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ABSTRACT

An arbitrary number of massless spin (0, ;) multiplets are coupled to N = 2 supergravity,
and the scalar fields are found to lie on a negatively curved quaternionic manifold.

In order to build realistic theories, it is useful to know
what locally supersymmetric Lagrangians are possible. There
are many results on this question for N = 1, For N = 2,
much less is known. The general N = 2 matter couplings are
only now being derived.!~? In this talk I will report on some
recent work done with Edward Witten. I will show how to cou-
ple an arbitrary number of massless spin (0, %) bhypermultiplets
to N = 2 supergravity.? I will give what we believe is the most
general form of the kinetic Lagrangian. I will not, bowever,
attempt to include mass terms or potentials. Nor will I discuss
the spin (0, §,1) gauge field multiplet.

Matter couplings in supergravity theories give rise to com-
plicated nonlinear interactions. These interactions bave a nat-
ural interpretation in the Janguage of nonlinear sigma models,
where the scalar fields ¢* are viewed as the coordinates of a Rie-
manpian manifold M. Diflerent matter couplings correspond
to different manifolds, and constraints on the matter couplings
arise as restrictions on the possible manifolds.

As shown in Table 1, N = 1 globally supersymmetric mod-
els exist for all Kahler manifolds M.¢ Only a subclass of these
models may be coupled to supergravity, the so-called Kahler
manifolds of restricted type, or Hodge manifolds. This fact
is related to the quantization of Newton’s constant in certain
N =1 theories.?

Table 1: Sigma Model Manifolds In Four
Spacetime Dimensions.

global local
supersymmetry supersymmetry
N=1 Kahler Hodge
N =2 | hyperkahler quaternionic

In N = 2 global supersymmetry, sigma models exist for
all byperkahler manifolds M.® The purpose of this talk is to
sbow that N = 2 supergravity restricts M to be quaternionic.?
Hyperkahler and quaternionic manifolds are related, but they
are, ip fact, different objects. This tells us immediately that
the matter couplings allowed in N = 2 supersymmetry are
forbidden io N = 2 supergravity, and vice versa. It also tells us
that the Jocal N = 2 matter/supergravity Lagrangian cannot
be trivially reduced to N = 1.

+ Work auppo}ted in part by the Department of Energy, con-
tract DE-AC03-76SF00515.

To understand the N = 2 matte; couplings, we shall first
consider rigid supersymmetry and byperkahler manifolds. A
hyperkabler marifold is a 4n-dimensional real Riemannian
manifold whose bolonomy group G is contained in Sp(n). The -
holonomy group of a manifold is the group of transforma-
tions generated by parallel transporting all vectors around all
possible closed curves in the manifold. In general, the holon-
omy group of a 4n-dimensional Riemannian manifold is con-
tained in O(4n). A hyperkabler manifold is defined to have
G C Sp(r) C O(4n).

Since byperkahler manifolds are 4n-dimensional, we shall
focus our attention on theories with 4n real scalar fields ¢', 2n
Majorana spinors xZ, and 2 supersymmetry parameters e .
The supersymmetry transformation of ¢*,

6¢' = Mz (tr* x1? + ©utxr?) (1)
shows that there must exist nonsingular objects 7, ,(¢) that
split the tangent space in two, T = H ® P. From (1) we see
that H and P are 2 and 2n-dimensional bundles, respectively.
The eplitting T = H ® P gives a strong restriction on the
allowed manifolds M. Supersymmetry implies an even stronger
condition: The '7‘4 2 must also be covariantly constant.

The objects 7:; z are not as mysterious as they might seem.
Let us specialize for the moment to the case n = 1. In four
dimensions, the 7' ; are just the Dirac y-matrices. The tangent
space is the product of two spinor bundles, and the 4-matrices
are indeed covariantly constant.

Having split T into H @ P, we must now invoke the con-
straint that T is real. This implies that B and P must both
be real or pseudoreal. As far as we know, H and P real does
pot give a sigma model. Therefore, we take H and P to be
pseudoreal. This means that A is an Sp(1) index, and Z is an
Sp(n) index. }

In global supersymmetry, the ¢4 are constants, 8o the bun-
dle H is trivial (flat). This implies that the holonomy group
G C Sp(n), so M is hyperkahler. In local supersymmetry, we
shall see that H cannot be trivial, so G = Sp(1) x K, where
K C Sp(n). Such a manifold is by definition quaternionic.

To actually verify these assertions, we must do some work. ~
The fact that [V,, V,]4%; = 0 implies that the Riemann cur-
vature is given in terms of the Sp(n) and Sp(1) curvatures,

Rijre vyy 15z = eap Riyz + ez Rijap »  (2)
Here € 7 and ¢4 are the covariantly constant Sp(n)and Sp(1)
antisymmetric tensors. I shall first consider the case of M
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hyperkahler, so R;;4p = 0. Using relations similar to the Dirac
algebra,

Tay Thz 9ij = €ABeYZ
Fiz 7% 4 TP = 8,7

Tay P2+ Ty =0T g P

®)

we find
4

This simply expresses the fact that the holonomy group a hy-
perkahler manifold is contained in Sp(n). The cyclic identity
on the curvature implies

Rije = 22 va¥ Rijyz .

Rjyz = v 14X Oyzxw |

(6

where Oy zxw is a totally symmetric Sp(n) tensor, called the
hyperiahler curvature.

The relations (2)-(5) are all that are needed to show that

. .1
L=—g;8,43"¢ - ifz"l"pu x?
. (6)
+ 3¢ v zw X mxe YL i ™)

is invariant under the following N = 2 supersymmetry trans-
formations:

__ 8¢ =z (ErAxL? + T AxR?)

. ()
Sx12=20,¢8" 122 Pepa - T2y 68 xLY .

“To render the Lagrangian (6) invariant under N = 2 local
supersymmetry, we first let €4 — ¢ (z). We then include the
spin (1, §,2) supergravity multiplet. We ensure invariance by
the Noether procedure: we change the Lagrangian and trans-
formation laws order by order in x? = 8x Gy, so that all
variations vanish. To order &%, we find V; 7%, = 0, as before.
We also find
(8

Rijap = (vaz18% - 1az78%) #0.
The cyclic identity implies

Rixy = R (hax 14y = Hax % 4y) + %A% 94 X Qxyaw -

®

Since both R,;4p # 0and Ry;xy # 0, the holonomy group G C
Sp(1)xSp(n), and M is quaternionic. Note that the curvatures
depend oo Newton’s constant. As x — 0, the Sp(1) curvature
vapishes, and M changes from quaternionic to hyperkahler.

Contracting the Riemann curvature R;;i, we find

R=-8x*(n’+2n) . (10)
For a given dimension of M , precisely one value of R is allowed,
and this value is negative. Equation (10) is the N = 2 analogue
of the N =1 quantization condition.

All this information is contained in the order x® terms of
the Noether coupling. The higher order terms do not lead to
any new restrictions. The full Lagrangian and transformation
laws are given in Ref. 2.

The Noether procedure tells us that in N = 2 supergrav-
ity, the scalar fields in (0, }) multiplets must lie on negatively
curved quaternionic manifolds. Relatively few such manifolds
are known, but particularly intriguing cases include

8p(n, 1) SU(n,2)

Ssm) xSp() ' SUmxsU@xv@m MW
and
§0(n,4)
S0(n) x SO@) '’
forn > 1.
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