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ABSTRACT 
-- 

A model based on an effective field theory is described. The model allows a 

simple treatment of nonleptonic decays of mesons. -The origin of the octet rule 

is placed in a framework of long-distance dynamics. 
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1. Once the PENGUIN operators were introduced [l], the AI = l/2 rule (or 

‘octet” rule) in K + %A decays seemed to be explainable as a short-distance 

phenomenon. Some problems remained unresolved (e.g., whether the current 

algebra (CA) contribution contains the so called separable contribution or not, 

should the coefficients of PENGUIN operators be taken as given by the renormal- 

ization group analyses or rather as free parameters, etc.), but with reasonable 

assumptions on such open questions one could get a very good agreement with 

experiments [2,3]. However, somewhat unexpected failure of the simple standard 

scenario in D decays forced theoreticians to look for a refinement of analyses. 

Since then various other possible mechanisms influencing the weak amplitudes 

were considered. Particularly, the long-distance effects attracted a lot of at- 

tention. While it is now accepted by many authors that these effects should be 

considered more seriously, the disagreement still exists in the estimates of the de- 

gree of their importance. The entire spectrum of opinions can be found, ranging 

from beliefs that the long-distance contributions are incalculable but probably 

small, to the views that these contributions are calculable and moreover domi- 

nant. The latter conclusion [4 - 71, if it comes out to be correct, turns upside 

down all previous analyses of nonleptonic decays based on the short-distance 

dominance, and places the explanation of AI = l/2 rule in a completely differ- 

ent context. So far, however, there are no convincing arguments for any of these 

different opinions, and both standard and nonstandard approaches coexist in the 

literature. 

-. 

2. Consider for a moment one of the papers, [6], representing the nonstan- 

dard stream. (Similar conclusions follow from considerations of other papers 

[4 - 71.) The arguments supporting the long-distance dominance in ref. 6 rely on . 
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PCAC, dispersion relations and the asymptotic Regge behavior. Though based 

on well established facts of hadronic physics, these arguments might look not too 

impressive to an audience accustomed to the simplicity and elegance of the stan- 

dard procedure. Furthermore, the short- and long-distance physics are in ref. 6 

separated (by means of a cutoff) although such separations are questionable. Ill 

It would be interesting therefore to exhibit the importance of long distances in 

a simpler and less diverse way. In this work some steps in this direction are 

described. 

The simplest scenario in which the long-distance physics determines the prop- 

erties of weak K decays is one in which the only role of gluons is to form bound 

quark-antiquark states. In other words, in such a framework gluons would be al- -- 

lowed to create effective meson-quark-antiquark vertices, but not to participate -_ 
in the radiative corrections. Imagine thus a situation in which by some unknown 

mechanism all gluons other than those implicitly taken into account in (generally 

unknown) vertex functions, are suppressed. Can one in such a simple framework 

at least qualitatively understand and describe decays of kaons in a proper way? 

The answer suggested in what follows is affirmative. 

3. The main tool in the analysis will be an effective field theory in which 

mesons are coupled to quark - antiquark states. It will be assumed that once the 

valence vertices are formed, all QCD corrections as well as higher.Fock states are 

negligible. In such a model K ---) AX decays can be described directly (in terms 

of diagrams), and with no use of CA reductions or similar tools of the standard 

analysis. Still, the scheme proposed is not the usual valence-quark scheme. The 

fil Some indications that a factorization on hard and soft contributions is not possible can be 
found in ref. 8. 

1 

3 



first difference is the absence of explicit gluons; while one usually implants hard 

QCD corrections into the pure valence-quark picture, here I shall argue that once 

the gluons in diagrams are allowed it becomes inconsistent to neglect higher Fock 

states. The consistent procedure, which preserves the gauge invariance, should 

be: either consider radiative corrections, but than take also higher Fock states 

into account, or neglect gluons altogether. The second important difference is 

related to types of vertices: in addition to the regular vertice (fig. 1) formed 

by interactions of gluons and constituent quarks, another types of ‘anomalous” 

vertices are a genuine part of the model. They appear whenever, due to the W 

exchange, a direct s + d (or d --) s) transition happens within the confinement 

radius (fig. 2). An object with a “wrong” flavor is formed in such a way. It is -- 

easy to see that in the scale in which regular vertices are of order 1 (one), the -_ 
anomalous vertices arett2 of order (rn~/Mw)~ sin r9 cos 9, rnM being the mass of a 

meson. Therefore new vertices are not important e.g., in Ka decays (where they 

are largely suppressed), but on the other hand contribute on equal footing with 

-. 

regular vertices in K -+ AA and some other processes (e.g., in rare K decays). 

Regular and anomalous vertices relevant to the analysis of the AI = l/2 rule 

are presented in figs. 3 and 4, and the set of diagrams contributing to K + mr 

decays in the leading l/flw order are given in figs. 5 and 6. Although the 

exact form of vertex functions is unknown, on the basis of various symmetries, 

one can determine their Lorentz structure. Furthermore the asymptotic behavior 

of vertex functions is determined also, by the finiteness of Ma decays. Finally, 

effective vertices used here are relativistic objects (as opposed to vertices in some 

j2 For simplicity, I am using the four-flavor model with the isospin symmetry. Masses of 
1iFhtest quarks are assumed to be equal, m, = md. 
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other similar but nonrelativistic descriptions; see e.g., ref. 9), and introduce 

dynamics into the scheme. 

4. Consider the first diagram in fig. 5. If the momenta of the AO (or+) are 

PI(&), and quark propagators are denoted by S, then the matrix element from 

this diagram is 

.+qk+y-y r,s, (k-fi;fi)7p(l-75)] (1) 

J 
d*k’ 

-vx (21r)4 Tr [s&’ - fi) rr &(k’)qp(l - y5)] 
._ 

+ 0(1/M&) . 

Rather surprisingly, it comes out that &l diagrams with regular vertices (fig. 5) 

are either proportional to (1) or give zero contribution. ” In a similar way, one 

can easily demonstrate that diagrams with anomalous vertices (fig. 6) are either 

proportional to 

Y = (-i) / & Tr[(a i!~ Sd I?,+ 

-. (2) 

or do not contribute at alLp With some careful bookkeeping one obtains that 

tff The statement is true in the leading order in l/M&. More detail can be found in ref. 10. . 
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the amplitudes in K -+ T~F decays are to the leading order given by 

A(K+ 3 x+x0) = 3 4X . _ 1 1 A(K- + 6-1~~) = -5 4X 

A( KS ---) n+lr-) = 2X + 2Y ; A(KL --) ~r+?r-) = 0 (3) 

A(KS -+ roro) = -iX+2Y ; A(KL --) x”vro) = 0 . 

(Note that due to a cancellation, diagrams with anomalous vertices do not con- 

tribute to K* decays.) From eq. (3) follows the known [ll] sum rule, namely 

As- - A:o = 2A+. The sum rule and results (3) are valid irrespectively of the 

exact form of vertices. In addition, with 

X - 10 eV , Y N 190 eV , __ (4 

the absolute values of K -+ AA amplitudes, and therefore the AI = l/2 rule 

can be reproduced. Expression (4) suggests that if the explanation of the octet 

rule lies in the long-distance QCD, then it must be brought by a relatively large 

contribution of diagrams with anomalous vertices. 

5. It follows from the last paragraph that in a scenario in which anomalous 

vertices dominate, the AI = l/2 rule can be described even without hard gluons. 

It remains ‘only” to understand why the diagrams in fig. 6 would dominate. 

The question “Why AI = l/2 rule?” reappears now in the form “Why is Y 

so large?“. Unfortunately, it is impossible to give any definitive answer to that 

question. One must first understand the confining mechanism before any quanti- 

tative explanation is produced. Still, the described diagrammatic analysis leads 

to an interesting and general conclusion on the origins of the octet rule. . 

- 
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Once again it comes out that s --+ d transitions are playing the crucial role in 

K --+ ~T’IF physics. In the standard approaches such transitions lead to PENGUIN 

operators [l]. In this letter they participate in the construction of anomalous 

vertices. So, there is no doubt that without “fast” s --) d transitions the simple 

explanation of the octet rule could hardly be achieved. The question is just 

whether these transitions fits better the short-distance ( u~~~~~S) or the long- 

dist ante (anomalous vertices) environment. We shall see now that an intuitive 

argument favors the long distances as a framework in which an enhancement of 

s ---) d transitions occurs. 

When no gluons are presented (fig. 7a), direct transitions are of the order 

l/A4$ due to the GIM mechanism and the renormalization procedure, and thus -- 

highly suppressed. However, gluons ‘catalyze” the transitions (fig. 7b), and the -- 
probability for s --) d + . . . becomes of the order l/ww. Hence, the presence of 

gluons is a necessity if s -+ d transitions are to play any role. However, the hard 

gluons are relatively rare (this fact is reflected in a smallness of coelhcients of 

PENGUIN operators!). On the other hand, there are no similar restrictions on soft 

gluons. Consequently, long- rather than short-distances provide an environment 

in which s 3 d transitions can occur with high probability, enabling ultimately 

the dominance of AI = l/2 amplitudes.‘* 

7. No clear theoretical argument supporting the short-distance dominance in 

K-decays and in other low energy processes was presented in the literature so far. 

(Note that a confidence in the standard description is based on its successfulness 

in a phenomenology.) As a sort of a counterexample, in this letter a scenario is 

tf4 The similar idea - the dominance of so-called Tadpole diagrams - was advocated (with 
different arguments) in ref. 5 

. 
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described in which it is the long-distance dynamics that provides the explanation 

of the AI = l/2 rule. Some intuitive arguments tellus that not only possible 

but even more preferred environment for an enhancement of s -+ d transitions 

(that play a crucial role in both long- and short-distances based approaches) is 

within soft, and not hard QCD. In table 1 the standard technique and the new 

approach to the octet rule are briefly described. The intention of this paper is not 

to prove that the standard approach is incorrect. The goal is rather to stress that 

a completely different scenario still might come out to be the right one. Much 

more work is needed before an answer is found on whether the most reliable path 

is in the left, or in the right column of table 1, or maybe - somewhere in between 

these two extremes. 
-- 
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TABLE 1 

The main steps in the standard approa& and in the 

a,pproach used in this letter. 

SCHEME 

Dynamical 
Background 

Main 
Tool 

Assumptions 

Comment 

STANDARD 

Short 
Dist axes 

Operat or9 
(in Effective 

Hamiltonian) 

Dominance of 
PENGUIN 

Operators 

Consequences 
Believed to 

Be Calculable 

NEW 

IJw3 
Dist awes 

Vertices 

(in Effective 
Field Theory) 

Dominance of 
Anomalous 

Vertices 

Only 
Parameterizat’lon 

Possible 

. 
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FIGURE CAPTIONS 

Figure 1 Gluons (dashed lines) form an effective K-(W) vertex. 

Figure 2 A direct s --) d transition within the confinement radius produces 

rn anomalous vertex. q denotes (I, c, . . . quarks propagating in a 

“self-energy” loop. 4 is a Riggs ghost particle. 

Figure 3 Regular vertices in K and T systems. rr and I’K are (generally 

unknown) functions of moment a and masses. (Isospin symmetry 

is assumed). 

--Figure 4 Anomalous vertices contributing to K -+ AT decays. 

0 = sin d co9 ti(rn~/M~)~, 6 = sin 8 60s S(mx/M~)2. 

Figure 5 Diagrams with regular vertices describing K+ + 71+x0. Similar 

sets of diagrams can be constructed for other two-body K decays. 

Figure 6 Diagrams with anomalous vertices in K+ --) T+AO. Similar dia- 

grams can be constructed for other K decays. Only the combina- 

tion of diagrams in figs. 5 and 6 can properly describe the octet 

rule. 

Figure 7 Gluons serve as catalysts in s + d transitions. When no gluons 

are present (diagram (a)), the probability for the transition is 

proport ion al t 0 l/M;. When gluons are emitted from the loop 

(diagram (b)), the probability is dramatically enhanced. 
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