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ERRATUM 

--One must be very careful with references. When we mentioned the “familiar 

effect of the dynamic p” (page 7) and then again the “dynamic tune” (page ll), 

- we referred to 
15. F. Amman and D. Ritson, International Conference on High Energy Accel- 

erators, Brookhaven National Laboratory, 1961, p. 471. 

However, John Rees has pointed out that the above reference is incorrect. 

The dynamic p was realized a few years later, and the correct references are: 

15. F. Amman, R. Andreani, M. Bassetti, M. Bernardini, A. Cattoni, R. Cer- 
chia, V. Chimenti, G. Corazza, E. Ferlenghi, L. Mango, A. Massarotti, 
C. Pellegrini, M. Placidi, M. Puglisi, G. Renzler, F. Tazzioli, International 
Conference on High Energy Accelerators, Dubna USAEC Conf-114 (1963) 
p. 309. 

16. B. Richter, Proc. International Symposium on Electron and Positron Stor- 
age Rings, Saclay (1966) p. I-l-l. 

We would like to thank John Rees for pointing out this error, and we would 

like to apologize to the authors involved for our oversight. 

* Work supported by the Department of Energy, contract DE - AC03 - 76SF00515. 
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1. Introduction 

In a colliding beam storage ring, the motion of particles in one beam is 

strongly perturbed at the collision points by the electromagnetic field associated 

with the counter-rotating beam. This beam-beam perturbation leads to a sta- 

bility limit on the beam intensities which is one of the most severe limits on the 

achievable luminosity in storage rings. 

The simplest and most familiar way of describing the beam-beam problem 

is provided by the strong-weak picture in which one of the beams (the strong 

beam) is regarded as rigid, i.e. unperturbed by the presence of the other (weak) 

beam. As far as the weak beam motion is concerned, the strong beam acts as 

a nonlinear lens located at the collision points. The weak beam then circulates 

around the storage ring, periodically perturbed by the static nonlinear force due 

tothe strong beam. 

The strong-weak picture of the beam-beam interaction has provided useful 

insight into the mechanism of the beam-beam instability. It is, however, only 

a limited view of the beam-beam interaction. In fact it has been pointed out 

by several authors ‘-’ that the identification of the beam-beam instability with 

instabilities in a periodic nonlinear mapping can not completely represent the 

physics of two strong colliding beams. Experimentally, the existence of beam- 

beam coherent dipole motion is well established. l”~ll One can also argue that the 

DC1 experience12 indeed indicates that coherent effects play a dominant role in 

determining beam-beam behavior. 

In this paper, we analyze the coherent beam-beam effects of colliding beams 

using the Vlasov technique. The distributions $1 and $2 of the two beams 

influence each other according to the Vlasov equation, which is linearized for 

small perturbations A+r and A& around the equilibrium distribution $0. The 

perturbations A$‘s transform simply by a rigid rotation in the phase space as 

the beams circulate around the storage ring and then receive sudden changes at 

the collision points due to the beam-beam interaction. After linearization, the 
. 



motion of AT/J’s can be solved by a matrix technique which will be discussed in 

more detail later. - . 

We find that there are coherent beam-beam instabilities when v=rational 

number (V is the betatron tune) similar to the resonance instabilities found in 

the incoherent motions of the strong-weak picture. The widths of the coherent 

resonances, however, tend to be larger than the corresponding resonance widths 

for the incoherent case. The coherent beam-beam effects therefore set a more 

stringent beam-beam stability threshold against nonlinear resonances than the 

incoherent strong-weak effects. We therefore follow the previous authors and 

suggest once again that coherent effects play a dominant role in the complex 

beam-beam phenomena. 

_. 

The reason that coherent effects set a tighter stability limit than incoherent 

effects is basically the following. In coherent motions, the separation between one -- 
piece of the beam and the corresponding piece of the counter-rotating beam is 

effectively twice the separation of the strong-weak case in which one of the beams 

does not move. As a result, the beam-beam kicks are effectively stronger for 

coherent motions. The simplest example of this effect can be seen by considering 

two colliding bunches each with a rigid uniform disk distribution of charge. There 

are two coherent modes of dipole motions of the two bunches, one with each 

bunch moving up and down in phase and the other out of phase. The in-phase 

mode is always stable since the beam-beam force has no coherent effect when 

the bunches move up and down together. The out-of-phase mode on the other 

hand has a stability limit that is twice as stringent as the case when only one of 

the two bunches moves. This is illustrated in Fig. l(a). The situation is even 

more pronounced when there is more than one bunch per beam. The rigid bunch 

model can be carried out for multiple bunches as well, yielding results shown in 

Figs. l(b)-(d).2-4 I n each plot, the dotted line shows the boundary of stability 

determined by the strong-weak consideration. The fact that the coherent effects 

set a tighter stability limit than the incoherent effects is apparent from these 

plots. 

^. 
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2. The Vlasov Technique 

-. 

We first consider the case in which each colliding beam consists of a single 

bunch of particles. The bunches are assumed to have a flat distribution like 

a horizontal ribbon at the collision points. The bunch motions occur only in 

the vertical y-direction. Let +r,2(y,y’) be the distribution functions of the two 

bunches satisfying the normalization conditions 

00 
I dY’ +1,2 (Y,Y’) = p1,2(y) 

-CO 

co 

/ 
dm,2(~) = 1 

(1) 

where p1,2 are the spatial distributions of the two bunches. We assume the two 

bunches have the same number of particles N. 

A particle in beam 1 with vertical displacement y at the collision point ex- 

periences a beam-beam kick from the electromagnetic field of beam 2 given by 

00 

Ay' = - 
47rNr, 

LZ7 / 
4i PZ($ &(Y - 8) 

-00 
(2) 

where re is the classical radius of the electron, L, is the horizontal width of the 

ribbon beams at the collision points, 7 is the relativistic Lorentz factor and 

{ 

1 ifz>O 
Hl(4 = -1 ifz<O ’ 

We have assumed that the beam particles are electrons in one beam and 

positrons in the other beam. The reason for the Hr function is that particles in 

beam 2 located at y > y kick the test particle in beam 1 upward while particles 

with y < y kick the test particle downward. A similar expression holds for the 

kicks received by particles in beam 2 from fields of beam 1. 
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The Vlasov equations that describe the motion of $1,~ are given by 

- . 
a+1 ,%h 
ds+y-- 

dY [ Wsb + 
4rN re 

L r &P(s) 7 dg P~($&(Y - $1;;; - = 0 (4) 
z 

together with another equation with indices 1 and 2 exchanged. In Eq.(4), K(s) 

is the focusing gradient function around the storage ring, s is the distance along 

the orbit, and &p(s) is the periodic &function representing the periodic beam- 

beam perturbations. The period of &p(s) is the distance between collision points 

L. 

The beam collisions perturb the focusing structure in the storage ring so that 

at equilibrium both beams have a distorted distribution plre(y, y’) satisfying 

-- 

where 

WO ,wo 
x + Y- 

dY 
- F(y,s) g = 0 

00 cxl 

F(Y,S) = WY + 
4rNre 

L r W--My - !d 
J 

4-t $0 (c 8’) 
z 

-CO --oo 

Note that $0 is a periodic function of s with period L; it gives the equilibrium 

distribution of both beams in the distorted beam-beam potential-well. When 

observed at a fixed location in the storage ring, $0 is static in time. 

-. 

We are not interested in the static behavior of the beam distributions in this 

work. The motions that interest us are the time dependent dynamic motion of 

the beam distributions around the equilibrium distribution $0.. In particular, if 

we let 

+1,2 = $0 + W1,2 (6) 

with infinitesimal A9!.9,2, we would like to know under what conditions the pertur- 

bations grow exponentially in time. When these conditions are satisfied, coherent 

beam-beam instability occurs. 
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Substituting Eq. (6) into Eq. (4) and keeping only the first order terms in 

A$J’s, we obtain the linearized Vlasov equations _ _ 

w* Jf* 
as + y dy 

W& - - F(Y,S) -g-y 

00 cm (7) 

dWl(Y - 8) dg’f,t (9, ii’, s) = 0 

where we have defined 

Note that the two functions f+ and f- are decoupled. They define a U + n and 
a “-n mode in the motion of the two colliding bunches. 

-- Since we are not interested in finding the actual $0 in the distorted potential 

well, we assume that 

F(Y,S) = Jys)y , (9) 

i.e., the equilibrium part of the beam-beam force is approximately linear in y. 

Such a treatment is a familiar one in the problem of longitudinal instability in 

storage rings. l3 The static part of the beam-beam force is thus included simply 

as a perturbation to the linear focusing structure of the storage ring. 

Equation (7) is the Vlasov equation written in Cartesian coordinates y and 

y’. We now make a transformation to the polar (action-angle) coordinates of 

betatron oscillations,14 J and 4, 

(10) 

where the betatron phase 4 and the betatron function ,O are derived using the 

focusing function F(s) instead of the unperturbed K(s). Note that the static 
. 
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perturbation of the focusing structure of the storage ring may make the linear 

incoherent motion unstable; this leads to the familiar effect of the dynamic p15 

and is the origin of the dotted lines in Fig. 1. 

Assuming that the incoherent motion with the focusing function F(s) is sta- 

ble, and that we can indeed make the transformation in Eq. (lo), then the 

equilibrium distribution $0 is a function only of J 

tie = +0(J) . (11) 

In these coordinates the Vlasov equations become 

3. Solving the Vlasov Equation 

To proceed, we will choose a simple model of $0, the water-bag model: 

tie(J) = 342 - J) 

(12) 

(13) 

where H(z) is the Heaviside step function, H(z) = 1 if z > 0 and H(z) = 0 if 

z < 0, and E is the vertical emittance of the equilibrium beam distribution. 

To be perfectly self-consistent, $0 would have to give a beam-beam kick linear 

in y as assumed in Eq. (9). Such a distribution does exist and is given by 

+0(J) = -!- 
1 

274% @x 
(J < 42) . (14 

As we explained before, however, perfect self-consistency is not what we need 

to describe the dynamic behavior of the beam-beam system; the mathematical 

simplicity of the water-bag model makes it more suitable for our purpose. 
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By inspection, the distribution perturbations can be written for the water-bag 

model as - . 

j*(J,&s) = 6(J - 42) 2 g;(s) eie4 . (15) - 
L=-co 

The 6(J - c/2) f ac t or represents the fact that the perturbations occur only at 

the edge of the water-bag. We have also decomposed the angular part of the 

distribution into a Fourier series in 4. For simpler notation, we will drop the + 

and - superscripts on gl’s in the subsequent expressions. 

Substituting Eqs. (13) and (15) into the Vlasov equation (12) gives an infinite 

set of equations describing the coupled motion of the Fourier components ge (s) 

for all !!: 

-- 
2 hkgk = 0 

k=-co 
(16) 

where we have defined a matrix M with elements given by 

2s 2r 

Mek = 
/ 

dc$ eAiL4 sin 4 
/ 

d$ H1 (cos q5 - cos c$) eikJ 
0 0 

-32ixt (17) 
[(l+ Q2 - l] [(if - k)2 - l] if J!+k=even 

= 
0 ife+k=odd 

The matrix M has the following properties: 

M = purely imaginary 

-. 
M2=o 

Me,-k = Mtk 

M-c,k = -& . 

Between collisions, the different gl’s are decoupled. A particular gl transforms 
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-. 

gt(L-) = gl(o+) fcier (19) 
with 

L 

/ 

ds 
i-J= 

PO’ 
0 

Thus p is the integrated betatron phase from one collision point to the next, 

and L is the distance between collision points. The superscripts + and - in the 

arguments of gl refer to immediately after and immediately before the beam- 

beam collisions respectively. 

The beam-beam action is obtained by integrating Eq. (16) through s = 0, 

which yields 

.hw7k (O-1 (20) 

where p* is the value of the betatron function at the collision point in the presence 

of the static beam-beam force. Note that we have used gk(O-) on the right hand 

side of Eq. (20). Using gk(O+) would give the same result since M2 = 0. 

Eqs. (19) and (20) can be combined to give the matrix transformation on 

the vector 
. . . 

92 

91 

go 

9-l 

g-2 
. . . 

from one collision point to the next. This transformation is given by 

T=R (I f SEM) (22) 

(21) 
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where 

R= 

is the diagonal matrix describing the action between collision points, and I is the 

identity matrix. 

4. Coherent Beam-Beam Instability 

--In the absence of beam-beam collisions, Eq. (22) gives the unperturbed 

transformation T = R. The eigenvalues of T are 

x=e-iQ, J!=O,Al,f2,... (23) 

corresponding to the motion of the @  Fourier component of the distributions. 

All eigenvalues have absolute value of unity provided that the focusing structure 

F(s) yields stable oscillations. 

As the beam-beam strength is increased, the eigenvalues are more and more 

perturbed. A coherent instability occurs when any one of the eigenvalues acquires 

an absolute value larger than unity. 

-. The coherent instability is most pronounced when the betatron phase advance 

between collision points is close to a rational number times ?r, i.e. 

P m UX-Q- 
7r e 

(24 

where Y is the total betatron tune of the storage ring. Close to the resonance 

condition (24) the Fourier components that perturb the beam motion most are 
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gL and g-l. Keeping only the eth and the (-e) th elements in the transformation 

matrices (22) and defining the small distance between v and m/4? to be 

A=+, (25) 

the matrix T becomes 

(1 f iQ) e-i2rLA fia e-i2rLA 

Fia ,+2&A (1 7 icy) eiareA 1 (26) 

The eigenvalues of (26) are then determined by the secular equation 

-- X2 - 2X[cos 27reA f Q! sin 27r eA] + 1 = 0 (27) 

One of the eigenvalues has absolute value larger than unity and therefore the 

beam-beam system is unstable if 

1 cos 27rlA f crsin 2rtAl > 1 . (28) 

The + and - signs in Eq. (28) refer to the j+ and j- modes defined in Eq. (8). 

Before we interpret Eq. (28)) we need to calculate the dynamic tune V, 

remembering that the static beam-beam force has modified the focusing structure 

of the storage ring. Using the water-bag distribution, the focusing structure F(s) 

-. is found from Eq.(5) to be 

qy, s) = K(S)Y + F g(s) [sin-’ 
z 

(+-) + $q/q (2g) 

The average tune shift due to the second term in Eq. (29) is given by its detuning 

contribution evaluated at the amplitude J = c/2, that is, at the edge of the water- 

bag. The dynamic tune y15 to first order in the beam-beam strength is found to 
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satisfy 

sin 27ruo 

where vo is the betatron tune in the absence of the static beam-beam force. Note 

that the tune shift is evaluated at J = c/2 rather than at J = 0 (small y). This 

yields a tune shift which is 8/3?r times smaller. 

Equation (28) determines the instability region near the resonance Y = m/i!. 

with a resonance stop band width approximately given by 

6lJl2. 32 
2Tr 4.P - 1 E 

where we have defined a beam-beam strength parameter 

-- 
c= 4Nr, 

?rLzr&yF - 
(32) 

which is the tune shift parameter defined in strong-weak beam-beam motion. 

The stop band centers around u = m/L The ‘+’ mode is unstable on the side 

u > m/t while the ‘-’ mode is unstable on the other side. 

-. 

The higher order resonance stop bands (e > 1) are affected by the tune 

shift (30) only in that their postions are shifted as the beam-beam strength is 

increased. On the other hand, for the lowest order resonance 4! = 1, the instability 

condition in (28) for the + mode becomes ( cos 27ruo( > 1. This means that if the 

incoherent motion is stable (ug defined), the ‘+’ mode coherent motion will also 

be stable. The instability condition for the ‘+’ mode is thus eliminated while the 

instability strength for the ‘-’ mode is essentially doubled. 

The results of this study are most conveniently shown by the instability 

diagrams in the two scaling parameters u and [. The 4?‘ order resonance will 

then be apparent from the unstable region that originates from the tune value 

u = m/l in these diagrams. 
. 
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Figures 2(a)-(d) g ive the numerical results of the coherent beam-beam in- 

stability for the case of one particle bunch per beam.. As the higher and higher 

order resonances are included, the stability diagram becomes more and more 

complicated. In these numerical calculations, we have used the matrix in Eq.(22) 

truncated to the order of resonance we consider. The results in general agree 

quite accurately with the approximate expression in Eq.(28) except for the weak 

modifications resulting from the interference between adjacent resonances. Fig- 

ure 3 shows the instability diagram when resonances up to the 5th order are 

included. The region indicated by a box in Figure 3(a) is blown up in Figure 

3(b) to show the interference between a 3’d order and a 5th order resonance. For 

practical purposes, however, these details are not very important. 

5. Multiple Bunches 
-- 

So far we have studied the case in which there is only one particle bunch in 

each beam. As we will show in this section, the Vlasov technique can also be 

extended to treat M bunches per beam in a storage ring with 2M collision points 

spaced by the distance L. 

We assume all bunches are equally populated with the number of particles 

in each bunch given by N. We will then study the stability of infinitesimal 

deviations in particle distributions from a given equilibrium distribution. To do 

so, let the distribution of the mth bunch be 

-. 
where the indices 1,2 refer to beam 1 and beam 2 respectively. Between collisions, 

the motion of individual bunches are decoupled, 

To define the ordering of the collision sequence, we will make reference to the 

lS’. bunch of beam 1. When this bunch passes the collision point s = 0, the 
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1,2, -*, Mth bunches in beam 1 collide respectively with the 1,2, .., Mth bunches 

of beam 2. As the lSt bunch of beam 1 proceeds to location s = L, the collisions 

occur between bunches 1,2, .., M in beam 1 with bunches M, 1,2, . . . . M - 1 in 

beam 2. When s = ML (which is half the circumference of the storage ring), the 

whole cycle repeats and the collisions occur the same way as at s = 0. 

The collision influence on bunch distributions can be described as follows. 

When the 1-st bunch of beam 1 is at the k-th collision point s = kL, we have 

A$;m)ls=)~+ - A&‘$=,,- = -A(J, 4) 7 &H&I-g) 7 dg’A&)(g, 8’) (35) 
-cm -CCl 

together with another equation similar to (35) but with indices 1 and 2 exchanged 

and n and m exchanged. In Eq. (35) we have defined 
-- 

The indices n and m are related by the collision sequence; i.e. for 1 2 k < M - 1, 

we have 
m-j-M-k iflLm<k 

n= 
m-k ifk+l<m<M. (37) 

-. 

The beam-beam collisions couple the distributions of all the bunches in both 

beams. It is possible to develop the transformation matrices describing the cou- 

pled system for half revolution around the storage ring. The stability of the 

system will then be given by the eigenvalues of this transformation. Instead of 

doing so, however, we will first make the change of variables 

Equation (38) relates the 2M quantities F’s and the 2M quantities Ati’s. The 

problem then becomes the study of the stability of the F’s. 

14 



The advantage of F’s over A$‘s is that the F’s are decoupled for different 

values of q’s. Between collisions, we have 

For the kth collision at s = kL, we have 

= -A(J,gS) exp 

$) Is&L+ - pjq) Is&- 

(39) 

(40) 

= -A(J,c$) exp - ( 

The index q is the coupled bunch mode number. For stability of the system, 

motions of all multi-bunch modes with different q’s must be stable independently. 

We now specify $0 to be given by a water-bag model, Eq. (13), and Fourier 

decompose the F’s according to 

F”(J, 4,~) = 6 (J - f> e gp’(s) eieg 
.e=-co 

q = 0, 1,2,. . . M - 1 , j=l,2 . 

(41) 

The actions (39) and (40) can be described by matrix transformations on the g 
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coefficients. Defining the vector 

the transformation matrix between collision points is 

_ . _ . . 
gp7) 

gpl) 

,y, 

G(q) E i 
gp?) 

gp) 

,y, 
. . . 

R 0 [ 1 0 R 

(42) 

(43) 

where R is the infinite dimensional matrix defined in Eq. (22)-with ~1 the betatron 

phase advance between adjacent collision points. For the kth collision, the matrix 

is 

l+sE exp(ik2,q) [ 1 :] (44 

where M is the matrix defined by Eq. (17). Multiplying matrices (43) and 

(44) over l/2 ring circumference in proper sequence, the total transformation 

matrix can be obtained for each value of q. This is performed numerically for 

all multi-bunch modes. Stability is given by the condition that all eigenvalues of 

the matrices for each multi-bunch mode have an absolute value of 1. 
-. 

The case in which there is only one bunch in each beam (M = 1) reproduces 

Figs. 1 to 3, as it should. Figure 4 gives the result when resonances up to order 

2 (dipole and quadrupole instabilities) are included for cases M = 1,2,3 and 4. 

Figures 5 and 6 include resonances up to order 3 and 4, respectively. According 

to these results, the most stable choice of tune tends to be that slightly above an 

integer multiple of M. 
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6. Discussion 

The beam-beam phenomenon is a difficult subject that probably involves 

more than one single effect. In this note we have analyzed it in terms of the 

coherent stability of the beams. Although, we do not pretend that this is the 

only important effect that occurs in the beam-beam phenomenon, we do suggest 

that coherent effects are indeed one of the most dominating beam-beam features. 

In the analysis, we have assumed a water-bag model of the equilibrium beam 

distribution. This model is particularly simple to handle mathematically. As 

explained in Eq. (14)) in doing so we have sacrificed a rigorous self-consistency. 

In addition, the system has a single frequency evaluated at the edge of the water- 

bag. This means that effects due to frequency spread are not included. All mode 

frequencies therefore are sharply defined lines. In particular, there is no Landau 

damping in this system. 

The water-bag model has another disadvantage. It does not allow study of the 

radial modes in the bunch motions. As shown by Eqs. (15) and (41), the deviation 

in bunch distributions occur only at the edge of the water-bag, and therefore all 

radial modes degenerate into 6( J - c/2). Finally, we have considered only the 

vertical motion of the bunches. Horizontal motion and synchrotron motion would 

introduce many more resonances. 

In spite of these limitations, the method used here to solve the Vlasov Equa- 

tion takes full account of the discrete nature of the beam-beam kicks. This leads 

to a new method of calculating coherent beam-beam instabilities using a matrix 

mapping technique. It offers a simple description of the coherent beam-beam 

interaction and allows straightforward numerical calculations. In particular, all 

nonlinear resonances are treated simultaneously taking into account the coupling 

of the resonances. 

One colliding beam phenomenon that has been observed experimentally is the 

beam size blow-up which occurs when intense beams are brought into collision. 
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In the present picture, this can perhaps be explained as follows. As beams collide, 

the equilibrium beam size does not change if the beam-beam motion is stable. 

As beam intensity increases so that an unstable region is entered, the beam size 

blows up but only by so much that the system becomes stabilized again. This 

means the value of t does not increase any more even if the beam intensity keeps 

on increasing. This behavior is similar to the bunch lengthening phenomenon 

observed in electron storage rings. From Eq. (32), it can be deduced that in 

the blown-up regime, the beam size scales approximately linearly with the beam 

intensity N. This agrees qualitatively with beam-beam experiments in electron 

storage rings. 
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Figure Captions 

1. Stability diagrams in (vo,~~) space, where VO-is the unperturbed tune for 

the storage ring and 6 is the beam-beam strength parameter, for the cases 

with 1, 2, 3 and 4 bunches per beam. The beam bunches are regarded as 

rigid allowing only dipole coherent motions. 

2. Stability diagrams for the case of one bunch per beam. In each of the four 

plots resonances up to order 2, 4, 6 and 8 are included, respectively. 

3. (a) St b’l’t d a 11 y ragrams for one bunch per beam including resonances through 

order 5. (b) Bl ow up of a portion of (a) showing some interference behavior 

between adjacent resonances. 

4. Stability diagrams for the cases of 1, 2, 3 and 4 bunches per beam, taking 

into account dipole and quadrupole resonances. 
-- 

5. Same as Fig. 4 but taking into account resonances up to order 3. 

6. Same as Fig. 4 but taking into account resonances up to order 4. 
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