UPPER LIMIT ON THE ν_{τ} MASS*

presented by Walter R. Innes Stanford Linear Accelerator Center Stanford University Stanford, California 94805

This is an update of a result published by the Mark II collaboration. Since the only change is a 50% increase in the data sample I will be brief.

We have collected data with a luminosity of 220 pb⁻¹ with the Mark II detector at the e^+e^- storage ring PEP at a center of mass energy of 29 GeV. We looked for $\tau^+\tau^-$ events in which one of the τ 's decayed to $3\pi^\pm\pi^0\nu_\tau$. The shape of the high mass end of the 4π mass spectrum from this decay is sensitive to the ν_τ mass.

The figure shows this mass spectrum. The portion above 1.5 GeV/c^2 was compared to the expected behavior for various ν_{τ} masses and a limit on $m_{\nu_{\tau}}$ inferred. There are 22 events in the fit region. We assumed the spectrum is dominated by the ρ' resonance (this gives a less stringent limit than phase space).

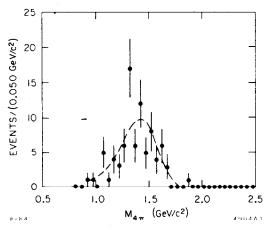


Fig. 1. The $3^{\pm}\pi^{0}$ invariant mass distribution for selected decays. The curve is for $m_{\nu_{\tau}}=0$ and the assumption that the four pion state is dominated by the ρ' resonance.

After including uncertainties in background, resolution, and knowledge of the ρ' mass and width we obtain on upper limit on the ν_{τ} mass of 143 MeV/c² at the 95% CL.

References

C. Matteuzzi, G. S. Abrams, C. de la Vaissiere,^a D. Amidei,^b A. R. Baden, A. M. Boyarski, J. Boyer, M. Breidenbach, P. Burchat, F. Butler, L. Burke, J. M. Dorfan, G. J. Feldman, G. Gidal, L. Gladney, M. S. Gold, G. Goldhaber, L. Golding, G. Hanson, D. Herrup, R. J. Hollebeek, W. R. Innes, J. A. Jaros, I. Juricic, J. A. Kadyk, A. J. Lankford, R. R. Larsen, B. W. LeClaire, M. Levi,^c N. S. Lockyer,^d V. Lüth, M. E. Nelson,^e R. A. Ong, M. L. Perl, B. Richter, M. C. Ross, P. C. Rowson, T. Schaad, H. Schellman, D. Schlatter,^c P. D. Sheldon, W. B. Schmidke, G. H. Trilling, D. Wood, J. M. Yelton, and C. Zaiser, Phys. Rev. Lett. 52, 1869 (1984).

PA 19104.

^ePresent address: Cal Tech, Pasadena, CA 91125.

^{*}Work supported in part by the Department of Energy, contracts DE-AC03-76SF00515 (SLAC), DE-AC03-76SF00098 (LBL) and DE-AC02-76ER03064 (Harvard).

^aPresent address: LPNHE, University of Pierre Marie, Paris, France F-75230.

^bPresent address: University of Chicago, Chicago, IL 60637.
^cPresent address: CERN, CH-1211 Geneva 23, Switzerland.
^dPresent address: University of Pennsylvania, Philadelphia,