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STABILITY IN DYNAMICAL SYSTEMS I 
E. D. COURANT 

Brookhaven National Laboratory 
Upton, New York 11973 

R. D. RUTH, W. T. WENG 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94505 

1. INTRODUCTION 

A dynamical system is a collection of objects subject to some law of force. 
This leads to a set of differential equations which govern the motion. In this 
paper we are interested in those sets of differential equations which are deriv- 
able from a Hamiltonian using Hamilton’s equations. That is, if we are given 
coordinates q and ‘canonical’ momenta p, together with a Hamiltonian function 
H(q,p, t), then the differential equations governing the motion are given by 

-- 
dq i3H dp aH -=- 
dt dp ’ dt = -Tp _ (14 

Note that the above relations are valid for systems of n dimensions provided that 
we interpret q and p as n-dimensional vectors. It is useful to view the system as 
the motion of a point in the 2n-dimensional space (q,p) called phase space. We 
refer to a point in this space with the symbol X. Then the motion of a particle 
subject to Hamilton’s equations can be viewed as a transformation of this point 
in phase space. The questions are how and where it moves and what are the 
characteristics of its motion. If the Hamiltonian is independent of the time t 
(conservation of energy), then the motion is restricted to a (2n- 1)-dimensional 
surface in 2n-dimensional space on which H = E. What else may happen? 

-. 

(a) Equilibrium. In this case a particular point in phase space does not 
move under the equations of motion. This is a fixed point of the transformation 
in phase space. Motion starting there remains there; however, points close to a 
fixed point may or may not remain close to the fixed point. 

(b) Periodic motion. In this case an orbit exists that returns from a point 
X0 back to the same point Xc after a finite time 2’. The transformation 

x(t) = M(t)X(O) (l-2) 
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in phase space can be considered a mapping of phase space onto itself. If a 
particular orbit Xl(t) is periodic with period T, then the mapping M(T) has a 
fixed point at the position Xr (0). If initial conditions near this point stay ‘near’ 
forever, the fixed point is ‘stable’; if they blow up exponentially, it is unstable. 
Interestingly enough, it turns out that there is sometimes an intermediate case 
in which orbits stay near for a very long time, but not forever (diffusion). Note 
also that if M(T) has fixed points, then M(T)* also has these fixed points and 
possibly others which repeat after 2, 3, . . . , n cycles of the original one. 

(c) Closed surfaces. If a function F(q,p, t) remains constant, it is an ‘inte- 
gral’ of the motion. One such integral for a time independent Hamiltonian is the 
energy E mentioned above. All motion occurs on a surface with H(q,p) = E. 
For other integrals there are other functions of q, p, and t which are constant. 
A system is called integrable if there are n independent integrals of the motion. 
In many cases these confine the motion to a closed n-dimensional surface thus 
guaranteeing stability. 

(d) Nonintegrable Systems. There are many systems for which n indepen- 
dent integrals do not exist. These are called nonintegrable. To illustrate this 
consider a system of two degrees of freedom with the Hamiltonian 

HO = i (pi + pi) + 5 (ax2 + 2bxy t ay2) . _ 

This is just a pair of coupled harmonic oscillators. For this system there are 
two independent integrals given by 

WI = (PZ + P~)~ + (a + b) (x + Y)~ 

w2 = (Pz - py)2 + (a - b) (x - y)’ . 

That is, Wr and W ’s are constant as (x,pz, y,p,) evolve according to Hamilton’s 
Equations with the Hamiltonian in Eq. (1.3). Now we add a nonlinear term 
to H 

H = Ho + c(x3 - 3xy2) (1.5) 

where c is small, and ask if there are still two invariants given by Wr and W ’s 
with small terms added. 

This is not, in general, the case, and the actual situation is much more 
complicated although it appears to be typical of nonintegrable systems. At 
small enough amplitudes, the system acts as if a second integral exists, and as if 
the motion is confined to a two-dimensional subspace of the three-dimensional 
energy surface. At larger amplitudes the motion ranges ‘ergodically’ over all 
of the energy surface except for that part taken up by the ‘small’ motions 
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mentioned above. Mathematically it can be proved that such behavior exists, 
and this behavior can be demonstrated quite easily by computation. 

However, in the case just discussed it is not necessary for the second integral 
to exist in order to have stability. The two-dimensional-example with a time in- 
dependent Hamiltonian is equivalent to a one-dimensional problem with a time 
dependent Hamiltonian. In this case we ask if one integral exists. If it does not, 
we ask if there are closed invariant curves in phase space. If these curves exist, 
then points inside must stay inside giving stability. For nonintegrable systems 
these curves do exist while integrals do not. The existence of these curves is the 
subject of a theorem called the KAM theorem (Kolmogorov, Arnold, Moser).4 

(e) Arnold Diffusion. For three or more dimensions, or two or more dimen- 
sions with a time dependent Hamiltonian, it may happen that extra integrals 
‘almost’ exist in the sense that amplitudes stay small for a long time, but grow 
very slowly in a process called ‘Arnold Diffusion’. This possibility is not ex- 
cluded in the higher-dimensional case because an n-dimensional closed invariant 
surface in %-dimensional space does not completely enclose a 2n-dimensional 
volume unless n = 1. (A circle will not hold water; this requires a closed sphere.) 
Whether this diffusion is a general property has not yet been proved. Arnold 
proved this for a particular system; however, it is generally believed that Arnold 
diffusion is generic. In spite of this the diffusion is quite slow. 

(f) Ergodic Motion. In this case all of the energy surface gets covered; 
as the motion proceeds, the system gets to the neighborhood of every point 
on the energy surface. Statistical mechanics is based on the proposition that, 
with many degrees of freedom, this is the normal state of affairs. Then it can be 
shown that in infinite time the energy surface is covered uniformly in some sense. 

Thus the characteristics of the motion of a Hamiltonian system are quite 
complex and not yet fully understood in the nonintegrable case. In this paper 
we will not attempt to cover all the types of motion discussed above. Instead 
we will discuss integrable systems and ‘nearly integrable’ systems. In the nearly 
integrable cases it is possible to use perturbative techniques quite successfully to 
study the motion in spite of the fact that these methods generally yield divergent 
series. However, it is now known that there are regions of phase space where 
the perturbation series do converge (the KAM theorem). We will use them here 
somewhat carefully and attempt to restrict their validity in a heuristic fashion. 
In addition the emphasis here will be on one-dimensional problems with time 
dependent Hamiltonians; however, many results will be stated in a general form. 

We begin with a review of Hamiltonian dynamics and then discuss canonical 
transformations in some detail. We end with two detailed examples in which 
we study the behavior of nonlinear systems in phase space. The emphasis here 
is not to obtain the detailed motion of a point in phase space, but rather to 
illustrate the shapes of the curves in phase space to which the motion is confined. 
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In this way one can determine stability without knowing the details of the 
initial conditions. 

2. HAMILTONIAN DYNAMICS 

2.1 EQUATIONS OF MOTION 

The dynamical systems of interest here can be described by a Hamiltonian 
H(q, p, t). q is the coordinate, p is the canonical momentum, and t is the in- 
dependent variable or time. In many cases the Hamiltonian is the sum of the 
kinetic energy T and potential energy V each written as a function of the coor- 
dinates and canonical momenta. The equations of motion can be derived from 
the Hamiltonian using Hamilton’s equations: 

dqi i3H dpi i3H -=- PC--. 
dt dpi ’ dt a Qi (24 

For example, consider a system of n nonrelativistic particles interacting through 
a force law derivable from a potential. Then we have 

H = & (PI + Pi + **-+ Pi) + qq1, -42, --* ,an) 

and 
hi pi dpi av -=- , 
dt m x=-G * 

(2.2) 

(2.3) 

The above differential equations are simply Newton’s Second Law for the 
n-particle system. 

In the above example the canonical momenta were equal to the kinetic mo- 
menta. It is obvious that this is not true for more general Hamiltonians. Con- 
sider a nonrelativistic charged particle in an electromagnetic field with vector 
potential x(x, t) and scalar potential Q(z, t). Then the Hamiltonian is given by 

H ’ =- 
2m ( 

- Ei(Z,t))2 + eQ(2,t) (24 

and the corresponding equations of motion are 

d xi 
v’-dt= 

pi - fAi 
m 

dpi d@ e -=-e--- (pi - : Ai) d Aj 
dt axi c c 

j 
m zp 

P-5) 
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Note that in this case the canonical momenta and the kinetic momenta are 
related by 

eAi . m vi = pi - - 
c P-6) 

Using Eq. (2.6) t o e 1 iminate the canonical momenta in favor of the velocities, 
and recalling the relation of the electric and magnetic fields to the vector and 
scalar potentials, we find that Eq. (2.5) becomes 

dv e -=- 
dt m 

(2 + f x I?) . 
c P-7) 

Equation (2.7) is simply the Lorentz force equation for a nonrelativistic charged 
particle in an external electromagnetic field. 

2.2 SYMMETRY, INTEGRALS, AND CYCLIC COORDINATES 

If we examine Eq. (2.3) , it is easy to see that if the Hamiltonian is inde- 
pendent of some coordinate q,,,, then the corresponding canonical momentum 
pm isa constant of the motion. In this case pm is a first integral of the motion 
and the coordinate qm is called a ‘cyclic’ or ‘ignorable’ coordinate. In general, 

- the existence of such an integral corresponds to a certain symmetry of the sys- 
tem. In this case the symmetry is the invariance of the equations of motion to 
translations in Qm. If qm is an angular coordinate, then the conjugate angular 
momentum is conserved, and the system is invariant with respect to a rotation 
in qm. 

In general for an n-dimensional system, Hamilton’s equations constitute a 
system of 2n ordinary first-order differential equations. In order to integrate 
such a system we need to know 2n first integrals. In many cases, however, it 
is sufficient to know only n independent integrals. In these cases each integral 
can be used to reduce the order of the system of equations by two rather than 
just one. These problems are called ‘integrable’, and the motion is confined to 
an n-dimensional surface in 2n-dimensional phase space. 

In other cases n independent integrals do not exist; these are called ‘noninte- 
grable’. In these cases the trajectory can fill regions of phase space of dimension 
greater than n. The study of nonintegrable systems is still far from complete. 

Although many of the differential equations which will be discussed here 
are, strictly speaking, nonintegrable, they are sufficiently close to integrable 
systems to admit approximate solutions. The precise nature of the breakdown 
of integrals when passing from an integrable system to a nonintegrable system 
is the.subject of the KAM theorem mentioned previously.4 
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2.3 MOTION NEAR A KNOWN PERIODIC SOLUTION 

In many cases we are interested in the orbits of a system which are close to 
a known periodic solution. This periodic solution may or may not be easy to 
find; let us assume that we know it. Consider the Hamiltonian in Eq. (2.2) in 
two dimensions. This yields the equations of motion, 

f3V 
(2-8) 

me= 
-ay * 

A periodic orbit x0(t) and ye(t) with period T is defined to be one which closes 
on itself in time T. Thus it is defined by 

rn& = -g (xo, YO) , 20 (t + T) = xo(t) 

mjio = -g (x0, Yo) , YO (t + T) = ye(t) . 

Now consider an orbit close to the periodic orbit and let 

t =x-x0 
(2.10) 

t7=y-y0 * 

Then if we substitute into Eq. (2.8) and expand for small e and Q, we find 

ml=-c 
SV 
z (Xo9Yo) - rl g (Xo,Yo) 

rnij = -6 -g (%Yo) - rl$ (Xo,Yo) - 

(2.11) 

Thus, since yo and x0 are periodic functions of t, we find a linear differential 
equation with periodic coefficients which can be derived from the Hamiltonian, 

H= 
dW 
- ay2 rl 

(2.12) 

where the derivatives of the potential are again evaluated at (xc, ye). Note that 
the coefficients in the new Hamiltonian now depend periodically on time rather 
than being constant. Analysis of even the linearized problem is more difficult. 
In addition, the fact that the old Hamiltonian is a constant of the motion is 
now hidden. 



The stability or instability of the periodic orbit in question is determined by 
the solutions of Eq. (2.11). Thus the solutions of linear equations with periodic 
coefficients are evidently of fundamental importance. The solutions to this type 
of equation (Hill’s equation) in one dimension will be discussed in Sections 2.6 
and 4.2. 

2.4 CHANGE OF INDEPENDENT VARIABLES 

In many problems we are more interested in the orbits a particle describes in 
space than in the detailed time dependence of the solution. In this case we ask: 
how does y behave as a function of x? Hamilton’s equations in two dimensions 
are: 

dx aH dy aH -= - 
dt ap, ’ dt = ap, 

dpz aH -=-- dp, _ aH -- 
dt ax ’ dt -&- ’ 

In addition we know that 

(2.13) 

dy -- &tldt =VP, dp, aHlay 
dz = - = aHlap, ’ dz = -aHlap, dxldt 

dt 1 dH 
ds= 

dH/dt aH/at - 
aHlap, ’ ds = dzldt = aHlap, ’ 

From Eq. (2.14) ‘t i is clearly necessary to restrict 

(2.14) 

dx aH -= 
dt ap#O. 

z 
(2.15) 

That is, x must increase or decrease monotonically with t. 

Now instead of viewing the Hamiltonian as a function of the coordinates 
and momenta one can view pz as a function of x, y, pY, H, and t. By comparing 
the total differentials of pz and H one finds 

dp,=- aHlay apz aHlap, 
aY aHlap, ’ c = - aHlap, 

3PZ 1 aPZ -aH/at 
- = aHlap, ’ aH dt = waPz * 

(2.16) 

Thus, Hamilton’s equations can be rewritten 

. 
dy aPz dp, _ ah --- . Z=-ap, ' dx ay (2.17) 
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and in addition 
dt apz dH -ah -=- 
dx i3H ’ ds=at’ (2.18) 

Therefore y and py behave as if their motion is governed by a new Hamiltonian: 

u = -pz (Y, PY, t, -H, x) (2.19) 

where x now plays the role of the new ‘time’ variable. The new set of Hamilton’s 
equations in terms of the new Hamiltonian are 

dy au spy au -=- 
da: spy 9 ax = -z 

dt ax 4-H) = 
(2.20) 

ds = a(-H) ’ 
au 

dx at * 

Note that the equations have been supplemented with those for H and t. (-H) 
now plays the role of the momentum conjugate to t. For a ‘conservative’ system 
the Hamiltonian is independent of t and thus energy is conserved. Therefore, 
in this case t is an ignorable coordinate. Thus for a conservative system with 
n degrees of freedom, we obtain a new system with n - 1 degrees of freedom 
with a ‘time’ dependent Hamiltonian. Now the independent variable is one 
of the old coordinates, and the new Hamiltonian is the momentum conjugate 
to that coordinate expressed as a function of all other variables, including H 
as a parameter. The actual time dependence can be obtained separately after 
solving the problem. This technique is particularly useful if the new time is an 
angle variable. 

2.5 THE MOTION OF A PARTICLE IN AN ACCELERATOR 

A relativistic charged parti- 
cle moving in a magnetic field can 
be described by the Hamiltonian 

H = c [m2c2 + (p’- eA/c)2]‘/2 
-. (2.21) 

where A is the vector potential. 
It is useful to use a coordinate 
system based on a closed planar 
reference curve shown in Fig. 2.1. 
The coordinate system (x, s, y) is 
similar to a cylindrical system, 
however, the radius of curvature 
may vary along the curve. 

11-84 
4919Al 

Fig. 2.1 The Coordinate System. 
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If r’is the coordinate of a particle in space and r’, is the point on the reference 
curve closest to r’, then 

s = distance along the curve to the point Fc 

from a fixed origin somewhere on the curve; 

x = horizontal projection of the vector ?- <c; (2.22) 

y = vertical projection of the vector t’- Fe; 

p = local rad ius of curvature. 

The Hamiltonian written in terms of these coordinates is 

H =c rn2c2 + (PS - :Ad2 
(1 + $)” + (~z - ;A% )’ + (pY - EA,)2]1’2 (2.23) 

where pz and pY are projections of p’onto the x and y direction and 

-- ps = (jT.8) 1 + ; . 
( ) 

(2.24) 

Similar relations hold for As, A,, and A,. Note that -As as defined here is not 
simply the component of A’in the s^ direction. 

Further assume that the magnetic field in the neighborhood of the design 
orbit is given by 

B, = -Bo (s) + Bl (s) x + . . . 
(2.25) 

B, = B+)y +... 

and define the focusing function 

Bl(4 
K1 (‘) = Be(s) p(s) * 

Then the vector potential as defined above is given by 

(2.26) 

Aa = -BoP[; + (-+I) ;+ y] +... i (2.27) 

Instead of working with the Hamiltonian in Eq. (2.21), we will use the results 
of Section 2.4 and choose s as the new independent variable. Then the new 
Hamiltonian is 

)/ = (-ps) = + - 
( )[ 

H2 
1+; -$-- m2c2 -p2, -p; 

I 
l/2 

. (2.28) 

. 
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Since there is no time dependence, H is a constant of the motion which we call E 
( the energy). If we expand for small deviations about the reference momentum, 
we find 

Ji = (PO - p) ; + po [(+I) ;+ ,$I+ 2 + & (2.29) 

where po is defined to be the momentum on the reference orbit, 

e& 
PO =cp, (2.30) 

and p is the particle momentum, 

p2 = E - w&y 
c2 

. (2.31) 

Considering a particle with the reference momentum PO, the equations of mo- 
tion are 

-- 
dx pz hi pz -=- 
ds PO ’ 

-=- 
ds Po- 

(2.32) 
I 

PZ = PO 
( > 

-+l x , P& = -PoCY * 

In terms of x and y Eqs. (2.32) becomes 

5” =- 
( ) 

-+ 2 

y” = -K1 y . 

(2.33) 

Equations (2.33) yield the motion of particles near the equilibrium orbit 
(usually called betatron oscillations). Because Kr is dependent on s, the equa- 
tions are not second-order equations with constant coefficients. The.coefficients 
are periodic functions of s since the equilibrium orbit is a closed curve. As 
we indicated in Section 2.3 these types of equations are called Hill’s equations. 
There are some very general properties of the solutions of Hill’s equation which 
will be discussed in the next section. 
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2.6 FLOQUET'S THEOREMS 
. 

If C is the length of the equilibrium orbit, then the coefficients of the linear 
equations (2.33) have period C in s. Floquet’s theorem gives the form of the 
solution of linear equations with periodic coefficients. Let us consider the general 
second order equation 

2” + K(s) x = 0 (2.34) 

where 

K(s + C) = K(s) . (2.35) 

Suppose xr (s) and x2(s) are two linearly independent solutions of Eq. (2.34). 
Then the general solution x(s) can be written in terms of x1 and 22 and two 
arbitrary constants bl and b2, 

44 = bl Xl(S) + b2 x2(s) . (2.36) 

noindent Because the differential equation has periodic coefficients, x1 (s+ C) 
andIlzz(s + C) satisfy the same equation, i.e., 

xY(s + C) + K(s) Xi(S + C) = 0 . - (2.37) 

Therefore, they can be expressed in terms of xl(s) and x2(s), 

Xl(S + q = a11 Xl (s) + (312 x2(s) 

x2@ + C) = a21 Xl (s) + a22 52 (4 - 

Combining Eq. (2.36) and (2.38), we have 

(2.38) 

x(s + c) = (h ~11 + b2 ~21) xl(s) + (blu12 + b2 aa2) x2(s) . (2.39) 

We are looking 
requirement 

for a solution called the ‘normal’ solution which satisfies the 

x(s+C) =Xx(s) = X(bl XI(S) + b2 52(s)) . (2.40) 

If this is to be true for all s then 

(: “:)(J=$J * (2.41) 
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In order for Eq. (2.41) to have a nontrivial solution, the determinant of the 
coefficients must vanish; i.e., 

or 

a11 -A a12 

a21 a22 - x 

x2 - (a11 + a22) x + (a11 a22 - 

= 0 (2.42) 

a12 a21) = 0 * (2.43) 

The constant term in Eq. (2.43) is the determinant of the matrix in Eq. (2.37). 
Since the differential equation we are studying is derivable from a Hamiltonian, ’ 
the determinant is unity. Therefore the solutions of Eq. (2.42) are 

where 
X = e fiP 

cos p = 
a11 + a22 

2 * 

(2.44) 

(2.45) 

Note that p can be complex. Since the determinant of the matrix A is 
unity, the eigenvalues must be reciprocals; that is, if X is an eigenvalue, then l/x 
is also an eigenvalue. This property generalizes to higher dimensions as well. 
In this case the eigenvalues come in reciprocal pairs. 

We are now in a position to determine stability. To do this consider iterating 
the map of the normal solutions. This yields 

x(s+nC) = P,(s) . (2.46) 

If z(s + nC) is to remain bounded in the limit as n + 00, then 

IPII~l - (2.47) 

However, for stability both normal solutions must be stable, i.e., 

-. II+1 - (2.48) 

To satisfy both Eq. (2.47) and Eq. (2.48) th e magnitude of the eigenvalues of 
the matrix in Eq. (2.31) must be unity, and therefore p must be a real quantity. 
From Eq. (2.45) this implies 

or 
1 a11 + a22 1 < 2 (2.49) 

PW I <2 (2.50) 

where Tr stands for the trace. 
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Finally it is useful to find the form of the normal solutions. We have from 
Eqs. (2.40) and (2.44) 

x(s + C) = e+x(s) . (2.51) 
Now we let 

x(s) = P(s) eirs/C (2.52) 
and substitute into Eq. (2.51), which yields 

P(s + C) = P(s) . (2.53) 

Therefore P(s) is a periodic function with period C. Thus the two normal 
solutions to Eq. (2.34) are the product of an exponential function of s and a 
periodic function of s, the distance along the reference orbit. 

2.7 HIGHER-ORDER TERMS 

To obtain Eq. (2.33) in Section 2.5 it was necessary to linearize the equa- 
tions of motion or to expand the Hamiltonian to quadratic terms. In doing so 
there were higher-order terms which were neglected. These are basically of two 
types+ 1) Higher-order ‘geometric’ terms are those which come directly in the 
magnetic field or vector potential. These are due to deliberate or inadvertent 
nonlinearites in the magnetic field. 2) Higher-order ‘kinematic’ terms come from 
the expansion of the square root in Eq. (2.28). 

Since these higher-order terms are present in an actual accelerator, we must 
ask if they alter the linear stability calculated in Section 2.6. One might think 
that if the coefficients of the nonlinear terms are sufficiently small then the 
motion is essentially linear and stability is assured. This is in fact true for 
some cases. 

On the other hand this is not true in general. To see this in a simple example 
consider the Hamiltonian 

-. 

H(x,P,~~) = f (p2 + ;x2) + ;x3cos e 

where 8 is the independent variable. The differential equation is then 

d2x x 
~=-g-tx2COSo . (2.55) 

To see if the solution is stable, let us consider a solution which deviates by a 
small amount from the linear solution: 

x = a cos (O/3) + y (2.56) 
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where y is a small quantity (of order c). Now if we substitute into Eq. (2.55) 
and expand for small y, we find 

(2.57) 

The equation for y is then just a driven harmonic oscillator; however, one 
of the driving terms has the same frequency as the frequency of free oscilla- 
tions. In this case the amplitude of the solution grows linearly in 9. Thus, this 
equation indicates an instability. This is an example of a nonlinear resonance. 
The resonance occurred because the linear oscillation frequency was l/3; how- 
ever, there is still another possibility. Perhaps the small terms in y which were 
neglected in Eq. (2.57) will shift the frequency of the oscillator off resonance. 
For the particular example treated here, this does not happen. In other cases 
discussed in Sections 4 and 5 the nonlinear shifts in frequency do stabilize the 
motion. This will be discussed in more detail after we have developed more 
tools to understand nonlinear behavior. 

3. CANONICAL TRANSFORMATIONS -- 
A dynamical system is described in terms of a certain set of variables, coor- 

mdinates and canonically conjugate momenta. Sometimes it is more convenient 
to express the equations of motion in terms of different variables which are 
functions of the old ones. It is desirable to have the new coordinates again in 
Hamiltonian form; that is, if Q and P are the new coordinates, then 

dQ =(Q, W) dP 
dt= aP 

aK (Q, P, t) , dt=- aQ (3.1) 

where K(Q, P, t) is the new Hamiltonian. The question is then to find those 
transformations which accomplish this. 

3.1 THE GENERATING FUNCTION OF A CANONICAL TRANSFORMATIONS 

Hamilton’s equations of motion can be derived from a variational principle. 
For a system described by a Hamiltonian H(q,p,t), the Lagrangian function is 

L: (q,U) = cpiii - H(qi,pi,t) . (34 
i 

Consider the evolution of the system from tr to tz and the action integral 

t2 

S = 
J 

L: (a(t)i(t),t) dt . (3.3) 
t1 

. 
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Then we vary the function q(t) so that the end points are fixed, and ask for 
what q(t) is the action integral stationary. The answer can be found from the 
calculus of variations. q(t) must satisfy 

d afz aL: o ----= 
dt ai aq 

which is equivalent to 

d(Pi) aHvO , 4 aH 
dt + aqi 

i=-. 
api 

(3.4 

(3.5) 
Equations (3.5) are Hamilton’s equations of motion. 

Now, with new variables Q and P and a new Hamiltonian K, Hamilton’s 
principle must again be valid 

6 S’=6 7 [C Pigi - K(Q,P,t)] dt =O . 
t1 a 

Therefore either S = S’, or they differ at most by a total time derivative of 
some function W  . 

This function must be a function of the new and old variables. However, 
only 2n of these are independent for an n-dimensional problem since there are 
2n transformation equations relating the new and old coordinates and momenta. 
Consider a function which depends only on the new and old coordinates. That is 

Then we must have 

W  = J’&, 9, t) . P-7) 

Cpiii- H=x Pigi-K+ z s 
i i 

Now if we expand the total time derivative we have 

For Eq. (3.9) to hold identically, the coefficients of 4 and Q must vanish because 
q and Q are the 2n independent variables. Thus we must have 

al-3 
Pi’aqi 9 

p. afi 
(=-a 

a Fl K=H+= . 

(3.10) 

Equations (3.10) specify the relations between the old and new variables in a 
canonical transformation. The first two of these equations can be solved for q 
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and p in terms of Q and P. The new Hamiltonian is then given by the third 
equation in (3.10); 

K(Q, P, t) = H(q(Q, P, t),p(Q, P, t),t) + at (q(Qd’v t),Q, t> - (3.11) 

Fl(q, Q, t) is called the generating function of the canonical transformation 
in Eqs. (3.10). Rather than choosing the old coordinates and new coordinates 
(q, Q) as variables, we could have chosen the old coordinates and new momenta 
(q, P). In this case we have a different generating function F2 (q, P, t), and a 
different set of equations for the canonical transformation 

p = gj k?, p, t) , 

Q+ (q, p, t) 9 (3.12) 

K=H + 2 (q, p, t> * 

F2 andFr are related by a Legendre transformation. 

The equations of a canonical transformation can be viewed in many different 
ways. We could start with the relationship between the coordinates, derive the 
generating function which yields that, and then find the new momenta and new 
Hamiltonian. Alternatively we could begin with a new Hamiltonian, solve for 
the generating function and then calculate the new coordinates. In the next 
sections we show some examples. 

3.2 ACTION-ANGLE VARIABLES FOR THE HARMONIC OSCILLATOR 

In this section we consider a problem that we know how to solve. The 
harmonic oscillator Hamiltonian is 

w2x2 
H=;+T, (3.13) 

and the solution of the equation of motion is 

x = a cos (wt + 40) 
(3.14) 

p = -a w sin(wt + 40) , 

where a and 40 are two arbitrary constants. The motion is con&red to an ellipse 
in phase space. Note that the Hamiltonian is independent of the time and is thus 
a constant of the motion. Therefore the constant a is related to the constant 
value of &l. 
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Now we would like to change to a set of variables for which the new Hamil- 
tonian is a function only of the new momentum. Since we already know the 
solution above, we can use it to construct these new coordinates. Eq. (3.14) 
suggests we consider a transformation of the form 

x = a(J) cos (4) 

P= -a(J) w sin (4) 
(3.15) 

where J and C$ are the new momentum and coordinate respectively. a(J) is 
some as yet unspecified function of the new momentum. To accomplish the 
transformation we will use a generating function of the first type discussed in 
the previous section. From the transformation equations in Eq. (3.10), we need 
to find the old momentum p in terms of the new and old coordinates. This can 
be done by combining the two equations in Eq. (3.15) to yield 

p=-wxtan 4 . (3.16) 

The equation for the generating function can be integrated to yield 

-- 
Fl (x, 4) = -$ tamp. (3.17) 

Solving for the new momentum we find 

J= 
(w2x2 + P”) 

2w , 

and the complete set of transformation equations now reads 

x = dzjz cos cp 

P = -&IG sin 4 

w2x2 K,$ + 2 =wJ . 

(3.18) 

(3.19) 

The new momentum J is called the action variable while the new coordinate C#J 
is the angle variable. It is not hard to see that if the Hamiltonian has the units 
of energy, J has the units of an action. 

These coordinates are very useful for studying problems which differ from a 
harmonic oscillator only by the addition of small nonlinear terms. 
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3.3 DEVIATION FROM A KNOWN SOLUTION 

In Section 2.5 we saw that deviations from a known periodic solution to a 
differential equation obeyed a linear differential equation with periodic coeffi- 
cients. It is useful to derive a somewhat more general result using canonical 
transformations. Consider a Hamiltonian H with a known particular solution 
m(t) and PO(t). F or cases of interest this is the periodic solution to an inhomo- 
geneous differential equation. This known solution satisfies 

dqdt) _ aH 
dt dp ho(t), PO(t), t> 

dpo(t) aH 
(3.20) 

- = -z k!o(t), PO@>, t) dt * 

We would like to perform a canonical transformation to new coordinates and 
momenta which are close to the particular solution. Let the new coordinates 
and momenta be given by 

-- 
Q = q - qo(t) 

(3.21) 
P= P-Pop) . 

-Now if we use a generating function of the second type the equations of the 
transformation are given by 

aF2 
P =-=P+po(t) 

h7 

Q 
aF2 = - = q - qo(t) 
ap 

(3.22) 

which can be integrated to yield the generating function 

F2 (a, P, t) = lq - ml P + PO@)] * (3.23) 

Then if we use Eq. (3.12) for the new Hamiltonian and expand for small Q 
and P, we find 

K = -%oo(th’o(%t) + Ijo(t)qo(t) + f [(H&o(t), pa(t), t)] Q2 
(3.24) 

+ +P, (dt)>po(t)J)P2 + Hp&o(t),po(t),t)QP 

where the subscripts denote partial differentiation. Thus the Hamiltonian con- 
sists of two types of terms, those which depend only on the time and those which 

- 
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are quadratic and higher-order functions of Q and P with time-dependent co- 
efficients. The terms in the Hamiltonian which are not functions of Q and P 
do not affect the differential equation for Q and P and thus can be ignored. If 
the known solution is a periodic one, the lowest-order terms which contribute 
to the differential equations are second-order with periodic coefficients. Thus 
the differential equations are linear with periodic coefficients. 

Particular solutions which are periodic are fixed points of the one-period 
mapping generated by the differential equation. The transformation above has 
moved that fixed point to the origin in the new coordinate system. This is easily 
seen if we write the condition for a fixed point (Qo, PO): 

aH/aQ=o 
(3.25) 

aHlaP=o . 

From Eq. (3.25) this is satisfied for 

-- Qo=O , PO=0 . (3.26) 

-There may also be other fixed points of this system or other periodic orbits in 
the new variables. These periodic orbits are fixed points of mappings through 
different periods and thus the above process can be performed again. 

Not surprisingly we will once again find quadratic Hamiltonians with 
periodic coefficients; that is, linear differential equations with periodic coeffi- 
cients. Since these types of equations are so ubiquitous, we return to them in 
the next chapter. 

4. LINEAR EQUATIONS WITH PERIODIC COEFFICIENTS” 

-. 
There have been many useful techniques developed for linear equations with 

periodic coefficients in the context of alternating gradient focusing for particle 
accelerators or storage rings. lo In this section we follow Ref. ld to develop 
these, now standard, techniques in one dimension. The matrix approach is used 
initially to understand stability and introduce the very important function p, 
the Courant-Snyder amplitude function. Finally we show a canonical transfor- 
mation which changes the Hamiltonian to that for a harmonic oscillator. The 
subject of this section as in Section 2.6 is the solution of the differential equation 

. d2y 
ds2 + K(s)y=O (4.1) 
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which can be derived from the Hamiltonian 

Hz??+ K(s) y2 
2 - - (4.2) 

y represents either horizontal or vertical displacement, and K satisfies the 
periodicity relation 

K(s + C) = K(s) . (4.3) 

Here C is the circumference of the equilibrium orbit. 

In the alternating gradient synchrotron or storage ring the magnetic 
“lattice” ideally consists of N identical sections or “unit cells”, so that K also 
satisfies the stronger periodicity relation 

K(s + L) = K(s) ; L = C/N. (4.4 

4.1 THE MATRIX APPROACH 

The solution of any linear second order differential .equation of the form 
(4.2), whether or not K is periodic, is uniquely determined by the initial values 
of y and its derivat ve y’: 

Y(S) = ay(so) + by'(so) , 

Y'(S) = CY(SO) + dy'(so) , 

or, in matrix notation, 

a b 

= M(s ( so)Y(so) = 
C d 

Y (4 I[ I Y’(S0) * (4.6) 
(4.5) 

-. 
The usefulness of the matrix formulation (4.6) arises mainly from two fea- 

tures: In the first place, this formulation clearly separates the properties of the 
general solution of the problem from the features characterizing any particular 
solution. That is, the matrix M(s I SO) depends only on the function K(s) be- 
tween SO and s, and not on the particular solution. Secondly, the matrix for 
any interval made up of sub-intervals is just the product of the matrices for the 
sub-intervals, that is, 

Mb2 I so> = ws2 I Sl)M( Sl I so) , (4-V 

as is easily verified. 
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The determinant of the matrix M is equal to unity, because Eq. (4.1) does 
contain any first-derivative terms. 

For the particular case of constant K the matrix takes the form 

not 

r 
cos lp K-‘j2 sin c$ 1 

M(s I ‘O) = -KI/2 sin 4 cos lp 
1 

, (4.8) 

where 4 = K1i2 (s - SO). If K is negative, a more convenient way of writing 
this is 

cash TJ (-K)-li2 sinh $ 

(-K)1/2sinh $J cash 11, 
I 

, 

where $ = (-K)‘i2(s - se). For an interval of length I in which K = 0, 

-- 11 

M= [ I 0 1’ -- 

(4-Q) 

(4.10) 

For an interval in which K is piecewise constant the matrix is the product of 
the appropriate matrices of forms (4.8) to (4.10). 

In the periodic systems we are considering here the matrices of particular 
interest are those which characterize the motion of the particle through a whole 
period. We write 

M(s) = M(s + L I s) ; (4.11) 

-. 

this is the matrix for passage through one period, starting from s. Its elements 
are periodic functions of s with period L. The matrix for passage through one 
revolution is then 

M(s + NL 1 s) = [M(s)]~ , 

and that for passage through k revolutions is [iM(s) . 

In order for the motion to be stable as defined above, it is necessary 
and sufficient that all the elements of the matrix MNk remain bounded as 
k increases indefinitely. To obtain the condition for this, we consider the 
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eigenvalues of the matrix M(s), that is, those numbers A for which the charac- 
teristic matrix equation 

MY=XY (4.12) . 

possesses nonvanishing solutions. The eigenvalues are the solutions of the 
determinantal equation 

IM-XII=0 , (4.13) 

or, more fully, 

X2-A (u+d) + l=O , (4.14) 

where we have made use of the fact that Det M = ad - bc = 1. If we define 

c~~~=~T~M= ; (a+ d) 9 (4.15) 

the two solutions of (4.14) are 

X = cos j.4 f i sin p = efiP . (4.16) -- 

The quantity p will be real if 1 a + d I < 2, and imaginary or complex if 
-Ia + dl >2. 

-. 

Let us now assume that I a + d I # 2. Then the matrix M may be written in 
a form which exhibits the eigenvalues and other properties explicitly. We define 
cos p by (4.15), and define cy, ,0, and 7 by 

a-d = 2cr(s)sinp , 

b = p(s) sinp , (4.17) 

C = -7(s) sinp ; 

the condition Det M = 1 becomes 

P7--c?=l . (4.18) 

The matrix M may now be written as 

cosp + asinp PSb 

M= 
-7sin#L cosp - asinp I = Icospf Jsinp (4.19) 

- 
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where 1 is the unit matrix, and 

J = 

[ 

Q! P 

-7 -a 
(4.20) 

is a matrix with zero trace and unit determinant, satisfying 

J2=-I . (4.21) 

It should be noted that the trace of M, and therefore CL, is independent of 
the reference point s. For, by virtue of (4.7), we have for any si and sz 

Mb2 + L 1 ~1) = M(a)M( s2 1 $1) = M( ~2 I sl)M(sl) , (4.22) 

so that 

M(s2) = M(s2 1 sl)M(sl)[M(s2 1 sdl-’ . (4.23) 

ThuGM(si) and M(s2) are related by a similarity transformation, and therefore 
have the same trace and the same eigenvalues. On the other hand, the matrix 
M(s) as a whole does depend on the reference point s. Thus the elements 01, ,8, 
7 of the matrix J are functions of s, periodic with period L. 

Because of Eq. (4.21)) the combination I cos CL+ J sin ~1 has properties similar 
to those of the complex exponential eip = cos p+ i sin ~1; in particular, it is easily 
seen that, for any ~1 and ~2 

(~cosCLi+Jsin~~i)(~cos~2+Jsin~~a) = Icos(/-~+&)+Jsin(pi+p~) . (4.24) 

The kth power of the matrix M is thus 

ML = (Icosp+ Jsinp)k = Icoskp+ Jsinkp , (4.25) 

-. 
and the inverse is 

M--l = Icosp- Jsinp . (4.26) 

It follows from (4.25) that if ~1 is real the matrix elements of Mk do not 
increase indefinitely with increasing k but rather oscillate; on the other hand, 
if p is not real, cos kp and sin kp increase exponentially, and therefore the ma- 
trix elements do the same. Therefore, the motion is stable if p is real, i.e., if 
( a + d I < 2, and unstable if 1 a + d I > 2. . 
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Thus, to summarize, the matrix approach can be used explicitly to construct 
the periodic matrix elements a, 6, c and d. Once the one-turn matrix at a point 
SO is known, its trace can be calculated. This yields JL, which can then be used 
to calculate cz, 7 and /3 at the point se. The values of cr,~ and ,6 at other points 
can then be calculated via the similarity transformation in Eq. (4.23). In this 
case the matrix elements change but p remains fixed and thus the change is 
entirely due to ~1, 7 and ,0. 

These parameters play a major role in determining the details of the mo- 
tion. In particular, p determines the maximum local amplitude of transverse 
oscillations. This is demonstrated in the next section. 

4.2 THE PHASE-AMPLITUDE FORM OF THE SOLUTION 

Let us return to the form of the solution given in Eq. (2.52) which we rewrite 

y&) = w(+w , (4.27) 

where, for the moment, we impose no particular conditions on the functions w 
and $. It is easily verified by substitution into Eq. (4.1) that, if w and 11, satisfy -- 

w” + Kw - 
1 ._ -= 

w3 O 
(4.28) 

and 

(4.29) 

then y1 as defined by Eq. (4.27) is indeed a solution. In addition 

y&) = w(s)e-‘+(8) , (4.30) 

-. 

is also a solution and yr and y2 are linearly independent. Therefore any solution 
of (4.1) is a linear combination of yr and ~2. We can therefore write the matrix 
M(s~ 1 ~1) in terms of the solutions yr and y2 or, what amounts to the same 
thing, in terms of the functions w and $. We obtain 

M(S2 I Sl> = 

. I 
$cos $ - w2wi sin $J wrw2 sin II, 

-1-w1w'Iw2w; sin+- ($-g)cos$ $$cos$+w~w~sin$ 1 (4’31) 
ww2 

where pc’ stands for G,(Q) - +($I), wr for w(sr), etc. 
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We now consider the case where s2 - sr is just one period of K(s), i.e., 
s2 - Sl = L. The matrix A4 is then identical with the matrix (4.19). If we now 
require that w(s) be a periodic function of s, then wr = w2 and w: = wi, and 
the forms (4.31) and (4.19) are identical provided we make the identifications 

ti(s2) - 9w = P , (4.32) 

w2=p , (4.33) 

wwI=--QI ) (4.34) 

from which follows automatically 

1 + (ww’)2 1+ a2 
W2 =P=” 

(4.35) 

This identification is legitimate if we can show that /31i2- which is, of course, 
periodic-satisfies the differential Eq. (4.28) and that 

p’= -2ct . (4.36) 

TQ prove this, consider the matrix for the transformation from s + ds to 
s + L + ds. This matrix is, by (4.23), 

M(s + ds) = M( s + ds 1 s)M(s) [M(s + dsl s)]-’ . (4.37) 

For infinitesimal ds, 

M(s+ds) s) = 

Substituting (4.38) and (4.19) into (4.37) we find 

r(KP - 7)siw -2osin p 1 
M(s + ds) = M(s) + 

I -2Ka sin p -(KP - 7) siw 
L J 

ds, 

so that (4.36) is indeed valid, and furthermore 

and 
7’ = ~KcY. 

1 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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With the aid of (4.36) and (4.40) it is easily verified that p1i2 does indeed 
satisfy (4.28), and is therefore a periodic solution of that equation. Now (4.33) 
and (4.34) are justified, while (4.32) b ecomes the very important relation 

L 

/ 

ds 
p= -. 

P 
(4.42) 

0 

Equation (4.42) may be regarded as the definition of ~1. It is consistent with the 
previous definition, (4.15), but has the advantage of being unambiguous, while 
(4.15) only defines /.J modulo 27r. 

If we consider an accelerator of circumference C = NL with N identical 
unit cells, the phase change per revolution is, of course, Np. A useful number 
is 

s+c 
U= 

Np 1 ds’ -=- 
27r 27r / 

p; _ (4.43) 
S 

this is the number of betatron oscillation wavelengths in one revolution. 
(In the European literature on accelerators this number is often denoted by Q.) 
A useful interpretation of v is as the frequency of betatron oscillations measured 
in units of the frequency of revolution; we shall geneially refer to v simply as 
the frequency of oscillations or tune. 

The two particular solutions yr and y2 may now be written as 

(4.44) 

where 

d(s) = J $ (4.45) 

is a function which increases by 27r every revolution, and whose derivative is 
periodic. The general solution of (4.1) is 

-. y(s) = c&p1/2 c+w + 61 , (4.46) 

where a and 6 are arbitrary constants. This is a pseudo-harmonic oscillation 
with varying amplitude p1i2(s) and varying instantaneous wavelength 

X=27@(s) . (4.47) 

Incidentally, the relation (4.47) between the amplitude and the wavelength is 
formally just the same as in the WKB solution of the problem of the harmonic 

28 



oscillator with varying wavelength; however, the relation between the wave- 
length and the parameters of the differential equation is not as simple as in the 
WKB problem. 

4.3 ACTION-ANGLE VARIABLES 

Now let us assume that we have explicitly calculated p(s) and 4(s). Then it 
is useful to construct action-angle variables for this problem in a way completely 
analogous to the harmonic oscillator in Section 3.2. To do this we first write 
the solution for both the position and momentum: 

Y = up1’2 cos(ut#(s) + 6) 

p = +-l/2 sin(v4(s) + 6) - f COS(U~(S) + 6) 1 
(4.48) 

. 

The momentum equation is obtained by simply differentiating the equation for y. 

Now let us search for a canonical transformation of the form 
-- 

y = u(J) #d2 cos ?#b 

p = -a(J) p-1/2 
[ 
sin + - f cos $1 

(4.49) 

where J and 91, are the new momentum and coordinate respectively. 

We will use a generating function of the first type; therefore, we need the 
old momenta p in terms of the new and old coordinates. Combining the two 
equations in (4.49) yields 

p=-$ (tan$-z) . (4.50) 

-. Therefore, Eq. (3.10) for the generating function can be integrated to yield 

(4.51) 

Solving for the new momenta in terms of the old coordinates and momenta, 
we find 

J=$[y2+ (py$)2] (4.52) 
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and the complete set of transformation equations becomes 

y=mcoscj, , 

P = -Jm (sin+- % cos$) , (4.53) 

HI = H + aFl/ds = J/p(s) . 

The differential relations for /3 in Eq. (4.40) have been used to simplify the 
new Hamiltonian. 

In these new coordinates the solution of the equations of motion is 

J = constant 

’ ds’ 
?w = WV + / p(s - 

0 

(4.54) 

Note that in the process we have explicitly constructed an invariant, J. 
Equation (4.52) for the invariant is the equation of an ellipse in phase space 
which rotates periodically in s. If a particle has initial conditions which begin 
on some ellipse given by JO, then the coordinates and momentum of that particle 
always stay on that ellipse. 

Looking at it in another way, consider a single particle traversing the periodic 
focusing structure and plot its position and momentum in phase space each time 
it passes s = SO. Then, the locus of those points is an ellipse in phase space. At 
points other than so, the ellipse so generated evolves according to Eq. (4.52). 

The invariant J is simply related to the area enclosed by the ellipse: 

Area enclosed = 2nJ . (4.55) 

-. 

In accelerator and storage ring terminology there is a quantity called the emit- 
tunce which is closely related to this invariant. The emittance, however, is a 
property of a distribution of particles, not a single particle. Consider a Gaussian 
distribution in amplitudes. Then the (rms) emittance, c, is given by 

(YrmJ2 = P(s) @z - 

In terms of the action variable, J, this can be rewritten 

(4.56) 

L = (J) (4.57) 

where the bracket indicates an average over the distribution in J. 
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Finally note that the form of the new Hamiltonian is not precisely that of 
a harmonic oscillator in that the phase does not advance uniformly. This of 
course causes no difficulty in that both cases are trivial to solve. However, it 
is possible to perform another canonical transformation to coordinates which 
have a uniformly advancing phase. This is accomplished with the canonical 
transformation: 

FzbA JG) = Jl 

(4.58) 

J1=J, 

H1=FJl=; J1 . 

-- 

In these new coordinates the oscillating part of the phase advance has been 
- extracted leaving only the average phase advance. Either these coordinates or 

the previous set can be used in the next chapter on canonical perturbation 
theory. We will use the second set in the next section since no reference is made 
to a specific problem. In the later sections we will use the first set (J, $) since 
this simplifies the notation in spite of the fact that one must integrate to obtain 
the phase advance. 

5. CANONICAL PERTURBATION THEORY 

As a final example to demonstrate the use of canonical transformations, 
we will consider a nonlinear perturbation of an integrable Hamiltonian system. 
The problem will be presented in a general form here to explain the concept 
and methods. Chapter 6 will cover a nonlinear perturbation of the third order 
while Chapter 7 will discuss an isolated nonlinear perturbation of any order. 

Suppose that the problem can be described by a Hamiltonian 

H = Ho(J) + F(4, J, 0) (5-l) 

where H has been written in terms of action-angle variables of the unper- 
turbed problem. The perturbing term F(q$ J, 6) contains nonlinear terms and is 
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dependent on the independent variable 8. Furthermore, F is a periodic function 
of 8 and 4 and has zero average with respect to them, i.e., 

2* 2* 

&F@,J,8)=0 - -- 
0 0 

(5.2) 

If F has a nonzero average, the average value of F can be absorbed into Ho(J). 

Since F is considered a perturbation to a known system, we will use a 
perturbation theory to study its effect. To do this we will perform a canonical 
transformation to a new set of variables. We would like the new Hamiltonian 
to depend only on the new momenta. If we succeed in this, the problem is 
solved since the new momenta are constants of the motion, and we have found 
the surface in phase space to which the motion is confined. On the other hand 
we cannot hope to succeed in one step. Therefore we will attempt to do this 
perturbatively. That is, we do not demand that the Hamiltonian be completely 
independent of the new coordinates and the time, but rather only approximately 
so. Thus we seek a transformation which replaces the perturbing term F with 
a newperturbing term F’ which is of higher order. If we imagine that F is of 
order c, then F’ should be of order c 2. To achieve this let us select a generating 
function of the second type for a transformation from- (J, 4) to- (Jl, 41) of the 

-following form: 

F2 (4, JI, 0) = 4 JI + G(4, Jl, 0) . (5.3) 

The above transformation is close to the identity provided that G is small. 
The new coordinates and Hamiltonian are given by 

J = J1 + Gd (5.4 

HI =H + Ge 

-. where the subscripts indicate partial differentiation. 

The task is now to find a G which eliminates the perturbing term to first 
order. We do this by examining the new Hamiltonian after substituting the 
transformed variables: 

H = Ho (51 + G+) + F(4, Jl + G4, 0) + Go . (5.5) 
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Note that we have substituted so that the Hamiltonian is a function of the same 
variables as G, the old coordinates and the new momenta. Eventually we must 
complete the substitution; however, at this time it is more convenient to work 
with the mixed variables. Equation (5.5) can be rewritten in the interesting 
form 

H =Ho(Jl) + [Ho(Jl + G#) - Ho (Jl) - v(Jl)G& 

+ [WA Jl + $, 0) - F(4, Jl, e)] (5.6) 

+ dJ1) G+ + Ge + F(4, Jl, 0) , 

where I is the frequency as a function of amplitude of the unperturbed 
problem. If we can find a solution to the equation 

~(51) G, + Ge + F(4, Jl, 0) = 0 , (5.7) 

G will be a quantity of order F. All other parts of the new Hamiltonian are 
either independent of the coordinates and time or are of order F2. To see this 
more easily we can expand for small G to obtain 

H-== Ho(J1) + [w, G@ + FJ, G4] + ~(51) G4 + Ge + F(4, J1, 6) . (5.8) 

We must find the periodic solution to Eq. (5.7). The periodicity requirement 
is obvious for the angle variables. The solution must also be periodic in 0 so 
that G does not grow in 8 and thus destroy the small approximation. In order 
for a periodic solution to exist to Eq. (5.7), it is necessary that the average 
value of F vanish. This was anticipated by our earlier requirement in Eq, (5.2). 

Since both F and G are periodic functions of 4, they can be Fourier analyzed. 

-. 

W#J, Jl ,fl) = c fm (Jd) ein4 
m 

G(+6, Jl,e) = Corn (Jlt 0) eim4 
m 

Then the equation to be solved for G becomes 

imu + g 1 gm= -fm . 

Exercise: Show that the periodic solution of Eq. (5.10) is 

(5-g) 

(5.10) 

lJ+2r 

gm = 2sin:mv I 
,imv(e’-~-r) fm(#) de’ . (5.11) 

. e 
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Finally the full expression for G is given by 

e+2r 

G'C a. 
2 sin ?rmu / 

de’ fm(6’) e i m[4+v(B’-8-*)] . (5.12) 
m e 

Sometimes it is desirable to make use of the fact that F is a periodic function 
of 6 and 4 to expand it as a double Fourier series 

F = C fm n( 51) t~~(~‘-~‘) . (5.13) 
m,n 

Therefore, the solution to Eq. (5.10) can also be written 

G=i c fm n (Jl) ei(m’-ne) 
. 

mu-n m,n 
(5.14) 

Recall that our original purpose was to transform the Hamiltonian into 
a form which is independent of the coordinates and the time. Now the new 
Hamiltonian in Eq. (5.8) becomes 

-- 
HI = Ho( Jl) + [FJ, Gg + VJ~ G@] + . .a 

= Ho(J1) + F’(J1, 41, 0) . -- 

The remaining nonlinear term can be separated into a part which depends only 
on the new action variable and into another part which involves Jl, qil and 6 
but which has zero average value. This oscillatory term is the object of the 
next canonical transformation, whereas the term which is a function of the new 
action variable J1 leads to a change of frequencies with amplitude. The latter 
term is given by 

2r 2r 

d4 1% G# + UJ~ G;/2] . (5.16) 
0 0 

-. 
Finally the new Hamiltonian can be written 

HI = [ Ho( 51) + P’( JI) ] + [ F’ - E’ ] / 

= - HOI 
and the new frequency becomes 

+ F&h, JI, 6) 

aHo i3E’ 
ul(Jl> = aJ = ~(51) + aJ . 

1 1 

(5.17) 

(5.18) 
. 
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Note that if we examine the new perturbing term Fl, it is second order in the 
strength of the perturbation. In addition it is higher order in Jl. If the original 
perturbation has a lowest-order contribution of order J*, then the new term is 
of order Jf*-‘I. Therefore , for sufficiently small 51, we-can neglect Fl. If this is 
done, we have a new Hamiltonian which depends only upon the new momenta. 
Therefore the new momenta are constants of the motion and can be used to 
label curves in phase space. 

To proceed to higher order in perturbation theory there are two approaches. 
In the first approach we return to the generating function in Eq. (5.3) and 
express it as a power series in the strength of the perturbation. Then upon 
substitution into the Hamiltonian, we obtain a hierarchy of equations as we 
cancel the perturbing terms order by order. In this approach if e is the strength 
of the perturbing term, after the nth step we are left with a perturbing term of 
order ~(~+l). 

In the second approach we begin where we left off and make successive 
canonical transformations which are formally identical to the first one. This 
method is called superconvergent perturbation theory and was first introduced 
in this context by Kolmogorov in his proof of the KAM theorem.4u It is called 
superconvergent because on the nfh step the remaining perturbing term is of 
order c2”. However, the name does not imply that the method converges! If 
the procedure does converge, then it does so much faster than the first method. 
Unfortunately these methods do not always work; it is these divergent cases 
that are called nonintegrable. 

Everything would be fine if G were always small; however, a quick inspection 
of Eq. (5.14) h s ows that this is not the case for arbitrary u. There are resonances 
whenever 

u = m/n , m,n integers . (5.19) 

-. 

This happens because we have required periodic solutions to the equation 
for G. It is straightforward to see that if the resonance condition is satisfied, 
there are no periodic solutions to Eq. (5.10). In fact the amplitude of the 
solution grows linearly in 6. 

But remember that for a nonlinear problem the frequency u is generally a 
function of amplitude. So that if a resonance causes growth, this changes the 
tune and the system moves off resonance. Perhaps the infmities are a deficiency 
of the approach. In the vicinity of a resonance, another approach is in order. 

To study the neighborhood of a resonance let the frequency u be close to 
a single resonance and assume that all other resonances can be neglected, the 
Hamiltonian then takes the form 

H = Ho(J) + fmn cos (mq5 - n6) . (5.20) 

35 



I 

In this case it is possible to find an exact integral of the motion by making a 
transformation to a coordinate system which rotates in phase space. This is 
accomplished with the generating function F from (4, J) to ($, K), given by 

F2 (4, K 6) = (4 - ie) K (5.21) 

so that 

tjl=qb;B, J=K (5.22) 

and 

HI = Ho(K) - ~K+fmncos(m$) - (5.23) 

Since H1 is now independent of 6, it is a constant of the motion and can be used 
to label particle trajectories in phase space. 

In the next section we will illustrate the techniques just discussed in the 
specific example of a cubic resonance. 

6. ONE-DIMENSIONAL CUBIC NONLINEAR RESONANCES 

In the last section of Chapter 5 we showed how to use canonical transforma- 
tions to get rid of oscillatory terms in the Hamiltonian. In this chapter we will 

-build on what we have already learned and apply it to a system with third-order 
resonance and study the phase space behavior near resonance in detail. 

6.1 THE BEHAVIOR FAR FROM RESONANCE 

Consider a particle moving in a circular accelerator or a storage ring in the 
presence of a sextupole field. In this case the Hamiltonian is 

H = f(p2 + Kx2) + cx3f (s) . (6-l) 

Here we use s as the independent variable. Recall that f is periodic with 
period C (the circumference) in s. In addition f may have stronger periodicity 
imposed by design. Transforming to the action-angle variables introduced in 
Section 4.3 

x = m cos tp 
(6.2) 

p=-dmsin4 

we obtain the new Hamiltonian: 

H = J/p + c&(J/?)~/~ cos3 4 f(s) 
(6.3) 

= J/P(s) + V(4, J, s) . 
. 
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Our goal is to construct a canonical transformation so that the new Hamiltonian 
or the new action is an approximate constant of motion. Following the outline 
in Chapter 5, we propose a generating function F2 given by 

F&b, 51, s) = 451, +G(4, 51, s) - (6.4 

Then the canonical transformation generated by F2 yields 

41=4 + GJ, , 

J=Jl + Gg , 

Hl = H -I- Gs . 

We now try to find the function G such that 

& Gd + Gs = -V(4, Jo) - (6.6) 

FromEq. (6.3) we know that the perturbing term is 

V(4, J1,s) = $J1p(s))3/2 f(s) [cos 34 + 3~0s 4j . 

(6.5) 

(6.7) 

Then we can solve Eq. (6.6) with the method used for Eq. (5.7) to obtain 

s+c 
G = - -? 1 3’2 

4 (J) { 2si;av ds’f(s’)p(s’)3/2 sin[4 + +(s’) - $J(s) - 7~~1 
S 

s+c 
1 

+ 2 sin 37ru I 
ds’f(s’)/?(s’)3’2 sin3[4 + $(s’) - $(S) - KU]} . (6.8) 

S 

Since the phase of betatron motion does not advance uniformly like a 
harmonic oscillator, the factor of u6 in Eq. (5.12) is replaced in Eq. (6.8) 
by y!~(s) where 

0 
(6.9) 
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Next we have to evaluate the average of the new perturbing term in Eq. (5.16). 
VJ, and Gd are given by 

dV 
VJ, = a~1 = ; $Jl)‘i2 P(s)~/~ f(s) [co634 + 3 cos 41 

s+c 
G4 = - -$ (Jl)3/2{ 2si;nu / ds’f(s’)fl(s’)“” cos[4 + tlr(s’) - ‘b(s) - TV] 

S 

s+c 
3 

+ 2 sin 37ru / 
ds’ f(s’)p(~‘)~/~ cos3[4 + $(s’) - $(s) - w]} . (6.10) 

S 

First we average over 4 to get rid of the cross term and then average over s 
to obtain 

-- 
(V& G4)s’4 = -$(J1)’ /” d@(s)312 f(s) s]C~(s’)3~2f(s’)ds’ 

x 3 cos ($(‘I) - +(‘) - Tu) + ‘OS 3 (t+‘) - tclb) - d 
sin 7ru sin 37ru 

. (6 11) . 

-. 

If the actual distribution of sextupoles is known, the integral in Eq. (6.11) 
can be evaluated. If we drop the fluctuating term, the new Hamiltonian is 
given by 

17 = Ho(J1) + (G+ VI,> . (6.12) 

Recall that the oscillation frequency is obtained by taking the derivative of 
the Hamiltonian with respect to K. This implies that there is an amplitude 
dependence of the frequency due to the second-order effect of the sextupole 
perturbation; 

dJl> = u+ -&VJ,) - (6.13) 

Note that the additional term in the new Hamiltonian in Eq. (6.11) is of 
order J2, and thus the tune in Eq. (6.12) varies linearly with J. This is similar 
to the first-order effect of an octupole perturbation (- x4); therefore, a sextupole 
perturbation in second order produces an octupole-like nonlinear frequency shift 
with amphtude. This is only true, however, if the tune is far from resonance. 
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6.2 THE THIRD INTEGER RESONANCE 

The approach we used so far will work fine if the perturbing terms are small. 
However, this is not the case whenever u is close to an integer or a third integer, 
because then the denominator in Eq. (6.8) will become very small, and the entire 
procedure breaks down. In such a situation we can solve the problem when the 
tune is close to a particular resonance as indicated in the previous chapter. For 
example, let us consider the case when u is very close to a third integer, 

It is possible to find an integral of the motion for the Hamiltonian by going 
into a rotating coordinate system provided that we can neglect other resonances. 
Let us return to the Hamiltonian in Eq. (6.3), 

H = J/p(s) + c fi p”‘” J312 f(s) cm3 4 - (6.15) 

In this section it is convenient to use the coordinate system developed in 
Eq. (4.58) in which the phase advances uniformly. 

In this case the transformation yields 
-- 

’ ds’ 
41=4-[/m- 

0 

us 
R 1 = 4 - x(s) . 

J1=J . 

The function x(s) is a known function of s calculated from the known p(s). The 
action variable is unchanged while the Hamiltonian becomes 

HI = G + &@(s)~/~ J;‘2 f(s) COS~(~~ + x(s)) 

Since the perturbed part of the Hamiltonian is a periodic function of 41 and s, 
it can be written as a Fourier series: 

Hl = T + Jf/” c Am, cos(m& - ns/R + amn) . 
m,n 

(6.18) 

The Fourier series is finite in 41 and (possibly) infinite in s/R. To consider 
the neighborhood of the third integer resonance we drop all terms except the 
resonance term to find 

H1 N uJ1 R + Jtf2&no cos (341 - y + QfQn, . 
> 

(6.19) 

The other terms can be moved to higher order by a canonical transformation as 
demonstrated earlier in this section. To simplify the following discussion we set 
agno equal to zero. 
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Now consider another canonical transformation to new variables ($, K) 
given by 

F2 =K 41-$e) 
( . (6.20) 

then 

(6.21) 
J1=K. 

This yields the Hamiltonian 

HI N 6K + K3i2A3no COS(~$) - (6.22) 

6.3 PHASE SPACE STRUCTURE 

Now we finally have a Hamiltonian independent of the “time” variable s. It 
is now straightforward to find out the behavior of the particle by examining the 
phase-space structure of the system under various conditions. For example, the 
first thing to find are the fixed points of the motion. These can be found by 

_ solving ._ 

a& o -= a& o -= 
LIK , 

w 

which is given explicitly by 

3 
6 + 5 &noK u2 cos3Tj = 0 

sin 39!~ = 0 . 

The solutions to Eq. (6.24) are 

1/,=7r/3 ,  37r/3 ) 57rr/3 
-_ 

. 

(6.23) 

(6.24) 

(6.25) 

These tied points are shown in Fig. 6.1. Note that if we transformed back to 
(Jl, 41) variables the figure would rotate in phase space. 
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It is clear that the presence 
of the perturbation divides phase 
space into disjoint regions. When 
the tune is away from resonance 
and the amplitude is small, the 
unperturbed term dominates and 
the trajectory is a circle around 
the origin representing stable un- 
perturbed motion. When the am- 
plitude gets larger, the perturb- 
ing term makes its presence known 
by deforming the trajectory into 
a triangular shape, but the mo- 
tion is still stable. If the ampli- 
tude now grows larger than K,, 
the trajectory ceases to form a 
closed curve. This leads to un- 
stable motion of the particle. 

Note that Eq. (6.25) indicates 
that the amplitude of the fixed 

-points will shrink to zero when 

Fig. 6.1. Phase space structure 
of third order resonance. 

the tune is right on resonance (6 = 0) , and the stable fixed point at the origin 
becomes an unstable fixed point. 

Although most designers of accelerators try very hard to avoid resonances, 
the third-integer resonance has actually been used by design to slowly extract a 
beam from a synchrotron for high energy experimental programs. This process, 
called resonant extraction, makes use of the large amplitude of the particles 
moving out on a separatrix to separate them from the core of the beam and 
deflect them out of the accelerator. For further details of this process refer to 
Ref. 13. 

-. 6.4 STOPBAND WIDTH OF THE THIRD-ORDER RESONANCE 

Assuming that the amplitude at which the resonance occurs is already known 
as K,, then the tune separation needed to be away from unstable motion is 

3A3no 6 > 2 K,‘/” . (6.26) 

The term ‘stopband width’ is defined to indicate this separation, i.e., 

. 
3A3no Stopband width Au = 2 K,“” . 
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To relate all of this to the actual physical world of a beam distribution, we 
must recall from Eq. (4.57) that the emittance of a beam is related to the action 
variable K, 

c=(K) . (6.28) 

Therefore, for a beam with emittance c, the third-order stopband width is 

AY= 2gzJz. (6.29) 

7. A ONE-DIMENSIONAL ISOLATED 
NONLINEAR RESONANCE 

Thus, we have seen how to apply the canonical transformation method to 
solve a third-order nonlinear perturbation to an otherwise linear Hamiltonian 
system. Now we want to extend this technique to a system subjected to a 
nonlinear perturbation of any order to understand the behavior of the system. 
as long as each resonance acts independently. A system under the action of 
isolated nonlinear perturbation generated by a nonlinear term N zk can be 
described by the Hamiltonian 

H = VI + a(l) + d2 cos(m+nB) . (7.1) 

Thus, we suppose that we are close to a particular resonance and that all other 
resonances can be neglected. We make a canonical transformation to a rotating 
system in phase space with the generating function: 

l-54 = ((b - n/me)11 (7.2) 

-. 

then 
$=c$--n/m9 , Il=I 

HI = H - nfm II = 6 I1 + a(Il) + dkj2 cos(m$) (7.3) 

where 

6=u-n/m . W-4 

The Hamiltonian has been successfully cast in a form explicitly independent of 
the “time” variable 8; thus, it is a constant of the motion. 
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7.1 FIXED POINTS 
. 

In the phase space ($,lr) we can find a set of points where the trajectories 
are stationary. Those fixed points can be obtained by the conditions: 

PHI PHI o 
-=-= 

aI1 w 
(7.5) 

which implies 

6 + a’(ll) + cos (m&) t c IFi2-’ = 0 . 
(7.6) 

-- 

sin m $0 = 0 

In the polar coordinates ($, II), these are a string of-points sqrrounding the 
origin, as shown in Fig. 7.1. 

-. 

In fact when sin rn& = 0, cos rn$o = 
fl and for different signs of cos m+ 
the characteristics of the fixed points 
are different. The trajectories sur- 
rounding stable fixed points, SFP, 
are closed (either circles or ellipses), 
while those surrounding unstable 
fixed points, UFP, are open (hyper- 
bolic). It will be shown in the next 
section that those angles correspond- 
ing to cos rn& = 1 are unstable 
fixed points while those with cos rn& 
= -1 are stable fixed points. 

Suppose we define Ir as that am- 
plitude which yields an oscillation 
frequency at resonance, i.e., 

u + &(I,) = n/m 

then Eq. (7.6) becomes 

(7.7) 

.;< SFP 
, ,/..’ ._ .-. .\,. _ 

‘, 
, . I’ .J., 
: ,t’ ’ 
1 , i 

h 
. 

i : 
“;t 

jt UFP 
: 

2 I I I 

Fig. 7.1. A string of fixed points 
in the (+,I) phase space. Shown 
is the sixth order perturbation. 
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Q’(h) - qIr) 
2 

+ cos(mq5f-j) f tI~‘2-1 = 0 

or expanding for II close to I,. 
(7.8) l 

(I1 - A) = 
0 

k E - -- Ik’2-’ cos(m&) . 
2 CY’f r 

(7-g) -, 

is slightly less than I, while the am- 
plitude of SFP is slightly larger than -2 I I I 

I T’ In summary, the phase space -2 -I 0 I 2 

structure close to a particular reso- 11-84 4919/\4 

nance is a string of stable islands at 
a particular amplitude determined Fig. 7.2. Relative locations of 
by the tune and nonlinear detuning stable and unstable fixed points 

-of the system, as shown in Fig. 7.2. (It& < Ir 2 Is). -- 

Therefore, the amplitude of UFP 

7.2 RESONANCE ISLAND WIDTH 

The boundaries of the stable islands are formed by curves joining the unsta- 
ble fixed points. They are called separatrices and their equation can be easily 
found by the fact that the Hamiltonian is a constant on the curve. 

From Eqs. (7.3) and (7.7), we have 

6I+ a(I) + dkj2 cosmtl) = SIu + a(Iu) + dtJ2 
(7.10) 

a(I) - Ia! + dki2 cosm$ = CY(&) - I, a!(&) + &” . 

where Iu is the action at the unstable fixed point. Expanding for I- close to Ill 
gives the difference of the amplitude between I and Iu, 

(7.11) 

From Eq. (7.11) we can find the maximum separation or island width 

AI=2 1 (7.12) 
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So far we have worked with a Hamiltonian with a general amplitude de- 
pendence of the tune. Next let us keep only the lowest-order term, which is 
quadratic in I and work out some of the properties of the island more simply. 
When the detuning term is quadratic in I, the Hamiltonian (7.3) becomes 

H=6I d-5 aI + ~Ik~2c~s rn$ (7.13) 

and the definition for Ir becomes 

u + a Ir = n/m . (7.14) 

In order to see the Hamiltonian in the vicinity of Ir, we express the Hamiltonian 
in terms of p, where I = p + Ir, 

H=;ap2 + 6 I:‘” cos mlC, (7.15) 

where constant terms have been dropped. Again it is easy to see the island 
width using Hamiltonian at the UFP to obtain 

1 
-apka, - 4 k/2 
2 

= cry2 . (7.16) 

Therefore the island width is given by 

(7.17) 

Keep in mind that this is only valid when I - I, < < Ir . Another condition to 
be met is that other resonances should be far away. If the widths calculated 
using isolated resonances are such that they overlap each other, then it is clearly 
incorrect to consider the resonances isolated. 

7.3 ISLAND SEPARATION 

-. To find the distance to the next resonance, we will first find the spacing in 
frequency and then convert that to amplitude. Recall that the linear amplitude 
dependence of the tune gives 

AI = Au/a . (7.18) 

In frequency space neighboring primary resonances occur at n f 1, m f 1; 
therefore, the spacing is given by 

. Au AI=-= fwm) cv 1 or 5 . 
a a ma m2a (7.19) 
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Using the smaller spacing, we find that the condition for spacing to be larger 
than island width is 

a << 

Recall that Eq. (7.17) requires that I - II << I,, giving 

(7.20) 

or 

(7.21) 

(7.22) 

Equations (7.20) and (7.22) set a limit to the validity of our analysis. These two 
conditions require that the nonlinear detuning, a, must be moderate. It should 
be neither too small (since then the islands do not close) nor too large (since 
then the resonances do not separate). 

7.4- THE PENDULUM EQUATION 

Having understood the phase space structure in general, tie are ready to 
zoom into a particular island as suggested by Eq. (7.15)) 

H = iap2 + c $1” cos rn+ . (7.23) 

In this form we are considering the trajectories close to a particular resonance 
I r’ 

From Hamilton’s equations the equations of motion in (T+!J, I) coordinates are 

t3H 
fi=-w= 

-cml,k12sin m$ . 

(7.24) 

Combining the two equations gives 

tJ + acmf, k/2 sinm$=O . (7.25) 

This is the equation of motion for a pendulum with familiar phase space struc- 
ture shown in Fig. 7.3. 
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When the amplitude is small, a 
small amplitude oscillation frequency 
fl can be obtained from (7.24) by ap- 
proximat ing 

sin rn$)-rn$ . 

This yields 

(7.26) 

fl2 = a E I:‘” m2 . (7.27) I ,.;I 

From this frequency an alternate ex- 
pression for the overlap condition can 
be derived. The frequency of the ne- 
glected terms should be large com- 
pared to n. In other words, since 
the lowest frequency of the neglected o-*3 o 

I I 

terms is simply unity, we find 3.5 4.0 4.5 
31-84 9 4919A5 

Tx << 1 . (7.28) 
Fig. 7.3. Pendulum-like phase space 
structure in the vicinity of a stable 
fixed point. - 

In Section 6.1 we promised to show the way to identify stable or unstable 
fixed points. This can be done by looking into the neighborhood of the fixed 
points. It has already been shown that the fixed points occur around cos (mt+h) = 
fl; we can expand the angle variable around those points to obtain 

cos(m$) N -1 + 
m2 Ati 

a 

in the vicinity of cos(q$) = -1, and similarly in the 
we have 

m2Ati2 
cos(m$) N 1- 2 . 

The Hamiltonian now takes the form 

H = iap2 f 

(7.29) 

vicinity of cos(q$) = 1 

(7.30) 

(7.31) 

where the constant term of 1 has been dropped. It is clear now that the tra- 
jectory near rn$ = 7r is elliptical and hence stable, while the trajectory near 
rn$ = 27r. is hyperbolic and hence unstable. 
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7.5 THE DISTINCTION OF RESONANCES 3, 4, 5 OR HIGHER 

There is a qualitative difference between resonances of order three or four 
and those of order five or higher. Third-order resonances have unstable fixed 
points at J = 0 when the frequency is on resonance (6 = 0). This does not 
necessarily imply global instability since in many cases the separatrices are bent 
back by the nonlinear detuning at large amplitudes. Fourth-order resonances 
may have stable or unstable fixed points at the origin, and fifth- or higher-order 
resonances have stable fixed points at the origin. 

. 

This is due to the relative powers of the action variable I in the perturbation 
term and in the nonlinear detuning term. For third-order the perturbation 
dominates at small amplitude due to the 13i2 dependence. For fifth- or higher- 
order the nonlinear detuning dominates with its I2 dependence. The fourth- 
order resonance is the transition. In this case stability depends upon the relative 
size of the coefficients in the two terms. 

To see this effect in the fourth order resonance consider the Hamiltonian 
exactly at resonance: 

-- H=;d2+ r12cos 4qkE 

which yields 

p = 
E 

$a + tacos 4~j ’ 
(7.33) 

In order to keep the amplitude positive definite, a has to be greater than 26. 
Physically that means the nonlinear detuning has to be strong enough to bend 
the separatrices back to form a closed curve. 

For tith order or higher, n > 5, the small oscillation is always stable. Thus a 
one-dimensional nonlinear resonance causes instability at small amplitude when 
it is of third- or fourth-order, but not for fifth-order or higher. 

7.6 SOLUTION ON THE SEPARATRIX 
-. 

We know that when the amplitude is small, the particles oscillate with fre- 
quency u. But as the amplitude increases and gets closer to the separatrix, 
the frequency decreases. Now we want to see what actually happens when the 
particle is sitting on the separatrix. Consider the Hamiltonian 

H=&s+ . (7.34) 

It has already been shown that the separatrix passes through the unstable fixed 
point at phase angle -r and r; therefore the equation for the separatrix is given 
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by 

which yields 

P2 -- 
2 

cost) = 1 

~=p=fJ2(1+cos~)=f2cos~/2 . 

(7.35) 

(7.36) 

It can be shown that the solution for 4 is given by 

4 = 4 tan-’ (ef) - 7r . (7.37) 

Exercise: Prove that Eq. (7.37) is indeed the solution of Eq. (7.36). 

It is clear that the rate of approach toward unstable fixed point decreases as 
the particle gets closer to the UFP. From Eq. (7.37) it takes an infinite amount 
of time to actually reach it. This makes it much more sensitive to perturbation. 

The solution above is for motion on the separatrix of one isolated resonance, 
in this case the simple pendulum. In the general system there are many other 
resonances. We have argued earlier that provided the spacing of the resonances 
is larger than the widths of the resonances (the Chirikov criterion),’ then the 
isolated resonance picture is useful. However, the effects of the other resonances 

-first become visible in the neighborhood of the separatrix. - 

The problem is that although the oscillations around stable fixed points are 
somewhat immune to the perturbations of neighboring resonances, the motion 
near unstable fixed points and the motion on separatrices are not. If we trace 
the trajectory which approaches the fixed point at r back in time and also 
trace the trajectory which departs from --A forward in time, we find completely 
different behavior in the case of multiple resonances than in the case of an 
isolated resonance. 

-. 

In the case of a single resonance the two ‘separatrices’ join smoothly and 
are actually part of the same curve, as demonstrated above. In the case of 
multiple resonances the two ‘separatrices’ meet at a small angle. This leads 
to completely different behavior in the neighborhood of the separatrix even for 
very small perturbations. 3A14 If we look in the neighborhood of a ‘separatrix’, 
rather than a curve, we see a band of apparently random motion. If the res- 
onances overlap, this ‘stochasticity’ can spread to almost all of phase space. 
However, if the resonances are well isolated, this behavior is usually confined to 
the neighborhood of the ‘separatrices’ and unstable fixed points. 
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8. SUMMARY 

In the previous sections we have reviewed some of the basic techniques which 
can be used to analyze stability in nonlinear dynamical systems, particularly in 
circular particle accelerators. We have concentrated on one-dimensional systems 
in the examples in order to simply illustrate the general techniques. 

We began with a review of Hamiltonian dynamics and canonical transfor- 
mations. We then reviewed linear equations with periodic coefficients using the 
basic techniques from accelerator theory. 

To handle nonlinear terms we developed a canonical perturbation theory. 
From this we calculated invariants and the amplitude dependence of the fre- 
quency. This led us to resonances. 

We studied the cubic resonance in detail by using a rotating coordinate sys- 
tem in phase space. We then considered a general isolated nonlinear resonance. 
In this case we calculated the width of the resonance and estimated the spacing 
of resonances in order to use the Chirikov criterion to restrict the validity of the 
analysis. Finally the resonance equation was reduced to the pendulum equation, 
and weexamined the motion on a separatrix. This brought us to the beginnings 
of stochastic behavior in the neighborhood of the separatrix. 

- It is this complex behavior in the neighborhood of the sefiaratrix which 
causes the perturbation theory used here to diverge in many cases. In spite of 
this the methods developed here have been and are used quite successfully to 
study nonlinear effects in ‘nearly integrable’ systems. When used with caution 
and in conjunction with numerical work they give tremendous insight into the 
nature of the phase space structure and the stability of nonlinear differential 
equations. 
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