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ABSTRACT 

Noting that quantum measurements are in general incomplete, we develop, 
starting from a recent entropic formulation of uncertainty, a mazimum uncer- 
tainty principle to define the statistical mechanics of microscopic systems. The 
resulting ensemble entropy coincides with the expression of von Neumann, thus 
providing a unified, quantum basis for statistical physics of all systems. Examples 
involving momentum and position measurements are discussed. 

-. 

Submitted for Publication 

* Work supported by the Department of Energy, contract DE - AC03 - 76SF00515 
t Permanent address. 



-. 

Quantum measurements ’ are as a rule incomplete in that they fail to pro- 

vide an exhaustive specification of the state of a system. A quantum mechanical 

system is in general described by a density matrix,’ p^, whose complete spec- 

ification requires the measurement of N2 - 1 independent elements, N being 

the dimensionality of the relevant Hilbert space. Clearly, except for those cases 

where the density matrix description is used for only a finite subspace (e.g., spin 

substates) of the full Hilbert space, N will be infinite and p^ inaccessible to a 

complete measurement. A pure state is therefore an idealization, since otherwise 

it would constitute an example of a completely measured system in an infinite 

Hilbert space. 3 Hence, the realizable (or preparable) states of a system must 

be considered members of an ensemble, and so there arises the basic problem of 

assigning p^ on the basis of the incomplete information obtained from the prepa- 

ration process. While this is a problem of quantum statistics at a very basic 

level and therefore fundamental to both quantum theory and statistical mechan- 

ics, there is a distinct lack of a systematic treatment of it in the literature,4 

principally because of the customary restriction to idealized measurements. The 

object of this note is to present such a treatment, and to demonstrate the fun- 

damental nature of the results that follow from it. The underlying principle will 

be the equality of a priori probabilities5 (EAP), implemented on the basis of a 

recently formulated definition of the entropy of a quantum measurement.6 This 

formulation will in particular imply the standard expression for the entropy of 

an ensemble, thus providing a unified, quantum mechanical basis for microscopic 

and macroscopic, equilibrium and non-equilibrium statistical mechanics. 

Let us recall the formulation of measurement entropy in Ref. 6. In general, 

the measurement of an observable 2, in the state p^, is accomplished by means 
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of a measuring device DA which will include a partitioning of the spectrum of A^ 

into a number of subsets crf, called “bins” .’ The result of the measurements 

are summarized in a set of probabilities, Pi *, of finding the outcome of the mea- 

surement to be within the given bin Cri *. This partitioning of the spectrum of A^ 

generates a corresponding one of the Hilbert space into (orthogonal) subspaces 

.Mt together with a set of projections ii 4. The entropy (in units of the Boltzmann 

constant) of such a measurement was defined in Ref. 6 as 

S(p^)D*) = -Ctr@?4)& [tr(Fiif)] , 
i 

(1) 

and shown there to be a suitable measure of quantum mechanical uncertainty. 

Note that measurement entropy is a joint property of the system and the meu- 

suri-n> device. 

The problem to be solved is this: A quantum system, measured (or prepared) 

to have the set of probabilities { Py }, where v labels the measured observables 

2 of the system, is to be assigned a density matrix according to EAP. As usual, 

this requires the identification of an ensemble entropy, S, as a measure of uncer- 

tainty (or lack of information) about the system.’ The desired p^ would then be 

so determined as to maximize this uncertainty/entropy. According to (l), then, 

we must identify two ingredients, an observable (a self-adjoint operator), @, and 

an associated measuring device, Dw, the two of which would jointly serve to 

define the ensemble entropy as S = S(p^( Dw). It is immediately clear that lack 

of information must be gauged against the most accurate measuring device avail- 

able. This requires the device to be as finely binned as possible; such an idealized 

device will be denoted by D~~,.g The observable F, on the other hand, should 

be identified as the operator which embodies the greatest amount of information, 

1 
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hence the least uncertainty/entropy, about the system. This proposition, that 

p^ is to be determined so that the least uncertain observable of the system has 

the maximum possible measurement entropy, will be referred to as the maximum 

uncertainty principle. It is the quantum expression of the preposition that the 

most probable state is that which embodies what is known and none else. In 

symbols, S = infGS(p^jDK=,). N ow it can be shown mathematically lo that the 

above infimum is obtained for 6? = p^, so that S = S(p ) Dkaz). In other words, 

our measure of entropy has singled out p^ as the best determined observable of 

the system, as indeed it must. That the measurement entropy of the density 

matrix is to be designated as the measure of our lack of information about the 

system is in perfect accord with its significance as the depository of all available 
-- 

information about 

Since j? has a 

l), the projection 

eigenvector of p^,6 

the system. 

strictly discrete spectrum (recall that trp^ = 1 and trp2 5 

??f corresponding to D k,, is simply Ii) (i1 , Ii) being the ith 

implying therefore that 

s = s(~^ID&,,) = -Ctr(p^?r)en [tr(F;iP)] = -tr(penp) . (4 
i 

This is the familiar expression introduced by von Neumann2 It is well known 

that the standard results of statistical mechanics immediately follow upon maxi- 

mizing S (subject to the constraints imposed by the known data). Here, we have 

achieved a unified basis for microscopic and macroscopic statistics by adopting a 

unified measure of uncertainty/entropy. In retrospect, the uniqueness and univer- 

sality properties of the entropy function, introduced into physics by Boltzmann 

with new uses advocated by Jaynes,5 uniquely qualify it for such a role. 
. 
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We now have the solution to the problem posed above: the ensemble entropy 

S is maximized subject to the constraints y = tr(%r-$), yielding 

F = K’exp (-CX~;i~) , 
v,i 

(3) - 

where the partition function 2 and the Lagrange multipliers Xy are determined 

from 

trp^ = 1, Pi” = -(a/ax:) h 2 . (4 

While the similarity of (3) to the standard distribution functions is evident, 

a basic difference between the microscopic and macroscopic cases must be noted: 

Whereas the known data { Piv} for the former pertain to individual, microscopic 

systems (i.e., momentum of a particle in a beam), those in the latter correspond 

- to bulk properties of large aggregates (e.g., volume of a gas, total magnetization 

of a spin system). Furthermore, the latter is almost exclusively concerned with 

stationary ensembles (for which j.? commutes with the Hamiltonian), whereas 

there is no such stipulation for microscopic ensembles and, a fortiori, no ques- 

tion of time averages or ergodicity. It goes without saying that the maximum 

uncertainty principle as formulated above, even though it has wider implications 

than those already tested within statistical mechanics, is one that is implicitly 

accepted and routinely applied by physicists. Indeed, in practice, any system- 

atic deviation away from its predictions would be attributed to an unaccounted 

“bias” in the preparation procedure and searched for. Furthermore, insofar as 

it specifies a definite measure of uncertainty/entropy for any physical system, it 

resolves, in principle at least, the ambiguity which arises in the implementation 

of EAP for continuous distributions. 533 

-. 
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An important aspect of the above formulation is the mutual harmony of its 

mathematical rigor and its physical sense. Consider, for example, a state pre- -. 

pared by the measurement of one observable A^. One finds that p^ = Ci[Pi*SA/ 

tr (ii”)]. Clearly, unless every ??;A has finite trace, this p^ will not be normalizable. 

For example, if A^ is the momentum operator p^, tr ;i’ = 00 for Z r corresponding 

to any non-empty bin (or interval). Therefore, preparation by momentum mea- 

surement only, no matter how accurate, leads to a mathematically unacceptable 

p^. However, such a measurement is also self-contradictory physically, since any 

procedure allowing for momentum measurements requires the presence, in the 

confines of the laboratory, of the particle being measured. The latter of course 

implies a constraint on the possible values of the position x, which in turn con- 

stitutes information on Z, contrary to the initial assumption. Once the possible 

values of 2 are thus constrained, the spectrum of p^ becomes discrete, tr (i;:) 

finite, and j? normalizable. In fact any preparation procedure implies such a con- 

straint on the possible values of position, a fact which when overlooked will lead 

to an unacceptable p^. It is perhaps worth emphasizing that this is not merely 

a matter of mathematical purism, but rather an integral feature of the present 

formalism. Indeed the very starting point, the definition of measurement entropy 

in Eq. (l), would in general be meaningless if the imperfect resolving power of 

actual devices was not accounted for. 

We shall now turn to examples involving momentum and position measure- 

ments, say on the particles of a beam, considered in one dimension for conve- 

nience. The first example is modeled after the celebrated tho,ught experiments 

(such as that of the Heisenberg microscope) often discussed in connection with 

the uncertainty principle. It involves the measurement of the probabilities P” 
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and PP that the particle has a position, respectively momentum in the interval 

z- a - ( -iAx,; Ax 
> 

, respectively CXP = 
( 

-: Ap, +k Ap , with ii zBp being the 
~-- > 

projection operators onto o w Additionally, we have the above-mentioned spa- . 

tial constraint on the position, say 1x1 < f L, corresponding to CX~ = 
( - f L, i L ) , 

Pz = 1, expressing the information that the particles are certainly to be found 

within the laboratory (whose “size” is L). 

A direct application of Eqs. (3) and (4) gives 

F = 2-l exp - Xzcz - XPFP _ A;;;; 
( > 

, 

2 = 2 exp(-A+) C cosh[(l - JJ”,) ~5 + POX:] 1’2 9 
n 

where 2X* = AZ f P, and where {pi} is the (finite) set of the eigenvalues of 
-- 

the operator g = 2 ‘iipii ’ acting on the Hilbert space L2(c$). The operator 2 

- is of finite rank (and of the Hilbert-Schmidt class in the limit L + oo), positive 

definite, and possesses a bounded spectrum 0 < pg 5 pkaz < 1. Moreover, 

one can show that for the physically interesting case of (Ax/L) << 1, and with 

(Ax)(Ap)/2rrr = k, tr.8 = c,pi = k, pk, = k[l - (rk/6)2 + O(k’)] for k -+ 0, 

and &, + 1 for k 3 00. 

The uncertainty principle is now manifested in that the joint probability 

P = P”PP of finding the particle in the intervals Ax and Ap has an upper bound 

P maz which is less than unity and which decreases with decreasing k. Indeed 

considering the symmetric case of P” = PP, which corresponds to XZ = XP and 

which for a given value of P” + PP maximizes P, we find from the solution given 

above that 

pv2 = ; - 1 
2 c pn sinh(d+)/ c cosh(d+) . 

n n 
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It is immediately clear from this result that 1 - pmaz 5 2P’/2 _< 1 + pm4% (recall 

that 0 < pmaZ < 1). The two extreme limits above correspond, not unexpectedly, 

to infinitely “Hot” and “Cold” ensembles corresponding to X+ -+ foe. One finds 

that at these limits p^ reduces to pure states Ia) (HI and IG) (G( respectively, 

where IN/G) = (pmazii” F ii’) Imax), with B^ Imax) = pmaz Imax) and Pk$ = 

i f f Pmaz- Given the above restriction to the symmetric case P” = PP, IH) 

represents the worst, and IG) the best possible x-p definition, while the mixed 

state corresponding to X+ = 0 represents an intermediate case with P1i2 = -. : 

The latter in fact describes an ensemble for which the particle is as likely as not 

to be found in the interval Ax, respectively Ap, and can be realized by an equal 

mixture of two beams, one filtered through o? and the other through o!‘. 

- . 

-- 

-. 

As a measure of how well IG) fares in realizing a beam with a well-defined 

position and momentum, we shall compare it with a Gaussian (pure) state IG) 

whose 2 and pvariances are matched to the bins of our measuring device so that 

6x=$Axand6p= f Ap, with (6x)(6p) = :. Since k = l/z for these values, 

112 we can use the small k expansion for pkaZ given above to find that PC = 0.79, 

whereas the corresponding probability for the Gaussian state is Pi’2 = 0.68. 

As expected, PC > PC since IG) is optimal in this respect. This large 79% 

probability notwithstanding, a simple calculation shows that the conventional 

variance measure of uncertainty for IG) is essentially infinite simply because its 

x- and p-space wavefunctions have power law [e.g., 0(1/p)], albeit very small, 

tails. This is another instance of the limitations of the conventional variance 

measure of uncertainty. 6 In summary then, the uncertainty condition for the 

typical two-bin measurement of position and momentum may be expressed by 

. 
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p = p=pp < 1 
-4 { l+ [(Ax)@P)/~~]“~}~ 3 (Ax)@P) 5 1 . (5) 

As the above analysis shows, this is an experimentally more meaningful statement 

than the conventional one involving variances. 

Given that the conventional minimum uncertainty state is a pure state not 

preparable by means of an actual measuring apparatus, there arises the question 

of how closely it can be approximated given the “resolutions” Ax and Ap of the 

apparatus. It is clear that there must exist a universal bound Uinf, a function 

of k on dimensional grounds, which is the inlimum of UP = (6~)~(6p)~ for all 

p^ p_re_parable by the given device. It is immediately clear that Ul,f( k) + f 

for k -+ 0 and Ui,f(k) + (vr/6)k for k + 00, the-latter representing purely 

classical probability distributions. While the determination of Uinf(k) represents 

a problem of immense complexity, the following result (for small k) provides 

useful information on the question. 

Given a device with resolutions Ax and Ap,’ the upper bound to what 

can be achieved is represented by the (ideal) covering of the entire range of 

the values of x and p by means of bins of size Ax and Ap, labeled by oy,” = 

[(s-~)Ax,(s+~)Ax],&’ = [(s-i)Ap,(~+i)~p],s=O,*l,... Thegeneral 

solution corresponding to a measurement by means of this device is given by p^ = 

Z-lexp ( -C,x~F~+x$?~ , > 
where, as usual, 2 is determined by tr p^ = 1 and 

the X’s by (-a/a AtSp)4!n 2 = Ptpp, where Ptgp are the measured probabilities.” 

Consider now the case where these probabilities match those of a Gaussian state 

with (6x)/&) = (Az)/(AP)?~ A straightforward calculation then gives the 
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following expansions in k: 

pd” = pf = (2k)‘/2 exp(--27r ks2) [l + i (&k,,z + ---I , 

s(p 10”) + S@ 1 DP) - 2(~55)~(6p)~ = -h (2k) - 5 rk + . *. 

Now an inequality derived in Ref. 13 states that 

S(p^ID’) +S(p^(Dp) 2 1-4h(2k) , 

so that the above equation can be restated as 

-- up = (&@p)p 2 ; + & &>(AP> , k-cl, (6) 

where this lower bound is in fact approached as (Ax) (Ap) + 0. l3 Physi- 

cally, this result indicates that for k < 1, the uncertainties resulting from &rite 

resolutions are additive corrections to the intrinsic quantum mechanical ones. 

We conclude by noting that the ensemble entropy caldulated for this state is 

& won [w(w(~P)] f or small k. This is a measure of the uncertainty 

and impurity of the state determined by the measured probabilities Pazpp. This 

impurity is characteristic of, and will persist for, any actual measuring device. 
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