined in (2.2). In equation (6.1) we have neglected the light fermion 

contributions S, and Sd since they are much smaller than Gy and T. To a very 

good approximation, 2’ is just a trace over the heavy families. It does not depend 

on the light Yukawas. In this case, [ti,u] = 0 and [d, d] = 0, and it is easy to 

solve for u and d, 
E 

t 

u(t) = u(0) exp dt’ (Gu - T) 
J 
0 

(6.2) 
d(t) = d(0) exp 1 dt’ (GD - T) . 

0 

In a similar way, we find 

t 

e(t) = e(0) exp 
J 

dt’ (GE - T) . (6.3) 
0 

The exponentials in (6.2) and (6.3) are simply numbers, while u, d and e are 

matrices. This implies that the Cabibbo mixings between light fermions and the 

mass ratios Ui/Uj, di/dj do not get renormalized. The Cabibbo mixings and the 

mass ratios retain their initial values all the way down to the weak scale Mw. 

Equation (6.2) 1 a so implies that the ui/dj remain (essentially) constant. Their 
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renormalization is given by 

tw 
Ui ui (0) 
6 = dj(0) exp / 

dt’ (Gu - GD) . 
0 

Since GU E GD, the ratios barely run. In contrast, the light quark-to-lepton 

mass ratios renormalize significantly. Their evolution equations take the following 

form, 

tw 
Ui ui (0) -I- 

ej Co) 
exp 

ei / 
dt’ (Gu - GE) 

0 

4 d;(o) tw -=- 
ei toI 

exp 
ei / 

dt’ (GD - GE) . 
0 

Note that all the ratios renormalize by the same amount. This renormalization 

does not depend on the spectrum of heavy families; it only depends of the total 

number of families through the gauge couplings Gy . Theories with more heavy 

families give larger ui/ej and di/ej renormalizations. In the case of four families, 

we find that the quark-to-electron mass ratios renormalize by a factor of 2.3 

(between tx and tw). With eight families, we find that the factor increases to 

about nine. 

It is interesting to compare the evolution of light fermions in the presence and 

absence of heavy families. When heavy families are present, the evolution of the 

light quarks is controlled by their heavy partners. The light quarks first track the 

heavies, and then all quarks stop running when the radial fixed point is reached. 

The leptons, however, never stop running. Their masses decrease continuously 

with energy. This behavior is illustrated in Figure 16(a) for the case of one heavy 

family. Note that the light-to-heavy quark mass ratio remains constant with time, 

and that the lepton evolves continuously. If there are no heavy families, the story 

is very different. The leptons evolve slowly because of their small SU(2) x U(1) 
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couplings. The quarks, however, renormalize significantly because of their strong 

SU(3) color interactions (111. The evolution of a typical pair of light quark and 

lepton Yukawas is shown in Figure 16(b). A s expected, the lepton stays constant, 

while the quark increases by about a factor of three. Note, however, that the 

quark-to-lepton mass ratios renormalize identically in the two figures. They 

depend only on the number heavy families through the gauge couplings Gy. 

7. Conclusions 

In this paper we have studied the renormalization of heavy quark and lepton 

masses. We have made two fundamental assumptions. The first is that of a 

SU(3) x SU(2) x U(1) d esert extending from the weak scale Mw to the grand 
.s- unification scale Mx. The second is that of perturbative unification. We assume 

- that perturbation theory is valid between Mw and Mx. This means that all 

gauge and Yukawa couplings must be 5 10 throughout the entire SU(3) x SU(2) 

x U(1) desert. 

We have shown that the above assumptions lead to strict bounds on the quark 

and lepton masses, 

c Ms2 2 (355 GeV)2 

(7.1) 

c ML~ 2 (330 GeV)’ . 

These bounds imply that theories with NH heavy families must have at least one 

quark and one lepton of mass less than 250/a GeV. We have also demon- 

strated that the mixing angles among heavy families (as well as between heavy 

and light families) tend to be small. This implies that some heavy quarks should 

have relatively long lifetimes. Finally, we have also shown that isospin breaking 

tends to be small in the heavy quark sector. 
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FIGURE CAPTIONS 

1. The evolution of 2’~ and TL with t, for NF = 8 families and various initial 

conditions. The arrows indicate the flow of increasing t. The dotted lines 

denote the radial quark and lepton fixed points. 

2. (a) The trace TQ at Mw as a function of the trace TQ at Mx, for NF = 8 

and TL = 0. The dotted line denotes the radial quark fixed point. For 

TQ(Mx) > 0.1, the fixed point is reached in physical time. 

(b) TL(Mw) as a function of TL(Mx), for NF = 8 and TQ = 0. 

3. The QCD coupling ~QCD as a function of energy for NF = 4, 8 and 9. For 

NF = 9, CYQCD blows up at 10” GeV. 

4. The evolution of the Yukawa couplings u and d with energy for one heavy 

family and NF = 4. The radial quark fixed point is denoted by the dotted 

line. Trajectory (a) shows the evolution when one quark is heavy and the 

other very light. Trajectory (p) g ives the evolution when both quarks are 

light. Neither (a) nor (p) reach the fixed point in physical time. 

5. The evolution of TQ = u2 + d2 with energy for the initial conditions of 

Figure 4. The dotted line corresponds to the quark fixed point. 

6. Typical evolution of T and GQ for NF = 4. The arrow indicates the weak 

scale Mw. At energies far below Mw, the trace T tracks the gauge couplings 

GQ (see Ref. 4). 

7. The evolution of the Yukawa coupling of the charged lepton in a single 

heavy family. We have set NF = 4 and all neutrino masses to zero. Note 

that below 1013 GeV, e evolves with a constant logarithmic velocity. 

8. The evolution of the quark Yukawa couplings for two heavy families with 

NF = 5 and no Cabibbo mixings. At M = Mx, we have set ur = dr and 

212 = da. The dotted line denotes the radial quark fixed point. Note that 

the evolution preserves the polar angle 8. 
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9. The evolution of TQ = C(ui2 + di2) for the initial conditions of Figure 8. 

The dotted line indicates the radial fixed point. 

10. The evolution of the isospin splitting u/d and of the trace TQ = u2 + d2 for 

one heavy family and NF = 4. We have set d = 1 at the scale Mx. The 

dotted lines indicate the radial and angular quark fixed points. Because of 

the choice of initial conditions, the radial fixed point is not quite reached 

in physical times. 

11. (a) The evolution of u/d with energy for the initial conditions of Figure 10. 

The dotted line indicates the angular fixed point. 

(b) The trace TQ for the initial conditions of Figure 10. 

12. The evolution of the Cabibbo angle and TQ for two heavy families and 
c- NF = 5. At the scale Mx we have taken uz = d2 = 2ur = 2dr. The radial 

fixed point is indicated by the dotted line. Trajectory (cu) corresponds to 

the case of misidentified weak doublets. Trajectory (/3) corresponds to a 

relatively small trace TQ. We see that the radial fixed point is reached in 

physical time, but that the angular fixed point is not. 

13. (a) The evolution of the Cabibbo angle with energy for the initial conditions 

of Figure 12. Trajectory (p) h s ows that a small trace induces a small 

renormalization of sin 8~. 

(b) The trace TQ for the initial conditions of Figure 12. 

14. The Cabibbo angle sinBc for NF = 5, two heavy families, and ur = dl = 2, 

d2 = 1 at the scale Mx. The evolution of sin6c is such that the weak 

doublets at MW are properly paired, independent of their initial conditions. 

15. The isospin splitting ul/dl as a function of energy for NF = 5, sin8c = 0 

and u2 = d2 = 2, dl = 1 at the scale Mx. The dotted line indicates the 

angular fixed point. 

16. (a) The evolution of quarks and leptons as a function of energy for NF = 4, 

with u = d at the scale Mx. The solid lines denote the evolution of the 

1 ..1 
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third and fourth families, and the dot-dashed line indicates the evolution 

of a typical charged lepton. Note that the light quark Yukawa tracks that 

of the heavy quark and that the lepton renomrmalizes with a constant 

logarithmic velocity. 

(b) The evolution of a typical quark and lepton with NF = 4, u = d and 

no heavy families. The lepton barely runs. The light quark-to-quark ratio 

renormalizes by the same amount as in (a). 
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