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An array of 12 calibrated RF electric Beld probea 
on the waveguide walls are used to ~mplc the com- 
plex Keld profile at the Ncond and third bumonic~~ 
where the fundamental power &I in the 40 M W  range 
at 2856 MHr. The meuured amplitude and phase &- 
nala from these probea are Fourier l nalyred to deter- 
mine with good accuracy the power in each of the Mary 
possible propagating modes. 

Introduction 

The output power from each of the 244 higb power pulsed 
klystrons at SLAC is routinely measured using thermistor bridge 
power meters and a sampled signal from a modified Bethe hole 
directional coupler. Tbcse couplers are located in tbe waveg- 
uide coming from each klystron before tbe four-way power split 
to each accelerator feed. Adequate low pass filtering has been 
required since we are primarily interested in the power to the 
accelerator at its operating frequency of 2856 MHz. Furtber- 
more, one of the properties of the type of directional coupler 
being used is that tbere is stronger coupling to higher order 
modes at higher spurious and harmonically related frequen- 
cies. Significant measurement error of the fundamental would 
result unbglow pess filtering is used. 

Recently there has been renewed interest at SLAC in tbe 
harmonic content of tbe klystrons. The velocity modulated 

-electron beam within klystron is typically rich in second and 
tbird harmonic RF current components. The induced current 
in the output cavity at these frequencies, bowevet, remains 
weak compared to the fundamental component. Tbere is a 
reasonably good theory to predict the harmonic RF compo- 
nents of current in the klystron electron beam. Calculating 
the RF currents induced in the output cavity and subsequent 
power output at the harmonics is quite difficult, because tbe 
output circuit must include parts of the collector and tube 
body as well, since these chambers are above cutoff as waveg- 
uides and suitable boundary conditions for a model cannot be 
established. 
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Attempts to calibrate Ibe directional coupler at the lower 
order harmonics of this operating frequently would be useless 
since tbere are five propagating modes at the second harmonic 
and eleven propagating modes d the third harmonic. The de- 
gree to wbicb the harmonic (and/or spurious frequency) energy 
is divided up into tbe various modes depends botb on bow the 
excitation or the initial launching into the waveguide system 
occurs. It also depends upon mode conversion that takes place 
due to obstacles and discontinui&s such as bends, windows, or 
vacuum pumpouts ahead of the IocaCion that a measurement 
might be made. 

In 1958, M. Forrer and K. Tomiyasul described a movable 
probe assembly which WBS used to sample the magnitude and 
phase of tbe electric field along both tbe broad and narrow 
walls of a pressurized Sband waveguide. The complex field 
profile was sampled at two different waveguide cross sections. A 
Fourier analysis on these data by computer enabled the power 
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to be calcuTated for the various propagating modea at each 
frequency. This WBS done at a power level of 4.7 M W  from an 
S-band magnetron. 

Later, V. G. Price* made similar measurements using an 
array of fixed electric probes which were calibrated. Using 
a computational metbod similar to Forrer and Tomiyasu, the 
power in each propagating mode was determined. He shows 
that, in general, tbe minimum number of probes required to ob- 
tain enough information to determine the power in each mode 
is slightly greater than the number of modes wbicb can prop ’ 
agate at a given frequency. The accuracy of tbe measurement 
is increased if the number of probes is increased beyond tbe 
minimum number. This method has the advantage that it is 
arc free and therefore can be done at higher peak power levels. 

About the same time, D. J. Lewiss developed a method 
wbere a series of mode couplers were designed; each coupler 
selectively coupling a single mode and discriminating against 
other modes. This method was useful for measuring second 
harmonic power where perhaps four or five modes exist, but 
was impractical for higher frequencies where a large number of 
modes could propagate. 

A few years later, E. D. Sharp and EMT. Jones’ devel- 
oped a method where the various modes in a large multimode 
waveguide were discriminately sorted into several smaller dom- 
inant modk waveguide-arms. This method does not require a 
computer, but does require an elaborate waveguide discrimina- 
tor device and must be used wbere only a limited number of 
higher order modes can exist. The experimental error is some- 
where between f2 and f5 db. 

The next year J. J. TaubS described a method where the 
power to be measured was fed through a waveguide taper into 
a mu& larger, overmoded waveguide and into a large multi- 
mode load. The oversized waveguide has an array of 40 or 
so probes and a linestretcher ahead of the taper. He shows 
that the higher mode energy from the standard size waveg- 
uide is converted to an approximate plane wave in the overized 
waveguide. Using filters, the line stretcher, and signals sam- 
pled from the various probes, the approximation allows one 
to determine tbe total energy at a given frequency to within 
about fl db without knowing how the energy is divided into 
the various propagating modes. 

A multiprobe method similar to that used by Price* ap 
peared to be most suitable for us since the other methods had 
disadvantages described in more detail in Rd. 7. 

It wa3 decided to confine our investigation to the second 
and third barmonics of 2856 MHz. To cover the eleven prop 
agating modes at the third harmonic a minimum of eleven 
probes was required. Price points out that the minimum num- 
ber of probes required at each broad wall cross section is equal 
to tbe bighest m-index to occur for a propagating mode. Since 
the ZE40 mode can propagate there will be four probes across 
tbe broad wall. The highest n-index determines the number 
of probes on the narrow wall at each cross section. All the 
n-indexes are either zero or one, so a single probe at each cross 
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section is adequate. Tbe number of broad wall cross sections 
required is I+ IV,,,(l) = 2. The number of narrow wail cross 
section9 is 1 + Mmo+(l) = 4. N”=(i) is the maximum n- 
index to occur where the m-index is unity and Mmos( 1) is the 
maximum m-index to occur for a mode whose n-index is unity. 

Four equally spaced probe9 across tbe 7.21 cm broad wall 
placed a constraint on the type of high vacuum RF leedtbrougb 
connectors that could be used. Tbe spacing between probe 
feedthrough connectors and hence the maximum diameter bad 
to be less than about 1.4 cm. This space limitation precluded 
the use of type N or CR connectors. 

The connector/feedthrough assembly chosen WBS made from 
a Ceramaseal high vacuum grounded shield connector with a 
SMA coaxial connector. The feedthrougb was brazed into a 
cupro-nickel cup supplied by us to the manufacturer. This as- 
sembly was, in turn, welded into a stainless steel cup which bad 
been brazed into the copper S-band waveguide at the appre 
priate location. Detail of this feedthrough assembly is shown 
in Fig. 1. Eleven identical RC 223 double shielded cables 
connected the somewhat fragile ShL4 feedthrough probe9 to a 
sturdy steel panel with type N bulkhead feedthrough connec- 
tors as shown in Fig. 2. 

1. Amplitude and Phase Calibration 
of Probe Anaembly 

The objective in the probe calibration procedure is to relate 
the signal measured into .a 50 ll termination at the bulkhead 
panel to the total electric field in tbe waveguide at the corre 
spending probe for a given harmonic frequency irrespective of 
the mode. 

A pure wo mode is launched at each harmonic frequency 
at which tbe calibration is made. For example, tbe third bar- 
manic of 2856 MHz is initially launched into WR 90 (standard 
X-band) waveguide where only tbe 7&o mode can exist and 
gradually tapered over about ten feet up to WR 284 (standard 
S-band) waveguide. The power level of the launched wave 
is measured using a 20 db directional coupler in the X-band 
waveguide ahead of the taper. The waveguide probe assembly 
is terminated with a 100 W multimode waveguide termination 
during the calibration procedure. Tbe mathematical details of 
this low power calibration are covered in Ref. 7. 

SMA Conncclor 

-. 

Woveguide I .,,,., 

Fig. 1. Detail+ot single electric field probe assembly. 
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Fig. 2. Multiprobe/cable assembly. 
To calibrate the narrow wall probes it wbs necessary to es- 

tablish a ZZ$l mode using a suitable taper in height but not 
width from WR I37 waveguide up to WR 264. This mode can 
propagate at both the second and third harmonics of 2856 MHz. 

The analysis also requires tbat the phase characteristics o? 
each probe and cable assembly be known. If one were able to 
ensure that the phase shift through each assembly were iden- 
tical, this part of the calibration procedure would not be nec- 
essary In both the amplitude and phase calibration, the cables 
were considered part of probe assembly. 

The phase calibration wa9 made using the system shown in 
Fig. 3. A Watkins-Johnson M76C double balance mixer wa9 
used as the phase detector shown in the figure. 

In principle, it is necessary to know the phase relationship 
of all of the probes with respect to one another. A straigbtfor- 
ward calculation relate9 all tbe broad wall probes to each other 
in the Z&u calibratiou and all the narrow wall probes to each 
other in the T&?&l calibration. Of these two modes, however, 
each have zero field for one or the other of these calibrations 
using the TElo or Z&l. Ideally, one could solve this dilemma 
by launching a pure mode wbere the phase relationship be 
tween the broad and narrow wall9 is known. Either member 
of the T&l - TM11 degenerate,mode pair would be ideally 
suited for this calibration since the narrow wall is 160’ in the 
former case and 0’ in the latter case. An unsuccessful attempt 
wm made to launch either of these with reasonably good sin- 
gle mode purity. It was decided to resume that the phase shift 
through each narrow wall probe was the same (for the TM11 
mode) M the average phase shih of the four broad wall probes 
in the same waveguide cross section. 

1. High Power Measurement 
The probe assembly wa9 installed at the output of a SLAC 

XK-5 klystron a9 sbown block diagram in Fig. 4. A high power 
load with reasonably good multimode capability was made by 
terminating a l@foot long 4 db kantbal coated, water cooled, 
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Fig. 3. Simplified block diagram - low power amplitude and 
phase calibration. 

Fig. 4. Simplified block diagram - high power measurement. 

stainless steel attenuator with a standard SLAC high power 
water load. The kanthal coated attenuator was built at SLAC 
for measurement. The VSWR of this combination load is less 
tban 1.10 for the fundamental mode and less than about 1.6 
for all higher order propagating mods at the second and third 
harmonics. 

The harmonic power levels at the bulkhead panel were mea- 
sured using an isolator, appropriate band pass filter combina- 
tions, and a calibrated HP8740 crystal detector. 

-. The relative phase of the total electric field at each probe 
was measured with respect to a constant 10 MW reference 
which was obtained from a reference probe ahead of multi- 
probe assembly. Again, appropriate band pass filter combina- 
tions were used in both tbe signal and reference arms in the 
phase measurement. 

The measured power output at the fundamental, second 
and tbird harmonics for a typical SLAC high power klystron 
is shown in Table 1. The harmonic power is broken down into 
the various propagating modes. 

In this measurement and analysis the minimum number of 
probes to provide a solution were used. More probes would 
have reduced tQe error, especially at the third harmonic. In 
certain situations a small error in a probe reading could result 

Table 1. Multimode Power Distribution 
for a SLAC High Power Klystron in Watts 

Tube: M-413 
Second Third 

Propagating Fundamental Harmonic Harmonic 
Mode 2856 MHz 5712 MHz 8568MHz 
El0 31.0 x 106 11,206 269 
mx- 1,130 1,490 
TEol 52,570 754 
ml1 50,643 188 
WI 8,261 450 
m21 258 

TM21 174 
n%o 138 
ml1 93 
TM31 37 
TElo 42 

TOTAL 31.0 x l@ 123,810 3,894 
(0 db Ref.) (-24 db) (-38 db) 

in a significant error in tbe final result. In his earlier measure 
ment, Price* found that his high power measurements were 
repeatable within fl db in amplitude and f2’ in phase. The 
measurement technique and the equipment used in the exper- 
iment reported herein provided approximately tbe same re- 
peatability found by Price. 

Based on the experience of otbers1~2~3~4~5~7 and on this 
measurement, the overall accuracy of measuring the power in 
the various propagating modes on SLAC klystrons is about 
il.5 db. 

3. Theory 
Tbe probes will sample the sum of the transverse electric 

field components for all of the propagating modes. The elec- 
tric field distribution for any ?Erun or TM,,,, mode have the 
general form: 

E, = sin (y) eos (7) 

using the coordinate system shown in Fig. 5. 
broad wall y is eitber a or 6, then 

E ,, = &Efl sin(y) , 

similarly on the narrow wall 

(1) 

Since on the 

(24 

(24 

Fig. 5. Waveguide coordinate system orientation. 

Carrying through tbe broad wall analysis, the total electric 
field at any given position z is the sum of tbe modes which 
have m # 0 
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Letting Rum = R’,, + jIvm, E,t = R, + jl,r, one obtains 
the Fourier components Rym and Ix,,, 

=~R,sin(~)+j~Imsin(!f!f) , 
(3) 

“3 m w 
whrre f&, = R, + j I,,,. The Fourier components R,,, and I,,, 
arc found as follows: Botb sides of Eq. (3) are multiplied by 
sin((s;y/o) and integrated giving 

(10) 

~EN~(r)sin(~)dz= z jE-.in(y)sin(f)d* (4) 
0 Cl 

where 
- . 

R,,r($)=~Rymsin(~) , 
Lrlling u = nr/o one obtains 

x 

f / k!+(r)sin(fu)du 
0 

For a solution to exist, it is necessary that m/p < 1. Therefore, 
p 2 1+Afmor. The larger value olp, tbe greater the accuracy. 
If we set p = 1 + Mmmor where Mmos is equal to tbe number 
of probes across the broad wall at a cross section, we have the 
following equations 

Evm sin(mu)sin(Eu)du 
(5) 

=PEEum[ 
-sin(m + !)u sin(m - eju 8 

2(1n+l) + 2(m-E) lo 
EyL(z)= IE~(~)Iexp(j4~) = R,,t +jlg (13) 

where tan #,,r = Ifl/R,,r and EN(ni/p) and 0~ are measured 
quantitk. The Fourier quantities lEvmI and #r are deter- 
mined from Since both m and E are intrgprs, the second term in Eq. (5) 

is 0. The first-term is t for m = C and 0 for all other integers. 
Therefore, 

dum = tan-’ ll!!! ( 1 Rum (15) 

Only the LC# electric fields, those perpendicular to tbe broad 
wall have been treated thus far. For the Es Belds, those per- 
prndicular to the narrow wall, the analysis is identical except 
that m, a, z and p are replaced, respectively, by n, 6, y and 
9. Similarly, thr minimum value of 9 is IV,,,, + 1. Again the 
larger thr value of 9, tbe greater the accuracy. 

The phase velocities of the propagating modes are all dif- 
ferent except for the special case where degenerate mode pairs 
exist. \Ve must now look at the variation of electric field along 
the wavrguidc in the direction of propagation. Specifically, 
mrasurcmcnts must be made at at least two cross sections in 
the broad wall and four cross sections in the narrow wall for 
the rlcvrn propagating modes at the tbird harmonic. 

Thr rlrctric field quantities Ep expressed previously can 
br cxprrssrd by the complex equation 

Thr M-hand side of Cq. (4) yields 

w twrc 

-. where p rcprescnts the number of equally divided segments 
along the broad wall. 

* 
Equation (4) becomes 

2 % E,,t (f)sin (q) = % Eym 

E ym=+n . 

67) Using tbe nomenclature and method of Forrer and Tomiyasu, 
at each mcasurcmcnt cross section one has 

therefore 

Eym =igl(G) sin(q) . 

. 

WI 
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(17) 

AE,,,n = 3 AEymn =A Rym + jAIum 
n==O 

‘Rm = 5 BRymn =’ RIO +‘Rml 
n-0 

‘Ey,,, = 2 BEp,, =B’Rum + jBIm 
n-=0 

‘EN,,, = % ‘Em,, =’ Rym + jcItn 
II==0 

. . . . . 

. . . . . 

. . . . . 

DI ym = “Jo AIymn =B &IO +B I#ml 

From Eqs. (18) one obtains 

where .-I, B, C, . . ., refrr to respective measurement cross sec- 
tions at which AE,,,, ‘E,,,, cE,,,, . . ., bave been determined. 
fld is the highest n-index occurring in tbe modes under analy- 
sis. 

Separating Eq. (17) into real and imaginary parts one has 

BIi,,o =A R,,,,,. cos em0 +A 1~ sin em0 

BIumo = -ARmo sin em0 +A I,0 co9 em0 

‘Ryml =A Rvml cos e,,,, +A Rml sin 8,l 

BIyml = -A R,l sin t&,1 +A I,, co9 8,1 

where 

e m0 = h10(zB - ZA) 

8 ml = &l(zB -zA) * 
Substituting Eqs. (21) into (20) yields 

ARum = 2 ARymn AIV, = 2 A~V,, 
II==0 n=O 

‘RN,,, = Z. ‘Rumn ‘Iv, = n$o ‘Ipn (18) 

%n = g ‘Rym,, C~vm = 2 CIumn 
n=O n=O 

. . . . 

. . . . 

-e . . . 

Thr qunntitirs on the left-band side of any one of tbe above 
.eqiations can be obtained from Eq. (16). The right-band side 
quant itips at the K-th cross section can be related to those at 
A-th cross section with the transformation equations 

KR,n zA R,,,, mBmn +A I,,,,, sin em,, 

KI 
(19) 

In” = - AIm, sin emn +A Imn cos emn 

where e r7J” = ;3mn(q( - :A) is the electrical distance between 
thr tso cross sections. 

-. 

The rquat ions (16) are solvable provided em,, # 2nn wbere 
n = 0, 1. 2, This restriction was taken into account wben 
the distance between waveguide cross sections was selected. 

After substituting Eq. (19) into (18) a linear system of 
equations with 2(1 + nd) unknowns is obtained. Since tbe 
Fourirr analysis at each cross section contributes two equa- 
tions, mrasurrmcnts at 1 + nd cross s&ions are required. For 
example, wbcn nd = ‘1 then measurements are made at 1 + 
“d = 2 cross sections giving 

ARvm = “co ARymn =A Rpo +A Ryml 

(2Oa) 

AIM, = e AIpn zA IymO +A Ip] 
n=O 

ARV, =ARpr, +A Rvml 

AIV, =AIymo +A Ipl 

BRum =ARum~ ~0s B,o +A Iurn sin em0 
+A RF1 cOseml +A IF1 sin em1 

fIYrn =-A RF0 sin 6&O +A It,,,,0 cos em0 
+A Rvml sin 8,t + A lml cm emI 

(204 

- . 
(21) 

(22) 

(23) 

One knows ARy,,,, AIy?n, BRv, and BIv, from cross section 
measurements and calculations using Eqs. (9) and (10): 8,u 
and B,,,t are obtained from Eqs. (22). Therefore, one can 
obtain the four unknown quantities ARymo, ARyml, AIymn and 
A&l 1 from the four equations (23). Again f&u, 8,1 # 2nrr. 

E kmn has now been determined. Eymo = lEv,,,ol esp( j&r) 
rrprcsrnts the electric field phasor of the TE,,,u mode only. The 
subcomponrnt Eyml = )Eymt)exp(jomt), however, is the sum 
of the TEml and TAf,,,t phasors and therefore is not uniquely 
associated with a single mode. 

The degrrncrate mode pairs TEtnn and TM,, have identi- 
cal phase velocities and contribute to the electric fields on both 
the broad and the narrow walls of the waveguide. Separating 
these degenerate mode pairs may be accomplished by corre 
tating the broad wall and the narrow wall electric Gelds at the 
same wavrguide cross section. The total field on the waveguide 
wall is the phasor sum of the TE and TM mode fields so that 

E rmn = Er;(Thfmn) + &(TEmn) = Rrmn + j&n (25) 

- The Ez and Ep components are related to one another by 

Er(TMnn) = l/q E,dTMnn) CW 



Er(TErnn) = -9 Eu(Wm,) (27) Now for any TE mode 

where 9 = no/mb. Equation (24) can be rewritten 

(RTA’ + if”‘) Y Y Inn + (RTE + jIm) Y Y mn = (RN + il,h, 

E z = jk#coskzrsinkUy 

E, = -jk,B’sin k,zcos kvy 

where 
H -4 =a- 

R ,, = ROT”’ + RNm (28) 
ZlE 

l?ff + ITE 
‘I, e EE 

I, = Y w zTE 

(36) 

Substituting Eqs. (26) and (17) into Eq. (25) gives where 

(Erhn = l/9( ET”‘) Y mn - 9(E,TE)mn = (& + jl,),, B’= ti nr i 
kc/, 

kz = !!!! 
a kN = T 

where 

R r = 1/9RF” - 9RNm 

I t = 1/qI~u - 91Yn . 

By first solving the following set of equations 

Ru= y RTA’ + RTE 
Y 

I# = I, TAf + ‘yTE 

R -- z = 1/9R;” - 9Rgm 

I r = l/t@” - t$rE 

Therefore, 

b o 
1,; = ! 

2 II 
(32) 00 

? 
Re btz cos’ k,r sin? kyy + 3 sin* kzr cos* kuy 

ZTE ZTE I 
dzdy 

I 
: 

where R#, I,, and It are known from measurement and sub- 
sequent calculation. one obtains four linear equations with un- 
knoans. RF”, RiE, ‘CA’ and ITE as follows 

~T.ff = R, + (1/9)Rz R&J - 9Rz 
RuTE = 1 + 92 

cos’k,rsin* k,y + k,y 1 Y 1 + (l/9)? ’ 

IV + (l/d’= 
w d(b) dP,y) 

lT”f = ‘EC ‘, + Q’Z Y 1+(1/9)? ’ y 1+9? 
(37) 

The maximum electric Geld amplitudes and phase relationships 
are 

IETA~ I? 
Y 

= (nT”f,* + (IT”‘)* 
Y Y WI , 

@El* = ($-E,? + (fTE)* 
Y (3-1) 

-. (if n # 0) = -- 
4TAf 4TE 

4. D&nining the Propagating Power in Each Mo& 

Tbe average power in a given mode propagating in the z 
-direction is given by 

b a 

=q;zJ1= (m=Oorn=O) - 
c’ 

/ 
Re(ExfI’),d8 = -f//Re(&H~ = E,,Ii:)drdy 

(39) 
NOW the amplitude squared term is 

00 
. (35) 
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lEm12 z = !tgE = Ify!r)2(~)2(!!)2 (40) _ 



wbcre O’R,, + O’Rv,, +’ IF0 +l XRvml 

k 

Rearranging the amplitude squared equation 

(41) 

(mandn # 0), or 

(morn = 0) 

t:>ing the same procedure one can obtain ICTAf. 
(42) 

One can now srt up all tbe linear equations for tbe com- 
puter calculation. For tbe broad wall measurement 

R,, = 1EH (;)I cos& (;) , 

P = I+nlmaI , 

[I = waveguide broad wall dimension 
For tbc narrow wall measurement 

(43) 

(44) 

H Ilctre 

R,, = IEz;, ($)I ~0s Ot ($) , 

4 = 1 +xmaz , 

b = wavcguide narrow wall dimension 

For the tbird harmonic, the eleven propagating mode are 
TEm TED, T&I, TEII , Thfll, TEzj, TM2,, , TEm, TM3,, 

, TE31, and TEdo- As described earlier, there are four (A&,u,Z) 
broad wall probes in each of two (Nd + 1) rows spaced 3.8 cm 
apart. h’ow one has lour (2( Nd + ?.)I equations as follows 

‘Rymo +’ Run,1 + O&, + O’lum 

= ‘Rum = 
. 

Tg R,,, (F)sin(y) (45a) 

7 

N,j is the highest n-index existing in degenerate mode pairs _ i 
and in this case is unity. Mrrrmoz ia tbe highest m-index and in 
tbis cse is 4. p is the number of segments in one row which 
needs to be 2 1 + Mmot and in tbis case 5. The left upper 
corner superscripts 1 and 2 are the iodices of tbe rows. Tbe 
m-index varies from 1 to 4. 

e mo=Bmo~Az 
e ml =Bmr.A~ . 
. 

e’,, = pm”. AZ 

whereAt = 3.8Ocm 

IVhcn the previous srt of equations are expressed in matrix 
form [A].? = i) they become 

1 1 0 0 
0 0 1 1 

~0s em0 =hl sin em0 sin @,I 
-sin em0 - sin em, eon ho C= em1 

- 

(47) 
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Tbus far tbe treatment and equations have dealt only with 
the two rows 01 broad wall probes and the various Ev’s. Simi- 
larly, one obtains a set of El equations for the second and third 
harmonics from the four narrow wall probe measurements. 

There is one (= JVmar) probe in each row and four (= 
Af,j + 1) rows spaced 3.80 cm apart on the narrow wall. There 
fore, one has eight [= 2(m,j + l)] simultaneous equations for 
the third harmonic wbicb are not shown bere but are shown in 
Ref. 7. 

5. checking the thupeter Program _ . 

It was necessary to devise a relatively simple check on tbe 
complex computer program. Using the calibration data for the 
probes, the Pi’s for each of tbe eleven probes were calculated 
assuming one watt of power propagating with single mode pu- 
rity. This was done for each of tbe five modes at the second 
barmonir and each of the eleven modes at tbe third harmonic. 
This requires eleven each amplitude and pbase values for each ; 
pure mode at each harmonic or 352 values of Pi. Some debug- 
ging of the program waa required. For details see Ref. 7. 
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