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ABSTRACT 

We use topological methods to prove the existence of a nontrivial static 

solution in the vacuum sector of the gauged Skyrme model. We then search 

for a purely strong-interaction saddle point by computing the interaction energy 

qf a Skyrmion-anti-Skyrmion pair. 
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1. Introduction 

Classical solutions to nonlinear field equations can provide important insights 

into the nonperturbative regimes of quantum field theory. Recently Taubes has 
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developed a powerful new tool for finding static classical solutions.’ His method, - 

although topological in origin, gives solutions that are distinct from the minimum 

energy configurations in the topological sectors to which they belong. 

Taubes used his technique to prove the existence of a static saddle point 

solution in the SO(3) Yang-Mills-Higgs model. His solution can be thought of as 

a monopole-antimonopole pair in unstable equilibrium. ’ Subsequently, Manton 

used the same method to study the existence of saddle points in Weinberg-Salam 

theory.2 The purpose of this report is to call attention to an analogous solution 

in the chiral soliton, or Skyrme, model.3 

The quantum mechanical meaning of unstable classical solutions is an open 

theoretical question. If our vacuum solution is physically significant, it could be 

relevant to the low energy pp system. The Skyrme model opens the intriguing 

possibility that present-day experiments might shed some light on the question 

of saddle point quantization in quantum field theory. 

This paper is organized as follows. In Sections 2 and 3 we review the gauged 

Skyrme model and discuss the topology of the vacuum sector. In Section 4 

we prove the existence of a nontrivial static solution in the vacuum sector of 

this model. The existence of our solution relies crucially on the presence of the 

electromagnetic interactions. In Section 5 we compute the interaction energy of 

aSkyrmion-anti-Skyrmion pair. We use this result to search without success for 

a purely strong-interaction saddle point solution. 
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2. The Skyrme Model 

The Skyrme model is a field theoretic realization of the observation that, 

in the large N, limit, QCD baryons behave as though they are solitons in a 

phenomenological meson fie-ld theory. 4’5 The model is obtain’d by augmenting 

the standard nonlinear sigma model for NF quark flavors by a particular four- 

derivative interaction,3’6 

F2 
L: = L Tr (a,UaPUt) + 

16 
& Tr[(d,U)Ut, (%3)ut12 y 

where U(z) E SU(NF) and U(z) ---) 1 as (Zc’( -+ 00. Since za[Su(N~)] = 2, static 

configurations U(Z) are classified by their topological charge 

Q= J d3z Jo, 

where Jp is the topological number current 

Jp = I P’pu Tr [ Uti3vU Utd,U Utc3,U] . 
24~~ 

(2) 

(3) 

The topological charge Q has been recently identified with the baryon number 

B.7’8 In what follows we restrict our attention to NF = 2. We reserve a comment 

on the case NF > 2 for our concluding remarks. 

The lowest energy configuration in each nontrivial topological sector is a 

static soliton solution. The lowest energy solution in the B = 1 sector is of the 

form 

Us(Z) = exp(iFs(r) 2.3, P = /?!I , (4 

where Fs(r) solves the equations of motion, with Fs(0) = 7~ and Fs(co) = 0. 

Gantization of this solution, the Skyrmion, gives a reasonably accurate descrip- 

tion of the static properties of the nucleon and delta.g Small oscillations about 
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this solution can be used to analyze the strong interaction dynamics of a nucleon 

and pions at low energies. 10 

The Skyrme model can be extended to include electromagnetic interactions by 

gauging a U(1) subgroup of -diagonal SU(2)v .ll The gauged Skyrme Lagrangian 

takes the following form, 

F?? C = 16 Tr (DpUDrUt) + & Tr [(D,U)U+, (DvU)Ut]2 - ~Fp,FpY 

+e 
167r2 

d‘vJ'aAp TrQ (&UU~C~,UU~~,UU~ +U~il,UU~il,UU~t3~U) 

+ ~P'pg(tlpA,,)Ap Tr(Q2 i3,UUt+ Q2Utc3,U 
87r2 

(5) 

where DpU = a,U- ieA,[Q, U] and Q = diag($, -i). The last two terms in L: 

describe anomalous pion-photon interactions. 

In the presence of electromagnetism, the baryon number current (3) is not 

gauge invariant. The unique conserved gauge invariant current is given by 

K’1 = 1 
24~~ 

d‘upu Tr[ UtB,U UtB,U UtB,U 1 

+ a,uu+) 1 
+- 

24~~ 
~~~~~~~~~~~~~ Tr Q (UtaJ7 

(6) 
I - 

Equation (6) d’ff 1 ers from (3) by a total derivative, so that the topological charge 

Q of an SU(2) configuration is unchanged by the presence of a nonsingular elec- 

tromagnetic field. We will consider only nonsingular configurations, and once 

again the space of static configurations breaks up into distinct topological sec- 

tors. 
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Because we are examining nonsingular static configurations, it is convenient 

to work in the Coulomb gauge, 9. A’ = 0. For such configurations, the Coulomb 

condition completely fixes the local gauge freedom. Furthermore, the equation 

of motion for A0 is a constraint. This allows one to solve for A! in terms of the 

dynamicallvariables i and U. To leading order in e, A0 is just the Coulomb 

potential produced by the topological charge density Jo($), 

J JOEJ A’(4 = ; d3y’ ,z _ y’l . (7) 

All configurations of topological charge Q have electric charge eQ/2. 

After eliminating A’, it is easy to find the potential as a function of the 

unconstrained variables U and A’. The extrema of this potential are static solu- 

tions to the full equations of motion, despite the fact that the Hamiltonian and 

the potential are nonlocal functionals of the unconstrained fields. In the Coulomb 

gauge, to order e 2, the potential energy is 

E[U,i] = d35 J [ Fi 16 Tr (D&J D@) - & Tr [(DiU)U+, (DiU)Ut]” 

(8) 

+ :Fij Fii + G Jo(Z) J d3y’ ,i”“, + O(e’)] . 

To lowest order in e, the minimum of E in the B = 1 sector is just the static 

Skyrmion solution (4). The radial function Fs is known numerically; its essential 

features are a rapid falloff beyond a distance of order (aF,)-’ from the origin, 

and the asymptotic behavior9 Fs(r) + 8.6/(aF,r)2. The energy of this solution 

E[Us,/i = o] = 2 (G[Us]- + S[Us]) = 36.4 z = Es , (9) 
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where 

G[U] = z J dsx Tr(&U &Ut) 

VI = - &J d3x Tr[(&U)U+, (i3$J)Ut]2 . 
I 

c - e 

PO 

To-higher orders in e, the lowest energy solution in the B = 1 sector remains 

essentially the Skyrmion (4). Symmetry considerations require that .&J(Z) = 0. 

Electromagnetic effects give a small Coulomb contribution to the energy (8). The 

Coulomb contribution slightly deforms Fs(r) and leads to a small change in the 

self-energy of the Skyrmion. This deformation will not affect our analysis, and 

we shall neglect it in what follows. 

3. Topology of the Vacuum Sector 

To find a nontrivial vacuum solution, we shall examine the topology of con- 

figuration space in light of the recent work of Taubes and Manton.lP2 We shall 

use the term configuration space to denote the set of all finite energy static field 

configurations U (2) and i(Z). Because its topology does not depend on the non- 

singular electromagnetic field i(Z), configuration space breaks up into disjoint 

subspaces labelled by the topological charge associated with zs(SU(2)). We shall 

restrict our attention to the vacuum, or zero baryon number, sector. 

Let us begin our discussion by considering a path in configuration space that 

begins and ends at the vacuum, and depends continuously on a parameter 7, 

0<7~7r: 

U(~,T) : U(Z,O) = U(if,*)= 1, U(~,T) + 1 as 121 -+ 00 . (11) 
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This set of maps of S3 + S3 provides a single map of S4 -+ S3 and falls into 

one of the homotopy classes of z~q(SU(2)) = 22. We see that there are two types 

of loops through configuration space, beginning and ending at the vacuum, and 

never leaving the zero baryon number sector: trivial, or contractible, loops, which 

-can be continuously deformed to the vacuum; and nontrivial, or noncontractible, 

loops, which cannot be so deformed. 

The significance of the noncontractible loops can be understood with the 

help of a simple example: the two-dimensional torus. On the torus, there are 

two classes of loops, as shown in Figure 1. The paths LO and L1 are, respectively, 

contractible and noncontractible loops, beginning and ending at the point p. 

Now, standard results of Morse theory relate the critical points of a smooth 

function to the topology of the manifold over which it is defined. The archetypal 

example is given by the height function on the torus, with critical points p, q, r 

and s. The existence of the minimum, at p, and the maximum, at s, depends 

only on the compactness of the manifold. The saddle points at q and r, however, 

are contingent on the torroidal topology, and can be inferred from the existence 

of the noncontractible loops. For example, the height of the saddle point at q can 

be found by minimizing, over the set of all noncontractible loops, the maximum 

height attained on each 10op.l~ 

Returning to the Skyrme model, we define a “height function” - the energy 

functional E[U, A] - on the manifold of the vacuum sector. As we have seen, 

this space has noncontractible loops, along which we can compute the maximum 

value attained by the energy functional. By minimizing this maximum E over 

all such loops, we might expect to find a configuration for which E is stationary. 

Such a solution would have zero topological charge, yet have E > 0. 
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There is, however, a potential loophole in this procedure. For the infinite- 

dimensional manifold encountered in field theory, it is not at all clear that the 

“mini-m&’ procedure converges. Figure 2 illustrates this possibility for a non- 

compact two-dimensional manifold; although there are noncon&ractible loops, no 

sequence of such loops with decreasing maximum heights converges to a saddle 

point. 

Taubes investigated the difficulties arising from noncompactness in the SO(3) 

Yang-Mills-Higgs model and managed to rigorously generalize, and prove the con- 

vergence of, the mini-max procedure that we have described. Although the details 

of his proof are technical, Taubes found that the convergence issue has a clear 

physical interpretation: one must ensure that the mini-max procedure converges 

to a new static solution, rather than to a soliton-antisoliton pair infinitely far 

apart. In the next two sections, we will exploit this physical picture to analyze 

the convergence problem for the Skyrme model. 

4. Electromagnetic Saddle Points 

In this section we will deduce the existence of an electromagnetic saddle point 

solution in the gauged Skyrme model. To do this we shall first discuss the con- 

vergence of the mini-max procedure from a physical point of view. The mini-max 

procedure relies on noncontractible loops in the vacuum. These loops are a famil- 

iar feature of the SU(2) Skyrme model; they permit the soliton to be quantized as 

a fermion. 7J3 For this application, zd(SU(2)) distinguishes trivial from nontrivial 

field configurations in compactified spacetime. Nontrivial field configurations are 

homotopically equivalent to the following history: from the vacuum, moving for- 

ward in time, a soliton-antisoliton pair is extracted and separated; the soliton is 
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then rotated by 27r relative to the antisoliton; finally, the pair is brought together 

back and annihilated. The field which describes this process obeys U(Z, t) + 1 

for either 131 + 00 or t --) foe and lies in the nontrivial class of rd(SU(2)) by 

virtue of the 27r rotation. Evidently,. a twisted field of this sort is an example of 

a noncontractible loop, once t is identified with the compact parameter r. 

To determine whether a classical solution must exist, we need only explore 

the convergence of the mini-max procedure. Convergence, in turn, depends only 

on the behavior of the energy functional at large soliton-antisoliton separations. 

If the energy increases with separation for all soliton-antisoliton orientations, the 

minimax procedure must converge. If the energy decreases for some orientations, 

one cannot be sure that a new solution does, in fact, exist. In this case it is pos- 

sible that mini-max procedure gives a sequence of configurations that approach 

a Skyrmion-anti-Skyrmion pair infinitely far apart - a trivial and uninteresting 

result. We shall denote this limiting solution by U,. 

Therefore, we must investigate the behavior of the energy functional in the 

vicinity of U,. Configurations in this neighborhood are accurately parametrized 

by the distance between the centers of the Skyrmions, their relative isospin ori- 

entation, and an overall orientation that is irrelevant to classical physics in the 

static limit. This leads us to consider fields of the form 

u&z) = Us(S- &) B(p) C&i!- S2) B+(p) (12) 

where B(s) = exp(ap’-?/2) and Us(Z) is the Sky rme solution. For large d = I& - 

Z2[/2, distortions of the Skyrmion field can be neglected - they give subleading 

corrections to the energy (8). 
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In the absence of electromagnetism, the interaction of a well-separated Skyr- 

mion-anti-Skyrmion pair is governed by one pion exchange. For massless pions, 

we shall show that the potential falls as l/d3. Therefore the Coulombic interac- 

tion between the oppositely charged solitons dominates-for sufficiently large d. 

-This interaction is attractive and independent of isospin orientation. Since the 

long-range force is attractive for all isospin orientations, the mini-max procedure 

must converge to a nontrivial classical solution. 

5. Strong Interaction Saddle Points 

The existence of the saddle point found in Section 4 relies essentially on elec- 

tromagnetic interactions. Therefore, one expects the saddle point solution to 

describe a Skyrmion and an anti-Skyrmion quite far apart in unstable equilib- 

rium, with the weak, attractive Coulomb force balanced by a repulsive force. It is 

unlikely that such a configuration will be important in pp annihilation. A purely 

strong interaction saddle point would be of greater significance. 

The asymptotic strong interaction of a Skyrmion-anti-Skyrmion pair is not 

attractive for all orientations. As d tends to infinity, Us3 approaches U,, and 

E[um,Lz = o] = 2E s, independent of the orientation p’. From the asymptotic 

falloff of Fs (r) , one can work out the leading correction to E for finite d: 

2p 3(/L&l 
z[Us,g,d=O] = 2Es - 2(8.6)(no+ns)sin z (2aF,d)3 + ~((aF,d)-4) , 

(13) 
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where 

and KG + rcs = 11.2 (F,/a). Th e I o e d’p 1 f orm indicates that the expansion (13) 

recovers one pion exchange. For b .d^ > l/a and /3 # 0, the long range potential 

is attractive, and for p-2 < l/d and /3 # 0, the long range potential is repulsive. 

Therefore one cannot infer the existence of a strong-interaction saddle point from 

asymptotic arguments alone. 

The convergence of the mini-max procedure can be established by exhibiting 

a noncontractible loop on which the maximum energy is less than 2Es. For 

simplicity, we first consider the static configurations of equation (12)) with fi = 2. 

Asymptotically, /? = d^ is the most attractive orientation, Note, however, that the 

asymptotic interaction vanishes to order l/d3 for p = 0. 

The energy of such static configurations can be determined numerically for 

all values of ,f3 and d. In Figure 3 we have plotted the energy surface for 0 2 

d 2 00 and 0 5 /3 5 27r. As d + 00, the energy approaches 2Es = 72.8(F,/a), 

independent of the orientation /3. The vacuum, at d = 0 and /3 = 0, or at d = 0 

and ,0 = 27r, has energy zero. For large d and p # 0, there is a weak attraction, 

reflecting one pion exchange. Note that the energy surface is not symmetric 

about the line p = r, although ,0 = 0 is equivalent to /3 = 27r. Noncontractible 

loops run from d = 0, /3 = 0 to d = 0, /I = 27r. 

As we see in Figure 3, the energy along ,B = 0 decreases monotonically from 
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aF,d = 3 to uF,d = 00. Therefore, the mini-max procedure does not converge 

within this restricted subspace. This is indicated by the noncontractible loop of 

Figure 3. Its maximum energy is at p = 0, d = 00, where E = 2Es. No other 

noncontactible loop has a lower maximum energy. The configuration approached 

%y applying mini-max within this limited space is that of a Skyrmion and an 

anti-Skyrmion infinitely far apart, with relative orientation /3 = 0. I4 

Although the configuration space we have studied in this section does not 

contain a loop with maximum energy less than 2Es, it is possible that such a loop 

might exist. If so, it would indicate the existence of a strong interaction saddle 

point solution that might be related to the broad resonance C(1620) observed at 

LEAR. l5 

Along the line d = 0 it is easy to extremize the energy with respect to 

variations in F(r). It turns out that the optimal energy is given by a simple 

resealing of Fs, 

F(r) = Fs(r(dS/ sin $)-l), 

At p = K, U(Z) takes the following form, 

(15) 

(16) 

The energy of this configuration is stationary against variations in p, d and F. 

However, contrary to a recent claim in the literature,16 (16) is not a solution to 

the full equations of motion. The configuration (16) satisfies the equations of 

motion only in the fi 0 55 = 0 plane. 
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With the help of Figure 3 one can get a rough idea of the role of electro- 

magnetism in producing the saddle point. To do this one must alter the poten- 

tial of Figure 3 by including the long-distance Coulomb attraction between the 

S kyrmion-ant i-S kyrmion pair, < - e 

- 
n 

AE=-$. (17) 

If this attraction is balanced by the repulsive component of the strong interaction, 

then one expects a saddle point in the vicinity of p = 0, 2d 2 16 (uF,)-’ N 5 

fm, with energy on the order of 2Es N 1.7 GeV.17 

In conclusion, we have shown that a classical saddle point solution exists in 

the vacuum sector of the gauged Skyrme model. The existence of the solution 

does not depend on which higher-derivative terms one adds to the basic sigma 

model Lagrangian. Note that our result does not depend on the restriction 

NF = 2. A solution for NF = 2 can always be embedded in a model with NF > 2 

at the expense of possibly introducing extra unstable directions. 
18 
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FIGURE CAPTIONS 

1. Critical points p, q, r, and s of the height function on the two-torus. Lo and 

Lr are, respectively, contractible and noncontractible loops. 
e 

2. A non-compact manifold with noncontractible Loops but no saddle point. * 

3. Equipotentials of the static energy E[U], with e2 = 0, for the Skyrmion- 

anti-Skyrmion pair given in equation (12). Energy is in units of F,/u. The 

separation d = IZr- 5 l/2 is half the distance between the Skyrmion centers 

and is given in units of (uF,)-’ g 0.3 fm. We have set b = (Zr-&)/IZr-&I 

so that /3 is the relative orientation of the Skyrmions about the axis joining 

their centers. The broken line represents a noncontractible loop along which 

the maximum energy attained is a minimum for this restricted space of 

configurations. 
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