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Abrtract 

A gauge theory model is given which accounts for spec- 
tator jet radiation, interference effects between spectator and 
active jets, and coherence corrections when final state quark 
and gluon jets overlap. A simple Abelian complex color charge 
model can be used to mimic the QCD coherence effects. 

Recently there has been important progress1-3 in under- 
standing particle production mechanisms and coherent effects 
in QCD involving the =active” quark and gluons which par- 
ticipate in high momentum transfer reactions. However, the 
soft gluon radiation and hadronieation of the ‘spectator” con- 
stituents produced at low momentum transfer has not been 
discussed in detail. Since the hard scattering subproceases 
generally leave the spectators with non-cero color, radiation 
along the forward direction will occur. An understanding of 
the interference effects between active and spectator systems 
is necessary for a meaningful separation of high and low pr 
jets in the low z overlap region as well as for an interpretation 
of the high pr jet ‘pedestals”. In the case of collisions at the 
SSC, the properties of spectator jets [qq, (qqq)s, etc.] could 
in principle be used to distinguish the various hard scattering 
reactions. 

(0) 

The simplest gauge theory example which includes the ef- 
fects of spectator radiation is positronium-positronium hard- 
scattering collisions in QED. [See Fig. l(a).] Consider an event 
where an electron and positron are scattered to large angles 
with p$. > mf. In association with the high momentum trana- 
fer pair, the final etate consists ol: 

(a) High-momentum-transfer photons and leptona emitted 
in higher order subprocessea. If the kinematics of the particles 
produced in the final state all satisfy pi pj > @p’, (p # 0), 
then these reactions occur at relative order i u(p’,) log i or 
higher. [See Fig. l(b).] 

(b) Collinear photons and lepton pairs radiated from the 
constituents active in the hard scattering reaction, with invari- 
ants in the range c < pi . pi < @pg. [See Fig. I(C).] The 
lower limit 6 Z (k:) 2 O(a2m2) is the off-mass-shell scale 
set wavefunctions. The collinear radiation is responsible for 
structure and fragmentation function evolution up to the scale 
ppg. It can be computed to leading order in U/X using angle 
(or rapidity) ordering.lW3 

(c) Soft photon radiation’ emitted from the outgoing lep- 
tons with invariant momenta satisfying k. p, < c. The QED 
radiation pattern’ is computed from a coherent sum over all 
of the active and spectator charged lines which appear in the 
final state: 
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Fig. 1. Radiation associated with hard scattering in poaitronium-positronium scattering. 
Figure (d) indicates the classical radiation pattern from th; outgoing charged lines computed 
from Eq. (1). 
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as indicated schematically in Fig. l(d). This soft photon result 
automaticatly contains all coherent effects between overlapping 
radiators: e.g. two collinear positions emit /our times the radi- 
ation of one positron. The radiation from spectator systems is 
insensitive to the high pr scale: at large transverse momenta, 
the photons emitted from spectators fall-off as k;‘, compared 
to ky2 for radiation from active lines (for 6 < pt). 

The situation for radiation in QCD is of course much more 
complex than the above Abelian example due to confinement 
and non-perturbative effects. However, using perturbation the- 
ory as a guide, we can make a model for soft radiation effects 
and the energy flow in hadronic collisions by mimicking the 
above steps (a)-(c), in each case keeping track of the color la- 
beling for each subprocess. The charge for outgoing quarks in 
Eq. (I) is replaced’ by the color matrix gT., a = 1,. . . ,8. [path 
ordering is necessary for computing higher ordem in perturba- 
tion theory]. This model accounts for spectator jet radiation, 
interference effects between spectator and active jets, and co- 
herence corrections when the final state quark and/or gluon 
jets overlap. 

There is even a simpler way to mimic the color coherence 
effects of final state radiation. We assign a 2s ‘complex color 
charge” to the three quarks 

eg,q.,eg = I,e ihI i 4x13 ,e , (2) 

so that the charge of any color-singlet hadron is tero. The 5. D. R. Yennie, S. C. Frautschi and H. Suura, Ann. Phys. 
gluon charge is obtained additively 13, 379 (19Gl). 

eRf e CR + ey; = eR - e}’ . (3) 

The radiatioh pattern for au Abelian ‘photon” coupled to this 
charge can then be computed in leading order directly from Eq. 
(l), producing a simple model for the distribution of hadronic 
energy radiation. 

Coherence effects between overlapping colored systems includ- 
ing the spectator particles are automatically included. For 
example, a gluon exchange subprocess leads to constructive 
interference between the quark jet scattered to large pi and a 
spectator antiquark.” The average squared gluon charge 171s 
is Q/4 that of the g_uprk, in-agreement with the leading order 
result for the relative energy density of gluon versus quark jets 
as in QCD.‘,’ All of the predicted coherence effects are of rel- 
ative order l/N2 for color SV(N). It would be interesting to 
compare this computationally simple model’ with energy den- 
sities measured for different jet configurations in e+e- + qqg, 
and @  + ggg decays as well as in high pr hadron collisions. 
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