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Abstract

An array of 12 calibrated RF electric field probes
on the waveguide walls are used to sample the com-
plex field profile at the second and third harmonics
where the fundamental power is in the 40 MW range
at 2856 MHz. The measured amplitude and phase sig-
nals from these probes are Fourier analysed to deter-
mine with good accuracy the power in each of the many
possible propagating modes.

Introduction

The output power from each of the 244 high power pulsed
klystrons at SLAC is routinely measured using thermistor bridge
power meters and a sampled signal from a modified Bethe hole
directional coupler. These couplers are located in the waveg-
uide coming from each klystron before the four-way power split
to each accelerator feed. Adequate low pass filtering has been
required since we are primarily interested in the power to the
accelerator at its operating frequency of 2856 MHz. Further-
more, one of the properties of the type of directional coupler
being used is that there is stronger coupling to higher order
modes at higher spurious and harmonically related frequen-
cies. Significant measurement error of the fundamental would
result unless low pass filtering is used.

Recently there has been renewed interest at SLAC in the
harmonic content of the klystrons. The velocity modulated
“electron beam within klystron is typically rich in second and
third harmonic RF current components. The induced current
in the output cavity at these frequencies, however, remains
weak compared to the fundamental component. There is a
reasonably good theory to predict the harmonic RF compo-
nents of current in the klystron electron beam. Calculating
" the RF currents induced in the output cavity and subsequent
power output at the harmonics is quite difficult, because the
output circuit must include parts of the collector and tube
body as well, since these chambers are above cutoff as waveg-
uides and suitable boundary conditions for s model cannot be
established.

Attempts to calibrate the directional coupler at the lower
order harmonics of this operating frequently would be useless
since there are five propagating modes st the second harmonic
and eleven propagating modes at the third harmonic. The de-
gree to which the harmonic (and/or spurious frequency) energy
is divided up into the various modes depends both on how the
excitation or the initial launching into the waveguide system
occurs. It also depends upon mode conversion that takes place
due to obstacles and discontinuities such as bends, windows, or
vacuum pumpouts shead of the location that a measurement
might be made. .

In 1958, M. Forrer and K. Tomiyasu! described a movable
probe assembly which was used to sample the magnitude and
phase of the electric field along both the broad and narrow
walls of a pressurized S-band waveguide. The complex field
profile was sampled at two different waveguide cross sections. A
Fourier analysis on these data by computer enabled the power

to be calculated for the various propagating modes at each
frequency. This was done at a power level of 4.7 MW from an
S-band magnetron.

Later, V. G. Price? made similar measurements using an
array of fixed electric probes which were calibrated. Using
a computational method similar to Forrer and Tomiyasu, the
power in each propagating mode was determined. He shows
that, in general, the minimum number of probes required to ob-
tain enough information to determine the power in each mode

is slightly greater than the number of modes which can prop- -

agate at a given frequency. The accuracy of the measurement
is increased if the number of probes is increased beyond the
minimum pumber. This method has the advantage that it is
arc free and therefore can be done at higher peak power levels.

About the same time, D. J. Lewis? developed a method
where a series of mode couplers were designed; each coupler
selectively coupling a single mode and discriminating against
other modes. This method was useful for measuring second
harmonic power where perhaps four or five modes exist, but
was impractical for higher frequencies where a large number of
modes could propagate.

A few years later, E. D. Sharp and EM.T. Jones* devel-
oped a method where the various modes in a large multimode
waveguide were discriminately sorted into several smaller dom-
inant mode waveguide-arms. This method does not require a
computer, but does require an elaborate waveguide diserimina-
tor device and must be used where only a limited number of
higher order modes can exist. The experimental error is some-
where between +2 and 5 db.

The next year J. J. Taub® described a method where the
power to be measured was fed through a waveguide taper into
8 much larger, overmoded waveguide and into 8 large multi-
mode load. The oversized waveguide has an array of 40 or
so probes and a line-stretcher shead of the taper. He shows
that the higher mode energy from the standard size waveg-
uide is converted to an approximate plane wave in the overized
waveguide. Using filters, the line stretcher, and signals sam-
pled from the various probes, the approximation allows one
to determine the total energy at a given frequency to within
about +1 db without knowing how the energy is divided into
the various propagating modes.

A multiprobe method similar to that used by Price? ap-
peared to be most suitable for us since the other methods had
disadvantages described in more detail in Ref. 7.

It was decided to confine our investigation to the second
and third harmonics of 2856 MHz. To cover the eleven prop-
agating modes at the third harmonic 8 minimum of eleven
probes was required. Price points out that the minimum num-
ber of probes required at each broad wall eross section is equal
to the highest m-index to occur for a propagating mode. Since
the TE mode can propagate there will be four probes across
the broad wall. The highest p-index determines the number
of probes on the narrow wall at each ctoss section. All the
n-indexes are either zero or one, 80 a single probe at each cross
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section is adequate. The number of broad wall cross sections
required is 14+ Nmqz(1) = 2. The number of narrow wall cross
sections is 1 + Mmgz(1) = 4. Npmqao(l) is the maximum n-
index to occur where the m-index is unity and Mpqz(1) is the
maximum m-index to occur for 8 mode whose n-index is unity.

Four equally spaced probes across the 7.21 em broad wall
placed a cobstraint on the type of high vacuum RF feedthrough
connectors that could be used. The spacing between probe
feedthrough connectors and hence the maximum diameter had
to be less than about 1.4 em. This space limitation precluded
the use of type N or GR connectors.

The connector/feedthrough assembly chosen was made from
a Ceramaseal high vacuum grounded shield connector with a
SMA coaxial connector. The feedthrough was brazed into a
cupro-nickel cup supplied by us to the manufacturer. This as-
sembly was, in turn, welded into a stainless steel cup which had
been brazed into the copper S-band waveguide at the appro-
priate location. Detail of this feedthrough assembly is shown
in Fig. 1. Eleven identical RG 223 double shielded cables
connected the somewhat fragile SMA feedthrough probes to a
sturdy steel panel with type N bulkhead feedthrough connec-
tors as shown in Fig. 2.

1. Amplitude and Phase Calibration
of Probe Assembly

The objective in the probe calibration procedure is to relate
the signal measured into 8 50 {2 termination at the bulkhead
panel to the total electric field in the waveguide at the corre-
sponding probe for a given harmonic frequency irrespective of
the mode.

A pure TEjg mode is lsunched at each harmonic frequency
at which the calibration is made. For example, the third har-
monic of 2856 MHz is initially launched into WR 90 (standard
X-band) waveguide where only the TEjo mode can exist and
gradually tapered over about ten feet up to WR 284 (standard
S-band) waveguide. The power level of the launched wave
is measured using a 20 db directional coupler in the X-band
waveguide ahead of the taper. The waveguide probe assembly
is terminated with a 100 W multimode waveguide termination
during the calibration procedure. The mathematical details of
this low power calibration are covered ip Ref. 7.
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Fig. 1. Détkilpf single electric field probe assembly.
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Fig. 2. Multiprobe/cable assembly.

To calibrate the narrow wall probes it was necessary to es-
tablish s TEp; mode using 8 suitable taper in beight but not
width from WR 137 waveguide up to WR 284. This mode can
propagate at both the second and third harmonics of 2856 MHz.

The analysis also requires that the phase characteristics of
each probe and cable assembly be known. If one were able to
ensure that the phase shift through each assembly were iden-
tical, this part of the calibration procedure would not be nec-
essary In both the amplitude and phase calibration, the cables
were considered part of probe assembly.

The phase calibration was made using the system shown in
Fig. 3. A Watkins-Johnson M76C double balance mixer was
used as the phase detector shown in the figure.

In principle, it is necessary to know the phase relationship
of all of the probes with respect to one another. A straightfor-
ward calculation relates all the broad wall probes to each other
in the TE)q calibration and all the narrow wall probes to each
other in the TEy; calibration. Of these two modes, however,
each have zero field for one or the other of these calibrations
using the TEjg or TEyp;. Ideally, one could solve this dilemma
by lsunching a pure mode where the phase relationship be-
tween the broad and narrow walls is known. Either member
of the TE}) — TM); degenerate mode pair would be ideally
suited for this calibration since the narrow wall is 180° in the
former case and 0° in the latter case. An unsuccessful attempt
was made to Jaunch either of these with reasonably good sin-
gle mode purity. It was decided to assume that the phase shift
through each narrow wall probe was the same (for the TM;
mode) as the average phase shift of the four broad wall probes
in the same waveguide cross section.

2. High Power Measurement
The probe assembly was installed at the output of a SLAC
XK-5 klystron as shown block diagram in Fig. 4. A high power

load with reasonably good multimode capability was made by
terminating a 10-foot long 4 db kanthal coated, water cooled,
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Fig. 3. Simplified block diagram — low power amplitude and
phase calibration.
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. Fig. 4. Simplified block diagram — high power measurement.

stainless steel attenuator with a standard SLAC high power
water load. The kanthal coated attenuator was built at SLAC
for measurement. The VSWR of this combination load is less
than 1.10 for the fundamental mode and less than about 1.6
for all higher order propagating modes at the second and third
harmonics.

The harmonic power levels at the bulkhead panel were mea-
sured using an isolator, appropriate band pass filter combina-
tions, and a calibrated HP8740 crystal detector.

The relative phase of the total electric field at each probe
was measured with respect to a constant 10 MW reference
which was obtained from a reference probe ahead of multi-
probe assembly. Again, appropriate band pass filter combina-
tions were used in both the signal and reference arms in the
phase measurement.

The measured power output at the fundamental, second
and third harmonics for a typical SLAC bigh power klystron
is shown in Table 1. The harmonic power is broken down into
the various propagating modes.

In this measurement and analysis the minimum number of
probes to provide a solution were used. More probes would
bave reduced the error, especially at the third harmonic. In
certain situations a small error in a probe reading could result

Table 1. Multimode Power Distribution
for a SLAC High Power Klystron in Watts
Tube: M-413

Second Third
Propagating Fundamental Harmonic Harmonic
Mode 2856 MHz 5712 MHz 8568 MH:

TEyp 310x10° 11,208 269
TEx»- 1,130 1,490
TEo 52,570 754
TE}, 50,643 188
TMy, 8,261 450
TEy 258
TMz 174
TEy 138
TE; 03
TM3, 37
TE 42
TOTAL  31.0x 10° 123810 3,804
(0db Ref) (-24db) (-39 db)

in a significant error in the final result. In his earlier measure-
ment, Price? found that his high power measurements were
repeatable within +1 db in amplitude and 42° in phase. The
mesasurement technique and the equipment used in the exper-
iment reported herein provided approximately the same re-
peatability found by Price.

Based on the experience of others!:%3.4.5.7 and on this
measurement, the overall accuracy of measuring the power in
the various propagating modes on SLAC klystrons is about
£1.5 db.

3. Theory

The probes will sample the sum of the transverse electric
field components for all of the propagating modes. The elec-
tric field distribution for any TEmpn ot TMpm, mode have the

general form:
:) sin (" b
E; = sin (man) os(%)

using the coordinate system shown in Fig. 5. Since on the
broad wall y is either a or b, then

Eg—-E,ocos

(1)

. (m=xz
Ey = +Eq sin (—a—) , (2a)
similarly on the narrow wall
- n (7Y

E; = 2 E; sin (Eb—) . (2b)
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Fig. 5. Waveguide coordinate system orientation.

Carrying through the broad wall analysis, the total electric
field at any given position z is the sum of the modes which
have m 3£ 0



Eyt(’) =

%l: Eym sin (r%r)
= Rmsin(T0) 45 X In sin (7Y

where Eym = Ry + § Im. The Fourier components Ry, and I,
are found as follows: Both sides of Eq. (3) are multiplied by
sin({ry/a) and integrated giving

(3)

/Eyl(ﬂ\ln( )d.r = z/Eyyn ﬁm ) m((:—r)dz (4)

Letling u = zx/a onec obtains

;b/ Ey(r)sin(fu)du

L ]

Z/ Eym sin{mu)sin{€u)du
™o (5)

- ; z Eym[- sin(m + €)u + sin{m — ()u]’r

2(m + () 2Am—¢£) Jo
_a [sin r({m — () _sin n(m+ ()]
TV T im0 (m + ()

Since both m and £ are integers, the second term in Eq. (5)
is 0. The first term is x for m = € and 0 for all other integers.
Therefore,

. - N
;/Ey,(:r)sin((u)du = g Y Em=3Em (m=0 . (©)
lo m

The left-hand side of Eq. (4) vields

/Ey,(t)cm( )d.r = z Eylz, )sm(

)A:r,
=1

(22
i=) P p P

where

where p represents the pumber of equally divided segments
along the broad wall.

Equation (4) becomes

SEEACRN s S
therefore
=B @

Letting Eym = Rym + jlym, Ey = Ry + jlt, one obtains
the Fourier components Rym and Iym

ym =2 5 R (5 (2) ©

f=]

Iym —-g:z:: l,g(%'-)s n(m—) (10)

where
Ry, (2) = E Rym sin (——E) , (11)
Iy (1;;’) = ;,.: Iym sin (mTzz) (12)

For a solution to exist, it is necessary that m/p < 1. Therefore,
P 2 14 Mpmgz. Thelarger value of p, the greater the accuracy.
If we set p =1+ Mpms; where M, is equal to the pumber
of probes across the broad wall at a cross section, we have the
following equations

E(3) = 1B (5 )lexption) = R+ it (13
where tan ¢y = Ji1 /Ry and Ey(ai/p) and ¢yt are measured

quantities. The Fourier quantities |Eym| and ¢ym are deter-
mined from

n
|Eym|2 = !Rym|2 + [yml”

-1l 1
éym = tan l(;?i-mm)

Only the £y electric fields, those perpendicular to the broad
wall have been treated thus far. For the E, fields, those per-
pendicular to the narrow wall, the analysis is identical except
that m, a, z and p are replaced, respectively, by n, b, y and
g. Similarly, the minimum value of ¢ is Nmgz + 1. Again the
larger the value of ¢, the greater the accuracy.

(14)

(15)

The phase velocities of the propagating modes are all dif-
ferent except for the special case where degenerate mode pairs
exist. We must now look at the variation of electric field along
the waveguide in the direction of propagation. Specifically,
measurements must be made at at least two cross sections in
the broad wall and four cross sections in the narrow wall for
the eleven propagating modes at the third barmonic.

The electric ficld quantities Eyy, expressed previously can
be expressed by the complex equation

=ZEW’"I
n

(16)

Using the nomenclature and method of Forrer and Tomiyasu,
at each measurcment cross section one has



‘ n
AEym = i AEymn =4 Rym +jA1ym

n==0

n
BEym = zf BEymn =8 Rym + j8Iym (17)

n=0

<t ¢ c c
CEym= Zf Eymn =" Rym + 3" Iym

n=0
Y L] . L] .
. L . L] L]
. L . L] L
where 4, B, C, ..., refer to respective measurement cross sec-

tions at which AEp,, BEn. CEm, ..., have been determined.
ny is the highest n-index oceurring in the modes under analy-
sis.

Separating Eq. (17) into real and imaginary parts ope has

n n
ARym = Zf ARymn  Alym = t Alymn

n=0 nw=0

n
Blym= i Blymn (18)

B <t B
Rym= 3 “Rymn
n=0 n=0

n n
Rym= 3 Rymn lym= 3¢ lymn

n==0 nm==0
o . .
L] - L ] -
——— - . .

The quantities on the left-hand side of any obe of the above
“equations can be obtained from Eq. (16). The right-hand side
quantities at the K-th cross section can be related to those at
A-th cross section with the transformation equations

KR",,, =4 Romn €08 Omn +4 Imn sin fmn (9)
Klm,I = —AL . sin Omn +4 Imn cos Omn

where Omn = Jmnlzy — z4) is the electrical distance between
the two cross sections.

The cquations {16} are solvable provided fmp 5% 2nx where
n=20,1.2 .. .. This restriction was taken into account when
the distance between waveguide cross sections was selected.

Alter substituting Eq. (19) into (18) a linear system of
equations with 2(1 + ng4) unknowns is obtained. Since the
Fouricr analysis at each cross section contributes two equa-
tions, measurements at 1+ ngy cross sections are required. For
example, when ny = 1 then measurements are made at 1 +
ng = 2 cross sections giving

1
ARym = Zo ARymn =" Rymo +4 Rym1
n=

(20a)

1
A]yrn = Z Alymn =A lymo +A l”m]
n=0

1
BRym =3 BRymn =P Rymo +P Rym1
nu=0

(200)

1
D — Al _B 1 BI
lym = E ymn = Iymo + Iym)

From Egs. (19) one obtains
B Rym0 = Ry €08 6ymg + Iymoin Omo

Blymo = —Al?ymo sin f0 +A lmo cos o -
21
BR,,,.; =A Rym) 050y +4 Rym sin 0

BI,,,,l = —AR,,,,l 5iD Oy +4 Iymy c08 6y

where

0,n0 = Bmolzp = 24)
(22)
81 = Bmi(zB — 24)

Substituting Egs. (21) into (20) yields
Alym =Alymo +4 Lymy

BR,,m =AR,,,.0 cos Omo +4 Iymo sin fmo (23)
+A Ryml ¢0s Oy +A lyml sin 6y

B 1ym = =4 Rymo it mo +% Iymo ¢0s 8mo
+4 Rym1 sin 8y +4 Tymy €05 6

One knows ARym, Alym, BRym and Bl from cross section
measurements and calculations using Eqs. (9) and (10); 8,0
and 0,,; are obtained from Eqs. (22). Therefore, one can
obtain the four unknown quantities AR,,,,O, ARym;, Alymo and
Al,ml from the four equations (23). Again bp9,0m1 7 2n7.

Eymn has now been determined. Eymp == |Eymol eXp(i9m))
represents the electric field phasor of the TE,,g mode only. The
subcomponent Eymy = |Eym1| exp(jém1), however, is the sum
of the TE,; and TAf,,; phasors and therefore is not uniquely
associated with a single mode.

The degernerate mode pairs TE,;, and TA ), have identi-
cal phase velocities and contribute to the electric fields on both
the broad and the narrow walls of the waveguide. Separating
these degenerate mode pairs may be accomplished by corre-
lating the broad wall and the narrow wall electric fields at the
same waveguide cross section. The total ficld on the waveguide
wall is the phasor sum of the TE and TAf mode fields so that

Ermn = Ex(TMmn) + E{\TEmn) = Rrmn + jlzmn  (25)

The E; and E; components are related to one another by

Ez(TMmn) = 1/g Ey(TMpmn) (26)



E (TEmn) = —g Ey{TEnn) (27)
where ¢ = na/mb. Equation (24) can be rewritten
(RTM 4+ 517M ) + (RIE + j1TE )mn = (Ry + jl,}mn

where

Ry, = RIM 4+ RTE (28)

Iy=ITM 4 ITE (29)
Substituting Eqs. (26) and (27) into Eq. (25) gives
(Exdmn = 1/QUET )mn ~ gUETE )mn = (R + jle}mn
where

R: = 1/qR]M — qR]E (30)

I =1/gIT™ — TE (31)

By first solving the following set of equations

= RTM | pTE
Ry=R,” + R,

=M+ ]E
(32)
R; = 1/gRTM — gRIE

I, = l/ql{‘" - qI,TE

where Ry, I, and I; are known from measurement and sub-
sequent calculation, one obtains four linear equations with un-

knowns, RTM, RTE IT™ and ITE as follows
RTM = Ry +(1/q)R; RTE . By —qR:
1+(1/g)° ' y 1+¢?
(33)
,TM — ly +(1/9)I; lm — ]y +gql,
v 1+(1/g)r ¥ 1+47

The maximum electric field amplitudes and phase relationships
are

IEyTAlI (RTAf P+ (IyTA’ )'J
TE12 _ (TE? TE 2
|ETER = (175 + (TP o1
6T — (ap! Y 6TE — tan~] IJE
i) i

4. Deter'minin; the Propagating Power in Each Mode

~ The average power in a given mode propagating in the z
direction is given by

ba
[ / Re(E.H} = E,113)drdy
00

.1 NPT |
H,.__Q/Re(ExfI )ed = —2

(35)

Now for any TE mode

E; = jkyB coskzzsinkyy

Ey = —jk:B'sin k:zcos kyy

p=20 (36)
E;
Hy=-—
VU Zre
where
= mx ="
Tk T =3
n
V 1- (Xo/kc)"’
X—H— 2x
C ke VEE+ k]
Therefore,
] b a
wo=3//
0
kzDIZ k'.’
Ky 2 .2 LI 2
Re[ ZTE cos* kzxsin Ir,y+ZTEsm kyz cos k,y}dzdy

B',., nxmn
=/ |
0 0

k
[(ky)cos kzzsin® k,y+(f )sm kzz cos” kyy]
¥

I

d{kzz)d(kyy)

(37)
(if m#0)= 2127;:/[ an mvr) sin? lyy
+ () () cos® kunetty ) (38

im0 = e (G () )

W, = ﬂg—};ﬁ Vi- (fc/}?', (m #£ 0andn % 0) or

= 2 G

Now the amplitude squared term is

(m =0orn=0)

(39)

5= f’_‘?%’i " (nT”)o (é)o (%)" (40)



where

2”!&‘ 2 l “0
k =( ) c= = =
‘ ¢ VHo0 " @
Rearranging the amplitude squared equation
2 [k ) (fr) TE 2
B —(ﬂ) (nr 7 IEz™| (41)
Therefore
Wit = e V"‘(f"/f PIETE|? (mandn #£0), or
b o
S;,“':.—o 1-{f/1)- IEIElz (morn =0)

(42)
Using the same procedure one can obtain WTM,

One can now set up all the linear equations for the com-
puter calculation. For the broad wall measurement

=2 () (2)

Py

(43)
2p-] ia fmnr
In=2%"1 (—)sin (—)
™ p,gl \p P
where
fa fa
Ry = 1B (F)ieosen(5)
]y( = IEyt( )] sin éz( ) )
p
- p=14 Mner
a = waveguide broad wall dimension
For the narrow wall measurement
1 .
Ry = 2 t Ry ("—b) sin (_ymr)
(44)
2 ¢! i
=28 (2)n()
J=1 q

where

Ra = 1zt cosen (2

m=m@%m@).

g=1+4 Nmar ,

'h
e’

b = waveguide narrow wall dimension

For the third harmonic, the eleven propagating modes are
TEyo, TEx, TEw, TEy, TMyy, TE2y, TMoy, TEsp, TM3;,
. TE3), and TEy. As described earlicr, there are four (AMpg;)
broad wall probes in each of two (N4 + 1) rows spaced 3.8 cm
apart. Now one has four {2(N; + 2)] equations as follows

YRymo +! R,,,,, +0' o+ 0 ym

’Ry"‘ =- Z Rytl (;’)Sln (u:x) (45a)

= U =231 ("’)sin (""—")
ym E;“’P P
€05 0o | Rymo + €08 0m1 ' Rymy
sin0mo '1,,,.0 + 80 Oy Hym

2]?,,,, = -'g Ry (':)sln (":t) (450)

— 8in 0o ’Rymo ~sinfp; lR'ml
+ €05 O 'l,ml + ¢08 Oy M lymy

21,,,, =- Z Lo (‘:)sin (!-';—‘)

Ny is the highest n-index existing in degenerate mode pairs
and in this case is unity. M,z is the highest m-index and in
this case is 4. p is the number of segments in one row which
needs to be > 14 My, and in this case 5. The left upper
corner superscripts 1 and 2 are the indices of the rows. The
m-index varies from 1 to 4.

)= (St (4
() i (o 9
. ‘ {46)
Ry, (%a) = |Ey, (%)l €05 #uts %)
Ly, (%) ='|‘E,¢, (!s)‘ Sin $yrz (%)
Bmo = Bmo - Az where Az = 3.80cm
ﬂ.ml = fmi1 - Az
gm" = PBmn- Az

ﬁmn'—-vl—(fC//)'
Je=3Vm/a) + (n/b)?

W hon the previous set of equations are expressed in matrix

form [A] X = B they become
1 | 0 1]
(1] 0 1 1
€08 fmp cosfmy  sinfpmp  Sinfpy
—sinfyg —sinbp,y  cosbpg cosbp,
"R | _ | Hym (47)
llym() 2RW

For the second harmonic see Ref. 7.
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Thus far the treatment and equations bave dealt only with
the two rows of broad wall probes and the various Ey's. Simi-
larly, onc obtains a sct of E; equations for the second and third
harmonics from the four narrow wall probe measurements.

There is obe (= Npmaz) probe in each row and four (=
Afg+1) rows spaced 3.80 cm apart on the parrow wall. There-
fore, onc has eight [= 2(my4 + 1)] simultaneous equations for
the third harmenic which are not shown here but are shown in
Ref. 7. '

5. Checking the Computer Program

It was necessary to devise a relatively simple check on the
complex computer program. Using the calibration data for the
probes, the P;’s for each of the eleven probes were calculated
assuming one watt of power propagating with single mode pu-
rity. This was done for each of the five modes at the second
harmonic and each of the eleven modes at the third harmonic.
This requires eleven each amplitude and phase values for each
pure mode at each harmonic or 352 values of P;. Some debug-
ging of the program was required. For details see Ref. 7.
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