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ABSTRACT 

The physics of charge fractionalization is studied using a simple and physical 

approach. The normal ordered charge is related to the Atiyah-Patodi-Singer 

invariant, and the physical interpretation of the spectral asymmetry is clarified 

in the presence of a continuous spectrum. By introducing the quantity B(E) 

which is a ratio of Jost-type determinants we relate the asymmetry to the phase 

and zeros or poles of B(E). The fractional part of the charge is determined by the 

high energy behavior of the phase and the integer part is related to the spectral 

flow. We give simple examples showing that only the fractional part of the charge 

is a topological invariant; the integer part is determined by local properties of 

the background fields. 
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1. Introduction and physical motivation 

Since the original paper by Jackiw and Rebbi’ where it had been noted 

that fermions interacting with solitons give rise to fractional charge states, this 

interesting effect has attracted attention from several different disciplines. 

In condensed matter physics it has been realized that certain quasi-one- 

dimensional materials have a broken (discrete) symmetry ground state and con- 

sequently solitonic excitations2 Orbital electrons are coupled to the solitons 

giving rise to fractional charge states much in the same way as in the Jackiw and 

Rebbi example. 3 

In particle physics it has been recognized that fractional quantum numbers 

arise in several situations in which fermions are coupled to external background 

fields with non-trivial behavior at spatial infinity (solitons or kinks, monopoles). 

It has been suggested that the physics of fractionization can be thought of 

as a “vacuum polarization” effect, indeed the background fields distort the Dirac 

sea in such a way that the ground state (“vacuum”) in presence of this external 

fields has very unusual features. An intuitive (and rough) argument for this 

picture is the following: suppose a soliton-antisoliton pair (S’S) is created; this 

configuration has trivial behavior at infinity. However, as the pair is separated, 

the electronic states are rearranged, the local density of states is modified, and 

states “pile up” or “thin out” (controlled by the phase shift) near the region 

where the fields are rapidly changing. As the SS separation becomes infinite and 

we only “see” one soliton for example, we find that charge has been accumulated 

near its center, (this also happens near S). Of course the total charge of the S’S 

system is an integer. It has been proven that in the limit when the S’S distance 

is very large, the charge measured near each one of them is an observable. 4-6 
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When the Hamiltonian for the fermions interacting with an external field 

has a charge conjugation symmetry a simple counting of states argument yields 

the fractional charge result.3 Goldstone and Wilczek’ have introduced a 

method that allows one to compute the induced vacuum charge for general inter- 

actions; this method involves an adiabatic approximation (slowly varying fields). 

The results found with this method have been reproduced using very different 

approaches, among them exact solution of the scattering problem for certain 

solitons profile,8’g anomalous commutators techniques, “J “twisted” boundary 

conditions, 12 etc. 

From a more mathematical point of view, the fractional charge has been re- 

lated to index theorems and concepts in topology. 13-15 Topological methods have 

been used to compute the induced vacuum charge in different dimensionalities 

for different topological background fields. ““’ 

This paper is a modest attempt to try to understand the underlying physics 

of fractional charge in one space dimension with simple techniques and to try 

to offer a unifying yet simple view of the phenomena involved. We will use a 

simple counting argument. The main observation is that static background fields 

produce a distortion in the density of states in the positive and negative energy 

continuum (conduction and valence band) and may also induce the formation of 

bound states. l8 In Section 2 we show by keeping account of the states that the 

ground state charge (obtained by filling all the negative energy states) is related 

to the asymmetry in the spectrum (spectral asymmetry) and a quantity called v 

or Atiyah-Patodi-Singer (A.P.S.) invariant.14”’ 

As a fundamental measure of the asymmetry of the spectrum of H we intro- 

duce the quantity 
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B(E) = det s 
( > 

(1.1) 

with B(0) = 1. That this is a simple but interesting measure of the spectral 

asymmetry (and hence of 7) can be seen as follows: suppose the spectrum of H 

is discrete and define the ordered positive and negative eigenvalues to be AZ and 

-XT, respectively. Then 

k,L=l 
P-2) 

Clearly if the spectrum is symmetric then B(E) = 1. If the eigenvalues are not 

symmetric but there are as many positive eigenvalues as negative, then L = K 

and 

1 
- 
27rri f 

dE&thB(E) = L-K 

vanishes, where the integral is around a closed contour 2o enclosing only the 

positive real axis. In the next section we will reconsider the above properties 

when H possesses a continuous spectrum. 

It will be proved that B(E) is a ratio of well-defined Jost functions, 21 which 

are, in turn, simply related to the transmission coefficients of an associated scat- 

tering process. From B(E), the odd part of the density of states can be computed, 

leading to a simple evaluation of r]. 

In Section 3 we evaluate B(E) in some special cases in which the existence of 

an operator that maps positive energy states onto negative energy ones ensures 
1 .  

the topological invariance of B(E). 
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In Section 4 we compute B(E) in two examples where the aforementioned 

operator does not exist. In this section we offer examples of the concept of 

spectral flow (energy levels crossing zero) and how it is related to the integral 

part of the charge. We learn that the fractional part is related to the high energy 

behavior of phase shifts. We also argue that in general B(E) is not a topological 

invariant, and that only q is invariant. We are surprised that seemingly general 

discussions of this problem using topological methods have missed important and 

physical features exposed in our examples. 

Finally in Section 5 we analyze the general case in view of the features learned 

from the examples of Section 3 and 4, and summarize our conclusions. 

2. Ground state charge, spectral asymmetry and Jost functions 

As promised in the introduction, in this section we relate the ground state 

charge to the spectral asymmetry of Atiyah-Patodi-Singer (A.P.S) the v invariant 

of the Dirac Hamiltonian. 19 

The basic observation is that the topological background fields distort the 

local density of states, however the total number of states remains constant. The 

ground state (vacuum) charge is defined as 

Q = 
/ 

’ [p’(E) - p’(E)] dE = 1 A@) dE (2.1) 
-CO --oo 

where p’(E) (p’(E)) is th e d ensity of states in the presence (absence) of back- 

ground fields (soliton). This definition of the charge is properly normal ordered. 

We shall assume there are no E = 0 states (we can always add a parameter 

to the Hamiltonian to achieve this situation and study the limiting behavior as 
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this parameter goes to zero). Suppose that there are N-(N+) bound states of 

negative (positive) energy and that the continuum starts at the threshold energy 

ET. The ground state charge obtained by filling all the negative energy states is 

-ET 

Q=N-f 
J 

Ai@) dE P-2). 
--oo 

The background fields modify the density of states in the positive and negative 

continuum. If the Hamiltonian has a charge conjugation symmetry the density of 

continuum states is equal for positive and negative energy. However, in the most 

general case when there is no charge conjugation symmetry, the density of states 

for positive and negative energy are no longer equal. There is an asymmetry in 

the spectrum and we write:18 

-ET 

/ 

NB Ap(E) dE = -2 + A (a) 
-00 

NB=N++N-, (2.3) 
00 

/ 
Ap(E) dE = -T - A (4 

ET 

where A is a function of the charge conjugation symmetry breaking fields in the 

Hamiltonian. Clearly the sum of (2.3a) and (2.3b) is -NB by conservation of the 

number of states. Combining (2.2) with (2.3a,b) we obtain 

Q = f [ 1 Ap(E) dE - JAp(E) dE]. . 
-00 0 

(24 

In the free case in which (the external fields are constant) p’(E) = p”( -E) and 
. ~) 
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therefore 

Q = -; j$(E) - p(-E)] dE = - /-iaa(E)dE 

0 0 

(2.5) 

where Podd (E) is the odd part of the density of states. 

We recognize that the spectral asymmetry (A.P.S. invariant) 14’lg is given by 

p(E) - p(-E)] = c skn(En) 
0 Em#O 

(2-6) 

and therefore 

Q=-fq. (2.7) 

The most general Dirac Hamiltonian for fermions interacting with external static 

background fields in one spatial dimension is 

(2.8) 

where the o’s are the usual Pauli matrices. Since the semiclassical approximation 

amounts to solving this Hamiltonian and filling up all the negative energy states 

to define the vacuum, we would like to understand the properties of the ground 

state charge and its relation to the topology of the soliton fields by studying 

general properties of the spectrum. This is achieved by introducing the resolvent 

of the Hamiltonian 

G(E) = Tr & w-4 

where the trace is over spin and spatial indices. The density of states is related 
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to G(E) by 

P(E) = & [G(E + iv) - G(E - iv)] . (2.10) 

Writing G(E) in terms of its even G, and odd Go parts, we find 
r - e 

Podd(E) = +%@) . (2.11) 

Finally we write the even part of the resolvent in terms of the B function intro- 

duced in the previous section 

G,(E) = ;Tr[L 
H+E+H-E 

‘-1 = f -&B(E) 

(2.12) 

B(E) = det [s] 

As noted before if the spectrum of H is symmetric then B(E) = 1. 

The expression for B(E) is reminiscent of that of Jost functions 21 in scat- 

tering theory, however the numerator and denominator have the same operator 

H but different signs of E, hence they do not satisfy the requirements that guar- 

antees the existence of B(E). To ensure the existence of the Jost functions we 

need to introduce a suitable comparison Hamiltonian Ho such that H and HO 

only differ locally. For simplicity we also impose the condition that the spectrum 

of HO be symmetric. To fulfil these two conditions we notice that if H$ = E~,!J, 

we can introduce the quantities 

H = &%: Hxe-h; 

qqz) = p(5) cod(z) 

8 

H,=Ho+fe’(z) 

(2.13) 

H,x=Ex 

K(s) = p(z) sin O(Z) . 



This chiral transformation does not modify B(E); it amounts to a change of basis 

states. 

If we assume that 6’ vanishes fast enough as x + fco, H, and Ho only differ 

locally. Furthermore since {Ho,a3} = 0 the spectrum of Ho is symmetric with 

respect to E = 0 and since p(x) is a positive semidefinite function, there are no 

E = 0 states in HO. Hence det B3 [ 1 Ho+E = 1. Therefore we can choose HO as the 

comparison Hamiltonian and write 

(2.14) 

With this choice of HO and boundary conditions on 8’, each of the determinants 

in B(E) is guaranteed to exist and is Fredholm. To relate the Fredholm de- 

terminants to the Jost functions and scattering matrix elements we proceed as 

follows. 

Consider two independent scattering solutions to Ho, namely jc, jr, with the 

asymptotic behavior 

fo (4 - TOeik+'x+(k) 
Z-+-t00 

fo (4 --* eik-"X-(k) + &X-(-k)e-'"-' 
2+-00 

jl (x) z Tdk+Zx- (-4 

h(x) - e-ik+zX+(-k) + Rlx+(k) eik+’ 
z-*+00 

(2.15) 

with 



, . 

being the asymptotic states of HO with energy 

(2.16) 

Consider the Jost solution for H,a2 

j(x) = jo(x) + $ /mH(x,x’) ; #(a:‘) j(x’) dx’ 
z 

(2.17) 

with H(x,x’) being the matrix (Green’s function) 

%4x9’) = [fo,(zlf~(x~) - fL(X)foT,(X’)] (2.18) 

and W  the Wronskian 

w = det {fo&) 9 fi,(x)} . 

Then 

f(x) z f0 = Toeik+‘x+(k) 

(2.19) 

(2.20) 

and 

f(x) - z+--00 fo(4 [1+ $ (fl; I)] - $ fl(X)( jog j) 
N e ik-zX-(k) [l+ $ (jig j)] + x-(k)e-ik-z (2.21) 

x [R”(1+ f (fl$ r)) -; (fl; I)] , 
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where 

r  -  

Since the normalized solution has the asymptotic conditions 

T eik+zX+ (x) 5++00 
fNcx) = 

@=X-(k) + R cik-=x- (4) X-+-O0 

we find the Jost function to be given by 

To(E) J(E) = 1+ f (fl; f) = - . 
T(E) 

(2.22) 

(2.23) 

The proof that J(E) is the Fredholm determinant is now just a slight modification 

of the standard arguments that can be found in the literature, 21 therefore we 

conclude that 

(2.24) 

where T(To) is the transmission coefficient of the scattering states of H,(Ho). 

Because the spectrum of Ho is symmetric, To(E) = To( -E), and therefore 

T(E) ‘cE) = T(-E) * (2.25) 

The transmission coefficients have poles at the bound state energies and are 

complex above thresholds, their phase being the phase shifts of the scattering 
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states. For E above thresholds (E > ET) 

T(E) T(E) 
T(-E) = T(-E) I I 

pm 
’ 

then 

Add@ > ET) = ; i & b(E) 

Therefore 

(2.26) 

(2.27) 

co 

‘I=2 Podd(E)dE= 
/ 

N+ -N- + 5 [I - 6(E = ET)] . (2.28) 
0 

N+(N-) is the number of positive (negative) bound states. If the ratio T(E) 
To 

only depends upon the topological properties of the background fields so does 

&,&l(E), however we will see in the next sections that this is true in very special 

cases; in general podd(E) will depend upon local details of the external fields. 

This remark contradicts statements in Refs. 15 where it is claimed that 

&,&l(E) does not depend upon local details of the soliton fields. The argument 

given there was that J&,&j(E) can be obtained as an inverse Mellin transform of 

the regulated A.P.S. lg invariant q(S). However this transform clearly involves 

the eigenvalues E which do depend upon local details. This will be demonstrated 

in Section Iv in some examples where &&l(E) is computed exactly. In the next 

section we solve for &&j(E) and r] in two simple models for which P,,dd(E) is 

invariant. 

However q is not sensitive to the numerical values of the energies but only 

involves the number and sign of these eigenvalues. Therefore 7 will be invariant 

under local variations of the background fields that do not change the signs of 
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the eigenvalues but just moves them around slightly. Indeed when an eigenvalue 

changes sign, Q jumps by f2. This is associated with the “spectral flow” of the 

Dirac Hamiltonian. lg When this happens the ground state charge changes by 

one as an energy level crosses zero, essentially if an E > O-state-crosses zero and 

becomes an E < 0 state our definition of the charge immediately fills up this 

state. 

Whether or not this state is filled as it crosses zero is a dynamical question, 

if the process proceeds adiabatically this state will remain empty and the ground 

state charge will differ from the adiabatic charge by one. 

3. Some special cases 

In Section 2 we have proven that the ground state charge and q can be 

computed from the ratio of transmission coefficients for positive and negative 

scattering states. 

The results of Refs. 14 and 15 suggest that this ratio is only a function of 

the asymptotic values of the background fields. This, in turn, suggests that the 

positive and negative energy continuum states are related. 

Indeed if there is a local operator U that anticommutes with H at every point 

x, then 

u(X) +E cy: +-E 

or- 

EXEEX-E 

13 

(3-l) 
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with 

The existence of the operator U (51) automatically guarantees that the ratio 

w)IwE) is a topological invariant. The reasoning behind this statement is 

as follows: the scattering solutions with energy E of Hx have the asymptotic 

behavior 

XE (4 - eik-“x?(k) + R(E) x!(-k) esiks2 
2+--00 

(3.4 
XE(4 - T(E) eik+‘xf(k) . 

2++00 

Now we apply the operator u to the above conditions and recognize that as 
.’ 

x ---) ho, U(x) xE(x) + 3*xiE since xk are the asymptotic solutions of H,. 

We find 

g x(x) z 7-(k) xTE(k) eik-’ + R(E) 7-(-k) xIE(--k) emike 

g x(4 Z--r+OO 3+(k) xTE(k) eik+?Z’(E) . 

Therefore R(-E) and T(-E) can be read of? 

R(-E) = R(E)3-(4)/7_(k) 
(3.6) 

T(-E) = T(E)3+(k)/3+) 

where 3~ are only functions of k* and the asymptotic values of the background 

fields C$ and K. 

We were able to construct the operator u explicitly in only two cases, when N 
either K(x) or q5( x is a constant. Indeed, if an operator commutes with H2 then ) 

its commutator with H anticommutes with H. It can then be seen that in the 

cases mentioned above there is a simple operator that commutes with H2. 
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Case a: K = constant. H2 commutes with as. And 

{H, [H,a3]} = 0 and U = (a3H - K) 

c (x) = (03 eiapo(‘)E - K) (3.7) 

If we apply 51 to the free spinors x:(k) we find 

u (ho) x:(k) = ~ZCS eia*xIE(k) 
N 

where 
.- Kk 

tana*=3z- 

(3.8) 

(3.9) 

therefore from Eq. (3.6) 

R(-E) = R(E) e-2ia- 

(3.10) 
T(-E) = T(E) ei(a+-a-) 

where 
B(E) = eibtE) 

6(E) = -a+(E) + a-(E) 

From this expression we can evaluate G,(E) and podd(E) using Eqs. (2.11) and 

(2.12), and find 

G,(E)=- iE2FK2 2-g . 1 1 (3.11) 

If 4+ # 4- there are two thresholds at E = p+ where p+ = 
IJ 4% + K2. Below 

both thresholds and for E > 0 we find &&-J = p1 + ~2, where p1 is a discrete 

a _ .? 
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contribution 

PI(E) = f&n(K) [sign@+) - &(b-)] b(E - lKl> (3.12) 

and pz arises from the continuum 

p2(E) = - -& 8(E - p+) -$ tan-’ ($$) 
+ 

-B(E-p_)-&tan-’ 

Before going any further let us analyze the expressions for G, and &dd given 

above. Ge(E) agrees with the results given in Refs. 14 and 15. Indeed from 

.,, expression (2.12) G,(E) can be written as 

Ge(E) = Tr H/E2 (3.14) 

and for constant K it coincides with the expression given by Callias for the 

regulated index 23’13’24’14(up to the factor K/(K2 - E2)), however this is only 

true in this special case. 

The result for podd(E) below threshold has the correct features. Indeed from 

several examples it is known that when sign (b+) # sign (&) there is a bound 

state 8’25(of topological origin) at E = fK (depending on the sign difference). 

This is the same bound state as the one found by Jackiw and Rebbil in the 

charge conjugate case but shifted by K. 

The phase of B(E) is related to the phase shifts of the scattering states. As is 

seen in Eq. (3.10) above, these phase shifts have a finite limit at E -+ 00. Indeed 

unlike the non-relativistic case where the phase shifts go to zero as E + oo 

(because the velocity goes to infinity) in the relativistic case they approach a 
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constant 22 (the velocity goes to 1) which is proportional to the integral of the 

potential over all space (notice that the scattering “potential” for Hx is 8’ since 

it is compared to Ho). It is interesting to point out that Q is related to the 

phase shifts of the spinors x (eigenstates of H-J not of T/J. Ref. 26 seems to be 

ambiguous on this point. Using Eq. (2.28) we find 

v =- : sign(K) [siw@+) - sign(&)] + 1 [6(00) - 6(O)] 
7r 

(3.15) 

where 

qo) = -a+(E = p+) + QE = P-) 

.- 
and 6(oo) is the limit of 6(E) as E + 00. Both quantities 6(O) and 6(oo) depend 

on the branches of the inverse tangent function. The difference 6(oo) - 6(O) is 

however branch independent. Once the branch of 6( 00) (or 6(E) for any value 

of E) is fixed the branch of 6(O) is fixed by following the analytic function S(E) 

down to threshold, Any branch dependence cancels in the difference. Therefore 

the expression given above for q is unambiguous unlike the answer quoted in 

Refs. 14 and 15. For example if we define --?r 5 6(E) 5 r.then 

6(O) = i sign(K) [sign(&) - sign(d,)] . (3.16) 

Thus the phase shifts at threshold cancel the bound state contribution and the 

final answer is 

9 = -i [tan-l(E) -tan-‘($)] (3.17) 

which agrees with Refs. 14 and 15, however this formula depends on the above 

definition of the branches. 



In the case of the soliton profile 4+ = q5, & = -q5 with q5 > 0, it can be 

easily seen that 

6(oo) - 6(E) = tan-’ 
[ 

~~~-K~~ 1 . r - (3.18) 

Smce the branch of this formula cannot change, 6(oo) - 6(E) must be between 

f7r/2 for any value of E > ET. Hence Q is given by 

q = sign(K) - Z tan-l K R ( ) 3 
2pn-’ K 5; 

0 @  
(3.19) 

which can be compared to the result obtained in Refs. 18 and 25 The above 

expression for q has the correct “spectral flow” behavior. When qL = -q5+ 

there is a bound state with energy E = K. If K is adiabatically changed from a 

positive value to a negative one v jumps by 2 when K crosses zero. This is the 

correct behavior for Q, as discussed in Section 2. The ground state charge has 

changed by -1, but the adiabatic charge has not changed, as was pointed out in 

Ref. 9. 

Case b: q5 = constant. Hz commutes with err. In this case {H, [H, al]} = 0 

and 

g(z) = -(q eicae(z) - 4) , 

Following the steps of the previous case 

(3.20) 

(3.21) 

where tan& = qSk*/K*E. 
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Indeed this case can be obtained form the former by the change K --f -4 

& + K*, following the steps for Case a we find 

B(E) = ,@+-P-1 

G,(E) = i 
z(E2d42) [$-%j - 

and below thresholds: 

(3.22) 

podd(E > 0) = -1 4 sign(d) [sign(K+) - skn(K-)] 6(E - 141) . (3.23) 

All the results of Case a can be applied to this situation with the above 

exchange of K, 4. That this is so is no surprise, it is just the result of a n/2 

rotation around 02 with the consequent exchange 4 -+ -K. Since Case b is 

equivalent to Case a we will not explore it any further. 

As we have seen in these examples, the fact that the operator u exists is 

crucial for the topological invariance of &dd(E) and Ge(E). In the grneral case 

when both 4 and K are functions of position this operator may not exist as it will 

be shown explicitly in the next section for some interesting solvable examples. 

This is turn means that G,(E) and &,dd(E) will in general depend on local 

details of the soliton fields. The spectral asymmetry will be insensitive to “small’ 

changes in local features. However as the local properties are changed there may 

be levels crossing zero energy and this will be associated with the corresponding 

jumps in q (spectral flow). 
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4. Two examples 

In this section we analyze two simple examples for which the t-matrix can be 

computed exactly and yet they are rich enough to contain interesting physical 
,- 4 mm 

information relevant to charge fractionalization. 

Example 1: Infinitely thin soliton (this is a slightly modified version of the 

problem studied in Refs. 9 and 12). For this problem we choose 

d( I={ 
d- x<o K- xc0 

X 
4+ x>o 

K(x) = 
K+ x>o I (44 

The eigenstates of H are easily shown to be continuous across the origin. The 

spinor-wave function 

+(x) = { 
ti<(X) x < cl 
T)>(X) x>o 

obeys the following boundary condition at the origin 

+<(o) = $>(O) - 

This is turn means that the eigenfunctions of Hx obey 

wa B- Et e 0 xc = eiu2 2 x, 

or 

xc = eiua Yx, . 

P-3) 

(4-4) 

(4.5) 

with 8+ = tan-‘(K*/&) and A8 = 8+ - 8-. The scattering solutions have the 
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following behavior 

x<(x) = x-(k) eik-’ + Rx-(-k) emik-’ x<o 

P-6) 
x>(x) = TX+(k) eik+% x>o 

where the notation is the same as Eqs. (2.15)-(2.16) in Section 2. 

The transmission coefficient T can be easily found for any pk and 8*, but 

for simplicity and to illustrate the physics more clearly we quote the answer for 

p+ = p- = p (k+ = k- = k). 

1 

T(E) 
=c+isf (4.7) 

where C = cos M S = sin *’ 2 ’ -. 2 Below threshold (where k = i k = id-) N 
T(E) has a bound state pole at E = -sign(S) pC. As E -+ oo the phase of T(E) 

(phase shift) approaches -A8/2 as it was pointed out in Section 3. From Eqs. 

(2.25) and (4.7) we find 

Ge(E) = i 
p%c 

k(E2 - pW) ’ 

Below threshold (0 < E < p) the odd density of states is 

Podd(E) =-’ ’ 2 sign(S) sign(C) b(E - p/Cl) 

and above threshold 

PoddcE) = +; -& 6(E) where tan b(E) SE -=-- 
2 Ck 

(4.8) 

(4-g) 

(4.10) 
I ..u 
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therefore 

rj = -sign(S) sign(C) + i [6(oo) - 6(O)] (4.11) 

,- - e 

which can be written as 

rl=-lB ~ + sign(S)[l - sign(C)] Ae 
-%-* 

(4.12) 

When Ae is adiabatically changed from slightly below z to slightly above z the 

bound state (at E = -pC) crosses zero and q jumps by +2 and the charge 

changes by one unit. As it was pointed out before 6(oo) - S(0) is independent 

of the branches of the function tan-l(x) and so is v. It would then seem that in 

expression (4.12) 77 depends on the definition of the branches, however the reader 

can be readily convinced that it is not. q is a discontinuous, periodic function of 

Ae with period 2w and -1 5 v 2 1; it can be written as 

rl= -y + 2n where x(2n - 1) 5 Ae 5 7r(2n + 1) . 

Therefore the ground state charge -i 5 Q = -i q < i. We see that the 

fractional part of the charge QF = 4# (-?r 5 AtJ 5 z) is a smooth function 

and is given by the high energy behavior of the phase shifts mod z. The integer 

part is related to low energy features; namely, bound states and phase shifts at 

thrEshoh% (see next example). 

To compare with the next example we quote the results for the case 4+ = 4 
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CJ~ = -4 (4 > 0) and K = constant (K > 0). 

i 

e+ = tan-’ $ ( > x>o 
e(x) = 

8- = 7r - tan-l f 
( > x<o 

Ae=e+-e-=2tan-l 
K 

0 7 -7r 
- i 5 tan-l K 5 4 

0 4 

and q is given by expression (4.12). 

. .- 
Example 2: Three steps (wide soliton) Although Example 1 shed light on the 

-. physics of charge fractionalization and allowed us to understand better the high 

and low energy aspects, we cannot draw conclusions regarding the dependence 

of 77 on local details of the external fields. To study this aspect consider the 

following soluble example 

6 4( ,=(, X 
+ 

K- 

K(x) = K. 

K+ 

x<o 

x>o 

x < -dl 

-dl < x < d2 

x>d2. 

(4.13) 

However to simplify the final formulae and to expose the physics clearly we will 

analyze and quote the results for the simple case #- = -c$+ = -r$ (4 > 0) 

K- = K+ = -K. = K (K > 0) (th’ IS implies p = constant) and dr = d2 = d. 

Therefore e(x) is obtained by following the branches 

23 



x>d 

e2=-h-1 $ ( > OLx<d 
etx) = 

e1 = --R + tan-’ f ( > -dLx<o 
(4.14) 

es = --A - tan-l xc-d. 

Using the matching conditions Eq. (4.5) at x = -d; 0; d and after some algebra 

we find 

1 

T(E) 
=A+i;B 

.- where 
-. 2iK 

A=C+- 
k2p [ 2952 sin z eiz + K2 sin 22 e2iz 1 

4K2+ 
- sin2 z e2iz B = S-I- k2p 

(4.15) 

(4.16) 

and 

c=cos(“+;‘-) Z-K/~ 

S=sin(‘+i’-) =4/p (4.17) 

From the above expressions we learn several important features. First we see 

that T(E) d oes depend on local details, here the width of the soliton d. This in 

turn implies that B(E), G, and podd( E) will depend on d non-trivially. Second, 

the high energy behavior is the same as the infinitely thin soliton example since 

the second terms in A and B vanish as (1/E2) in the limit E + 00. Therefore 

6(oo) will be the some in both cases. When d = 0 (Example 1) there is a bound 

c .a 
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state at E = K and 6(oo) - 6(O) = 2tan-’ - z, therefore q = 4 tan-’ 

As d is increased the bound state energy decreases. For very small d, one finds 

Eb”- K[l-4bd] +0(d2). (4.18) 

As d is increased further several things happen. The bound state initially at 

Eb = K crosses E = 0, but also more bound states peel off from the negative 

continuum. Indeed it is easy to see from Eqs. (4.15)-(4.16) (below threshold) 

that at d N 00 there is a bound state at E = -K and two nearly degenerate at 

E = -4 (the splitting being of order eWzKd). 

. -- 
-.. 

The critical values of dc at which the bound state (initially at K) crosses 

- zero and dl and d2 for which new bound states just peel-off from the negative 

continuum are easily obtained analytically. The first, e!c, corresponds to the 

solution of l/T(O) = 0 and the other ones correspond to l/T(-p) = 0. From 

the same analysis we also learn that at the critical values dr and d2, the phase 

shifts (at k = 0) of B(E) d ecrease by z each time a bound state arises from the 

negative continuum and increase by z if it arises from the positive continuum. 

This is the usual behavior of phase shifts at threshold whenever new bound states 

appear. All these features can be understood analytically from Eqs. (4.15)-(4.16) 

and they lead to the following scenario as d increases (for fixed K and 4): 

at d = 0 there is one bound state at K and 

V=l+i [2tan-l($) -z] =stan-l($) . (4.19) 

As d increases, q remains constant until d = & at which point the bound state 

crosses E = 0. Of course the phase shifts remain unchanged since the bound 
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state came from the positive continuum and therefore 6(O) = r. For d > u&, the 

bound state has negative energy and 

4 q=-1++n-‘(+I= (4.20) 

As d increases further and passes dr another bound states appears from the 

negative continuum and 6(O) drops by r. There are now 2 bound states with 

negative energy, with 6(O) = 0, and 

Q=-2+ztan- 1 4 
( > K - 

(4.21) 

The appearance of the new bound state does not modify q, because the phase 

- shifts at threshold change by r whenever a new bound state appears. When d 

is increased further and reaches d2 there is another bound state peeling off the 

negative continuum and 6(O) drops by another r. Now we have 

q=-3+: 2tan [ -‘(f, +?r] = -2+ztan-l(f) . (4.22) 

Therefore q has changed only when the bound state initially at K crossed E = 0. 

The above scenario is modified for different values of K and q5 in the sense that 

the ordering of &, dr , da may be changed. Bound states may emerge from the 

continuum before the one at E - K crosses the origin, but the picture is the 

same. The index q changes only when there is spectral flow. This behavior can 

be understood with the following argument. Let us imagine our system in a very 

large box, then the spectrum is discrete and we can use the formal expression 

for q = CE,,+sign(En). As d is varied the eigenvalues move but as long as their 

sign does not change q remains invariant. 
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An Anomalous Case: A peculiar situation arises when d is exactly dl or d2. 

The phase shift at threshold has dropped only by z/2. However there is a state at 

threshold that is about to become bound; it is the “half bound state” noticed in 

Ref. 24 in another context. In this situation the integral of the density of states 

along the continuum cut (see Eq. (2.28)) has to be performed carefully because 

there is a contribution from the edge of the cut. The ratio of Jost functions 

B(E) has a zero (or pole) linear in k and thus produces a pole in the logarithmic 

derivative weighted with a factor l/2 (arising from dm). Proper account 

of this behavior yields the following result for Q: 

_ -- rj=N+ - N- f ; + 5 [I - S(o)] , 

where S(0) = i(O) &z/2, and 6 (0) is the value of 6(O) just before d reaches dl, da. N 

The term +1/2(-l/2) arises from the edge contribution of the positive (negative) 

energy continuum. The -z/2 (+7r/2) corresponds to the increase (decrease) of 

the phase shifts at threshold when a “half bound state” forms. 

We see that q does not change when d reaches these critical values. Indeed, 

when d passes a critical value, a new bound state is formed but its contribution 

to rl is canceled by the change in the phase shifts at threshold. When d is exuctly 

one of these critical values, the same cancellation takes place but with a factor 

l/2; therefore Q is continuous at these values of d. This behavior corresponds to 

the anomalous Levinson’s theorem of potential scattering. However Eq. (4.23) 

is not Levinson’s theorem. 

Remarks: Prom the examples worked above we learn several important fea- 

tures. As an illustration of the relation between charge factionalization, anoma- 

lies and topological concepts like spectral flow and indices, let us observe the 
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following. 

1. Anomaly: In Example 1 the Hamiltonian is invariant under the shift 8 + 

8 + 27r therefore the spectrum of the theory is unchanged. Let us introduce 

a parameter r (that can be thought of as “Euclidean time”) and suppose 

that Al3 is a function of r such that Ati(r = -00) = 0 and Ae(r = +oo) = 

27r. Therefore the spectrum of H at r = -oo is the same as the one at 

r = +oo. However, as r evolves and A0 evolves adiabatically, the spectrum 

changes. A bound state comes from the negative continuum moving up 

in energy,g and the density of continuum states changes as this happens. 

When AB = z the bound states crosses E = 0 and v jumps by 2. As r 

evolves further, the bound state moves towards positive threshold and at 

r = +oo it reaches E = +p. The spectrum is the same as r = -co(A8 = 0) 

but now there is a filled positive energy state. It is filled because the state 

has evolved adiabatically. This is the picture proposed in Refs. 27 and 28to 

interpret anomalies as a level crossing effect. Indeed this is an example of 

the mathematical statement that the spectral flow of H(T) (H depends 

adiabatically on r) is the index of the operator (d/d7 - H(T))~’ (notice 

that this corresponds to the Euclidean Dirac equation and the adiabatic 

evolution of the bound state corresponds to the zero mode). 

2. The Integer: Comparing Example 2 to the case K = constant (K > 0) in 

Example 1, we learn several features. If one follows the angle e(x) from 

x = +ca to x = -oo in both cases, keeping track of the branches, A8 in the 

second case is 27r bigger than the one in the first case. At first one may be 

tempted to conclude from Eq. (4.12) that this difference would account for 

the integer part of q, however we have seen that this 27r has nothing to do 
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with the integer part since for example it is independent of d. The integer 

change in q correspond to the spectral flow that occurs whenever d > 4. 

The fractional part is entirely given by the step functions used in Example 1 

and is a topological invariant; the integer part has to do with levels crossing 

zero and depends on the local details of the fields in agreement with the 

conclusions of Refs. 9 and 12. 

3. Charge additivity: An important physical attribute of charge is the prop- 

erty of additivity. The adiabatic charge is truly additive, whereas the 

ground state charge can change by one when a level crosses zero energy. 

It is interesting to check that the index q in our Example 2 does indeed have 

this last feature. Let us begin by noting that as d + 00, Example 2 consists 

of three widely separated solitons. Near each soliton there is a localized state 

with energies -4, -K, and -4 respectively. The corresponding indices can be 

evaluated individually in this limit (see Example 1) and are ~1 - 1, -qr , ~1 - 1 

withqi=l-itan-’ Thus the total index, ~3, is ~1 - 2, and this is the 

exact result for d > 6. 

As d decreases, these three localized states start to overlap and to interact. 

Two of the levels are forced into the negative continuum, and one is pushed above 

zero energy. At this point r]s jumps by two, and q3 = 71. Finally as d --) 0, the 

configuration is that of a simple soliton and ~1 is the correct value. 

-- 

Therefore we have learned that the total charge is the sum of the charges 

induced by each of the solitons (to within spectral flow effects). This property 

can be traced to the fact that the wave functions overlap of the separated bound 

states vanish exponentially. This is crucial to show that the induced charge is a 

sharp observable. 4,5,6 
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5. General Case 

We expect the results obtained from analysis of the models of Section 3 and 4 

to hold in the general case when the soliton fields are arbitrary functions. Given 

a Hamiltonian H in which the fields 4 and K (or e(x) and p(x)) have a definite 

behavior at spatial infinity, we can always form a Hamiltonian Hv like the one in 

Example 1 with step functions for d(x) and K(x) (8,~) with the same asymptotic 

values us the fields in H. Then we can write the quantity B(E) for H as 

B(E) = Bv(E) - BR(E) BR=B(E)/&(E) (5-l) 

T where Bv (E) contains Hv. This choice of Bv (E) ensures that BR(E) has zero 

phase as E -+ 00 and its only contribution to q arises from possible bound states 

and the value of SR(O) (6~ = relative phase shift). Therefore we can write 

rl = rlv + (rl - rlv) (5.2) 

where qv contains all the topological features of the background fields and com- 

pletely describes the high energy behavior of the theory. It accounts for the 

fractional part of Q and consequently the fractional part of the charge 

QF=~[B(x=+co)-e(x=-~)] (-7rIA8gr). 

-- 

The part (77 -t)v) is an even integer (or zero) arising from the spectral flow (levels 

crossing E = 0) that occurs when HV is locally deformed onto H. Thus we have 

isolated the topological (asymptotic) properties of the background fields in Hv. 

Since the high energy behavior is only sensitive to these topological features and 
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not to local details, HV describes completely the fractional part of the charge. 

Consequently, (v - VV) only depends on local features of the background fields 

and accounts for the integer part of q and the charge. 

Conclusions: We have related the (properly normal ordered) ground state charge 

to the asymmetry q between the positive and negative energy parts of the Dirac 

spectrum Q = -i q. As a measure of this spectral asymmetry we introduced the 

fundamental quantity 

B(E) = det $&$ [ 1 
that allowed us to write an exact expression for the A.P.S. invariant: 

-- 

q=N+ -N- + i [6(E = 00) - 6(E = ET)] , 

where 6(E) is the phase of B(E) (ET = threshold energy) and N* are the 

number of positive (negative) energy bound states. We point out that 6(E) is 

related to the (relativistic) phase shifts of the scattering states of the chirally 

rotated Hamiltonian. If threshold resonances exist, the above formula is slightly 

modified. Given an interacting Hamiltonian H with arbitrary background fields 

it may be very difficult to compute v as given above. 

However we citn define a very simple Hamiltonian Hv in which the external 

fields have the same asymptotic properties as the ones in H, and for which 77~ 

can be computed exactly and we write q = qv + (7 - qv). Since the high 

energy behavior of 6(E) is only sensitive to the asymptotic properties of the 

fields, Hv completely describes the high energy features and therefore yields the 

fractional part of the charge exactly. It is only this fractional part that is a 

topological invariant and related to the high energy behavior of the theory. The 
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quantity (q - VV) depends on the local details, it is an even integer or zero and 

corresponds to the spectral flow (levels crossing E = 0) that occur when Hv is 

locally deformed onto H and accounts for the integer part of the charge. The 

fractional part of the charge is shown to be given by 

QF = & [e(x = +oo) - ecx = -oo)] -7r<AB<7r 

and it is a high energy feature of the theory. The formalism and examples of 

this paper offer a unifying view of the physics of charge fractionalization using 

familiar concepts. 
-- 

Since the fractional part of the charge arises from the high energy behavior 

of the theory, we expect the adiabatic approximation to accurately describe it 

since it corresponds to the external fields being probed at very short wavelengths 

and in this regime the approximation is reliable. This high energy behavior is at 

the heart of the anomalous commutator method, and the fact that the “twisted” 

boundary conditions of Ref. 12 reproduce the fractional charge correctly comes 

as no surprise since the phase shifts can be determined from these conditions. 

The integer part of the charge is non-topological and is related to local details 

of the background fields and in particular to energy levels crossing zero, hence 

it is a low energy feature of the theory. Although this integer may not be seen 

in field theory approaches to the physics of the charge fractionalization (we can 

always fill these states and redefine the vacuum) its properties allowed us to 

understand and expose the beauty of the concept of spectral flow. It requires a 

thorough analysis of the specific problem, and may be particularly interesting in 

a condensed matter context. With the simple methods introduced and developed 
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here, we hope to study the physics of charge fractionalization and its relation to 

anomalies in higher dimensional theories; work on these lines is in progress. 
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