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ABSTRACT 

An arbitrary number of massless spin (0, i) multiplets are coupled to N = 2 mperpavity, 
and the scalar fields are found to lie on a negatively curved quatemionic manifold. 

In order to build realistic theories, it ir useful to know 
what locally supersymmetric Lagrangians are possible. There 
are many results on this question for N = 1. For N = 2, 
much less is known. The general N = 2 matter couplings are 
only now being derived. l-3 In this talk I will report on some 
recent work done with Edward Witten. I will show how to cou- 
ple an arbitrary number of massless spin (0,;) hypermultiplets 
to N = 2 supergravity.l I will give what we believe is the most 
general form of the kinetic Lagrangian. I will not, however, 
attempt to include mass terms or potentials. Nor will I discuss 
the spin (O,i, 1) gauge field multiplet. 

Matter coupling in supergravity theories give rise to com- 
plicated nonlinear interactions. These interactions have a nat- 
ural inte_rpretation in the language of nonlinear sigma models, 
where the scalar fields 4’ are viewed as the coordinates of a Rie- 
mannian manifold M. Different matter couplings correspond 
to different manifolds, and constraints on the matter couplings 
arise a~ restrictions on the possible manifolds. 

As shown in Table 1, N = 1 globally supersymmetric mod- 
els exist for all Kahler manifolds M.’ Only a subclass of these 
models may be coupled to supergravity, the so-called Kahler 
manifolds of restricted type, or Hodge manifolds. This tact 
is related to the quantieation of Newton’s constant in certain 
N = 1 theories.5 

Table 1: Sigma Model Manifolds In Four 
Spacetime Dimensions. 
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N=2 hyperkahler quatemionic 

In N = 2 global supersymmetry, sigma models exirt for 
all hyperkahler manifolds M.’ The purpose of this talk is to 
show that N = 2 supergravity restricts M to be quatemionic? 
Hyperkahler and quatemionic manifolds are related, but the-g 
are, in fact, different objects. This tella us immediately that 
the matter couplings allowed in N = 2 supersymmetry are 
forbidden in N = 2 supergravity, and vice versa. It also tells UI 
that the local N = 2 matter/supergravity Lagraagian cannot 
be trivially reduced to N = 1. 

L Work suppoked in part by the Department of Energy, con- 
tract DEAC03-76SF00515. 

To understand the N = 2 matte; couplings, we shall fimt 
consider rigid supenymmetry and hyperkahler manifolds. A 
hyperkahler manifold ls a In-dimensional real Riemannian 
manifold whose holonomy group C is contained in Sp(n). The ; 
holonomy group of a manifold h the group of transloma- 
tions generated by parallel transporting all vectors around all 
possible closed curves in the manifold. In general, the holon- 
omy group of a In-dimensional Riemannian manifold is con- 
tained in O(4n). A hyperkahler manifold b defined to have 
C E Sp(n) c O(4n). 

Since hyperkahler manifolds are In-dimensional, we shall 
focus our attention on theories with 4n real scalar fields #,2n 
Majorana spinom x2, and 2 supersymmetry parameters 8 . 
The supersymmetry transformation of #, 

ati = & (rRA XL’ + kA XR’) , (1) 

shows that there must exist nonsingular objects yiz(d) that 
split the tangent space in two, T = H QP P. Rom (1) we see 
that H and P are 2 and 2n-dimensional bundles, respectively. 
The splitting T = H @ P gives a strong restriction on the 
allowed manifolds M. Supersymmetry implies an even stronger 
condition: The fig must also be covariantly constant. 

The objects -yig are not as mysterious bs they might seem. 
Let us specialise for the moment to the cae n = 1. In four 
dimensions, the -& are just the Dirac T-matrices. The tangent 
space is the product of two spinor bundles, and the Tmatrices 
are indeed covariantly constant. 

Having split T into R 8 P, we must now invoke the con- 
straint that T is real. This implies that I3 and P must both 
be real or pseudoreal. As tar as we know, E and P real does 
not give a sigma model. Therefore, we take H and P to be 
pseudoreal. This means that A is an Sp(1) index, and Z is an 
Sp(n) index. 

In global supersymmetry, the eA are constants, so the bun- 
dle 61 is trivial (Sat). This implies that the holonomy group 
C C Sp(n), so M is hyperkahler. ln local supersymmetry, we 
shall see that 61 cannot be trivial, so C = Sp(1) x K, where 
K E Sp(n). Such a manifold is by definition quatemionic. 

To actually verity these asertions, we must do some work. - 
The fact that [Vi, Vj]vA‘z = 0 implies that the Riemann cur- 
vature is given in termc. of the Sp(n) and Sp( I) curvatures, 

&jk( 7:lp 1;~ = CAL? &I*2 + Cl’2 &jAB 9 (2) 

Here e1.g and e.4~ are the covariantly constant Sp(n)and Sp(1) . 
antisymmetric tensors. I shall first consider the cxx of M 
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hyperkahler, K) &‘jAB = 0. Ueing rebtione ekik to the Diirrc 
tieb=, 

. . 

we find 

&jkt = 7k AZ %A ’ &jYZ - (4) 

Thie simply exprwses the fact that the holoaomy group a hy- 
perkahler manifold b contained in Sp(n). The cyclic identity 
on the curvature implicr 

R,YZ = 9” 7jAX ~Y2h-w 8 (5) 

where n~zm b a totally eymmetric Sp(n) teneor, called the 
hyperkahler curvature. 

The relntionr (2)-(S) axe all that are needed to rhow that 

ia invariant under the following N = 2 ruperaymmetry trans- 
formationa: 

--6g’= 712 @RAXL2 + rLAXRZ) 

To render the Lagrangian (6) invariant under JV = 2 local 
rupemymmetry, we first let CA 4 8 (2). We then include the 
rpin (1, i, 2) rupergravity multiplet. We ensure invariance by 
the Noether procedure: we change the Lagrangian and tranr- 
formation laws order by order in JC~ = 87 CN, ao that all 
variation8 vaniah. To order IC’, we find Vi yAz = 0, ae before. 
We also find 

&jAB = a2(%AZ ‘YjB ’ - ‘l jAZ 7iB ‘) # 0 * (8) 

The cyclic identity implier 

4jXY = a2(7iAX7jAY’7jAX7iAY)+7iAW7jA2nXYZW - 
(9) 

Since both &jAB # 0 ad f?+y # 0, the holonomy SOUP C E 
Sp( 1) x Sp(n), and M  is quaternionic. Note that the cumtum 
depend on Newton% conetmt. AJ a -+ 0, the Sp(1) curvature 
vanirha, and M  changer from quatanionic to hyperhahler. 

Contracting the Riemann cmture &jklc we find 

R= -8a2(n2 + 2n) . 00) 

For a given dimension of M  , precieely one value of R ir alloyed, 
and thir value b negative. Equation (10) ir the N = 2 analogue 
of the N = 1 quantitation condition. 

All thii information ie contained in the order rc” terma of _ 
the Noether coupling. The higher order terms do not lead to 
any new mtrictionr. The full Lagrangian and trrnrdormation 
Iawr me given in Ref. 2. 

The Noether procedure tella 01 that in N = 2 rupergrav- 
ity, the scalar fieldr in (0, 1) multipleta must lie on negatively 
curved quaternionic manifolds. Relatively few such manifold8 
are known, but particularly intriguing canes. include 

Spb, 1) SU(n, 2) 
Sp(n) x SP(l) 

, SU(n) x SU(2) x U(1) (11) 

and 

forn>l. 

SO(n, 4) 
SO(n) x SO(4) ’ 
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