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Abstract 

Smooth curves a.re often used to illustrate the relationship between two vari- 
ables. They are also an important building block in many recent statistical 
models. A procedure to estimate such a curve is called a smoother. 

This paper discusses currently available smoothers and introduces the class 
of maximum likelihood smoothers. A variety of other statistical techniques are 
shown to be applicable to the problem of smoothing, and some idea of the scope 
of models that can benefit from the use of smoothing is given. 
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1 Introduction to Smoothers 

1.1 Notation and motivation for smoothers. - - 

Smooth functions are a convenient way to illustrate the relationship between 

two random variables. The usual model is that 

Y =S(X)+c 

where the errors are i.i.d., and the explanatory variable X is either constant or 

independent of e with a distribution that does not involve any of the parameters 

of the error distribution. 

We use the data to estimate the above model obtaining the decomposition 

Yi = $(,i)+rj i= lj..*,n 

for the sample. The estimating procedure is called a smoother. A good smoother 

is one that captures ‘just enough’ of the non-linearity in the sample; capture too 

much and you are reproducing noise, capture too little and you might as well use 

a linear model. 

Smooth functions of random variables play an important role in many non- 

linear statistical models and smoothers are a fundamental building block in the 

estimation of most such models. We often think of a smooth as the sample quan- 

tity corresponding to conditional expection. In such cases we will use &( YIX ) 

to denote the smooth of Y on X. 

1.2 Examples of Commonly Used Smoothers 

1.2.1 Histogram 

The range of X is partitioned into k windows. In each window .!? is the 

average of the Y values corresponding to X’s in the window. The choice of k and 

the partition is an important consideration. A common choice is to choose the 

windows so that they all have the same number of observations. The parameter 

2 



k governs the flexibility of the smoother. If k = 1 the smooth degenerates to a 

~- constant and if k = n it merely reproduces the data. Large values of k tend to 

increase the variance of the fitted smooth while reducing its biti. Ail commonly 

used smoothers have some such tuning parameter to govern the smoothness of 

the output. 

1.2.2 Running Average 

A window is defined around each Xi. s(zi) is the average of the y values in 

the i’th window. The window size is the tuning parameter. It is usually expressed 

as the number of observations in each window but can also be the length in the 

X direction of the windows. 

1.2.3 Running Medians 

As the name suggests the smooth takes the median value of the response 

variable in each window. The window length is the tuning parameter. Running 

median smoothers are discussed at length in Tukey (1977,Chapters 7,8). 

1.2.4 Running Linear Fits 

This is the same as the running average except that a line Li(Z) is fit to 

each window and then 3 (xi) = Li(zi). The lines are usually fit by least squares 

because fast updating formulae are available. For some tradeoff in computational 

cost a more robust line can be fit to each window. 

1.2.5 Running Parametric Models 

This further generalizes the running linear fit to running polynomials, run- 

ning trigonometric polynomials or even more elaborate models. The tuning pa- 

rameter is the combination of window size and the number of parameters applied 

to each window. 

1.2.6 Spline Smoothers 

The usual application of splines to smoothing is as follows: a subset of the 

data points are designated as knots and a p’th order polynomial is fit between 
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each pair of knots, subject to their being p - 1 continuous derivatives at each 

~- knot. A histogram can be considered to be the simplest non-trivial spline. 
_ - 

The fitting is usually done by minimizing the sum of a goodness of fit criterion 

(such as sum of squared errors) and a penalty for nonsmoothness (such as the 

integral of the square of the second derivative of the estimated spline). The 

relative weight given to the goodness of fit criterion is the tuning parameter. 

Notice that the usual cubic interpolating spline is undesirable whenever the data 

are noisy. For a survey of the uses of splines in statistics see Wegman and Wright 

(1983). 

1.2.7 Hybrid Smoothers 

In a hybrid smoother a family of more basic smoothers Sj, i = 1,. . . , k are 

applied to the data, and the smoother is estimated by amalgamating the basic 

smoothers. The basic smoothers usually differ from each other only in terms 

of the tuner. The choice of smoother is commonly made by cross-validation: 

each basic smoother is fit with the target point left out of its own window, the 

smoother that then has the minimum squared error is chosen. The idea is that 

the cross-validated squared error estimates the predictive squared error associated 

with the particular value of the tuner. 

In the Supersmoother of Friedman and Stuetzle (1982) the basic smoothers 

are running linear fits, but the cross-validation is done locally. For each xi 

the smoother is chosen that minimizes the squared errors near xi. This allows 

the smoother to adapt to regional variations in the curvature of the underlying 

function and in the error variance - fine tuning, if you will. (The algorithm is also 

set up to favour larger intervals, unless there is a big difference in cross-validated 

squared error.) 

Golub, Heath, and Wahba (1979) use cross-validation to choose the tuning 

parameter of a smoothing spline. 

In the noncentral smoother of McDonald and Owen (1984) windows of various 

sizes are centered at each xi. Other windows of various sizes are fit immediately 
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to the left and to the right of each point. The combination of the basic smoothers 

--~- is done locally. 

Hastie (1983) has proposed a method of combining any set of cross-validated 

basic smooths to obtain the linear combination of those smooths that minimizes 

an estimate of the mean squared error of such a combination. It considers the 

local squared errors and the local correlations between the smooths and there is 

an updating formula for these local weights. 

1.3 What is Smooth? 

It should be clear from the foregoing that the output of a smoother need not 

be smooth in any analytic senses (such as twice continuously differentiable). For 

example, the output of a histogram smoother is a step function. And yet, to be 

useful, the smoother cannot be arbitrarily flexible; 9 (2;) E yi is like saying “the 

data is what the data is” and such tautologies are useless. At the other extreme 

a model such as linear regression can be thought of in simpler terms than as a 

smooth. A smoother should produce results between the trivial and tautological. 

Each smoother has its own definition of what is smooth. 

1.4 Kernels and Weights 

A kernel smoother is one which weights the observations in each window 

according to their position in that window. Usually the weights decrease as the 

distance between the point and the target point increases. The weight assigned 

to any given point depends on which window the point is currently being used 

in. 

By contrast a weighted smoother is one in which each observation has a 

weight attached to it. This weight is often the inverse of some variance estimate 

for the point. If the i’th point were the average of ni responses at xi then it 

should get weight proportional to n;. 

Of course we can have weighted kernel smoothers. The weight attached to 

each point is then the product of the point-specific weight and the relevant kernel 

weight. 
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Having assigned weights to the points in the window, we use them by fitting 

weighted averages or weighted parametric models. In least squares estimation 

this is straightforward. In most other fitting schemes there is a-sensible way to 

use the weights. With running medians the weights can be interpreted as point 

probabilities and we can take the median of the corresponding discrete distri- 

bution function. (For this we need positive weights that sum to unity over the 

window.) The smooth of Y on X with weights W will be denoted &( Y}X ; W ). 

1.5 Simple Smoothers 

A smoother is said to be simple if it does not use point specific weights (kernels 

are o.k.) and estimates &( YIX ) in some sense. Simple smoothers are used as 

building blocks in more complicated smoothers. (Such smoothers need not be 

hybrid smoothers, nor need hybrid smoothers have simple basic smoothers.) 

1.6 Properties of Smoothers 

1.6.1 General 

Here we discuss some of the commonly considered properties of smoothers. 

Most of the smoothers referred to above were designed to optimize one or more 

of the properties given below. 

1.6.2 Pass Set 

A smoother is said to pass the data if the smooth values equal the response 

values. -The samples that a smoother would pass make up its pass set. (A 

smoother is tautological if it passes every data set.) Most smoothers will pass 

data in which the response is a constant for all X. Smoothers based on running 

linear fits will often pass linear functions. Running medians will pass monotone 

sequences. Th e noncentral smoother will pass piecewise linear (not necessarily 

continuous) functions subject to a condition on the size of the smallest piece. 

1.6.3 Degree of Overfitting 

-In a sense the pass set reflects errors of type II that the smoother will not 
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make. We also want to guard against the possibility of type I errors - finding 

structure where none exists. The larger the tuning parameter the more unwanted 

structure will be found. One way to quantify the degree of overfitting is to 

generate white noise sequences of zero mean, smooth them, and record the sum 

of squared fits. The sampling distribution of the sum of squared fits will usually 

be positively skewed. In the case of standard normal noise and smoothers that 

regress the response on a p dimensional linear subspace this distribution is xfP). 

For more complicated smoothers the distribution is often well approximated by 

a chi-square or some other gamma distribution. In such cases the mean of the 

distribution of the sum of squared fits is a good indication of the degree of 

overfitting. We would not be very interested in a smoother with two or fewer 

degrees of overfitting, but we would want the degree of overfitting to be small 

compared to the sample size. For the super-smoother with the usual choice of 

window sizes the degree of overfitting is just over 3. (This depends slightly on 

the sample size which was 100 in this instance.) This is enough freedom to fit a 

‘bent line’ and not much more. 

1.6.4 Bias, Variance and Mean Squared Error 

If the relevant moments exist, the bias, variance and mean squared error of a 

smoother can be defined, and are functions of X for any given error distribution. 

It is common for smoothers to have their greatest biases where the curvature of 

S(.) is largest compared to the scale of the errors. The tendency is for smoothers 

to ‘fill in the valleys and erode the hills’. 

In a hybrid smoother with local tuning, the bias is reduced by shortening the 

window size where the underlying function seems to have strong curvature, at 

the expense of increasing the local variance. The tradeoff is designed to minimize 

the mean squared error everywhere. 

Twicing is a technique of Tukey (1977) f or reducing the bias of a smoother. 

The smoother is applied to its own output. It fills valleys and erodes hills in 

its own output by an amount that we can compute. We then make an additive 

correction of that amount to the original smooth. This method can be shown to 



correct for quadratic behaviour. 

End effects are another source of bias and variance problems. Near the ends 

of the ‘observed range of X the windows of most smoothers are shrunken and 

noncentral. This increases both bias and variance. The problem is particularly 

acute for running averages, and treating this problem was the motivation behind 

running linear fits. 

If the set of X values doesn’t have ends (an example is the unit circle) there 

are obviously no end effects. At the other extreme if the X values take values 

in a high dimensional space the end (or surface) effects can be considerable. For 

most of the smoothers treated here the X values come from an interval in the 

real line. 

1.6.5 Equivariance 

A smoother is affine equivariant if the smooth of a + bY on X is a plus b 

times the smooth of Y on X, for any scalars a and b. Most smoothers are affine 

equivariant. If we are smoothing a function over a domain such as the unit circle 

we might impose a rotational equivariance constraint on the smoother. 

1.6.6 Linearity 

A smoother is linear if it can be written s(X) = C(X)Y where Y is the 

response vector and C(X) is a matrix depending on X. Histograms and running 

least squares regressions are linear but running medians are not. Some hybrids 

are close to linear in that they always choose a combination of the basic smooths 

that is equivalent to a linear smoother. They are not linear if that choice is made 

using the observed response as is usually the case. 

1.6.7 Idempotence 

An idempotent smoother is one that passes its own output. They usually 

arise as projections onto some space of functions of X. 
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1.6.8 Consistency 

A smoot,her S is consistent for a function S if the distance d(S ,S) converges 

to zero as n -+ 00. The distance could be integrated squared difference or inte- 

grated absolute difference. The consistency is strong or weak if the convergence 

is almost sure or in probability, respectively. If the smoother can be expressed 

as a statistical functional of the joint empirical distribution function of X and 

Y, and that functional applied to the true joint distribution function of X and 

Y produces S* with d(S, S*) = 0 then then the smoother is Fisher consistent 

for S. 

Consistency results are usually obtained by having the tuning parameter in- 

crease without bound as the number of sample points increases, but at a suitably 

slow rate. One often needs to make some assumption to the effect that S is 

well-behaved, such as measurability or continuity except at a finite number of 

points. 

1.6.8 Robustness 

In the sequel a number of smoothers are developed for use with specific dis- 

tributional assumptions, and it is also shown that some common smoothers make 

implicit distributional assumptions. We would not want a smoother to go badly 

wrong if the distributional assumptions were violated. 

Robustness can be built into a smoother either locally or globally. The local 

method is to use robust techniques at the lowest levels (e.g. the windows) of 

the smoother. One global approach, taken by Friedman and Stuetzle (1982) is 

to estimate a preliminary smooth in a robust way (running medians), ‘reject’ 

observations that are too far from the robust smooth, and smooth the other ob- 

servations. Another global method designed to enhance robustness is the Cauchy 

maximum likelihood smoother of section 4. (It often happens that in extending 

a notion to smoothers there is a choice between local and global approaches.) 

Robust,ness measures commonly used are the breakdown level and the influ- 

ence function of a procedure. The influence of the Kaplin-Meier estimate (of the 
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probability of ‘survival’ beyond time t > 0) was derived by Reid (1981). 

2 Least Squares Smoothers _ - . 

2.1 Ordinary Least Squares Smoothers 

Consider a location model Y = f(X) + e where the errors are i.i.d. with 

mean zero and finite variance. We wish to find the function f(e) that minimizes 

&( (Y - f(4)2 1. Th e well known solution is f(e) = &( YjX = . ) and so we 

estimate f(a) with a simple smoother. 

One way of arriving at this conclusion which extends to other situations is 

as follows. We start by assuming that partial differentiation with respect to each 

f(z) commutes with the expectation above. We find the best value of f for any 

value of x by setting 

O U(4 =a&( (Y - f(X))2 ) 

=w f(X) - E( YIX 1) 

which is satisfied by ](a) = &( YIX =. ). 

By using a criterion involving the expectation we can optimize over a large 

number of parameters. By expressing &( . ) as E( &( *IX ) ) we obtain a solution 

that can be estimated with a smoother. (Since we wanted a function of X we 

conditioned on X.) This simple-minded approach turns out to be surprisingly 

applicable. It is also possible to use other aspects of the distribution of the 

randomyariables, such as the median or maximum, but the expectation is the 

simplest choice. 

2.2 Weighted Least Squares Smoothers 

The setup here is as above except that we now wish to minimize &( ul(X)(Y- 

f(~))~ ) where w(X) > 0. Setting the partial derivatives to zero yields 0 = 

&( w(X)(f(X) - &( YlX )) ) which has solution I(.) = &( Y/X = . ). We are 

left wondering what happened to the weights-clearly they must enter somewhere. 

-We get them back by realizing that although we are using conditional ex- 
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pectation we don’t have to use a simple smoother-a weighted smoother will also 
- estimate conditional expectation. Our problem is identical to minimizing the 

ordinary- expected sum of squares when YjX has variance l/W(X), and so we 

should use weights proportional to w(X). In a finite parameter linear regres- 

sion context, using the wrong weights gives unbiased estimates that do not have 

minimum variance, and the same effect is plausible here. There should be some 

kind of Gauss-Markov theorem to the effect that the correct weights lead to best 

linear unbiased smoothers, although the class of smoothers to be considered will 

have to be carefully delineated. 

2.3 Generalized Least Squares Smoothers 

Suppose we wish to minimize &( (Y - f(X))‘V-‘(Y - f(X)) ) where V is 

a positive definite (variance-covariance) matrix and Y and f(X) are vectors of 

observed and fitted values respectively. 

The local approach to this problem is to use running generalized least squares 

fits. If the window-level models are parametric regressions this is straight- 

forward. 

A global approach to the same problem is to premultiply the response vector 

by C, a matrix square root of V, smooth by a simple smoother and multiply the 

resulting smooth vector by C-‘. 

3 Maximum Likelihood Smoothers 

-3.1 Overview 

One would expect that the least squares smoothers would provide good results 

when the errors are Gaussian but not when the errors come from a heavy tailed 

distribution such as the Cauchy. We strengthen this notion by showing that the 

least squares smoother is the maximum likelihood smoother for Gaussian data. 

Then we go on to derive the maximum likelihood smoothers for use against 

a variety of other distributions and along the way mention some techniques for 

solving the resulting likelihood equations. The likelihood equations for general 
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location, location-scale, and exponential family models are then given. 
- 

We turn to inference by introducing a notion of the Fisher info-rmation in a 

data set -for the underlying smooth function. This information can be used to 

obtain bootstrap confidence envelopes for a smooth curve. Inverting the envelopes 

provides a measure of the significance of the estimated curve. Other large-sample 

inference methods are also generalized. 

We conclude by considering the effects of the distribution of the explanatory 

variable X and showing how some non-linear models can be estimated by maxi- 

mum likelihood. 

As an historical note, the first maximum likelihood smoother to be used was 

the Box-Cox family of transformations (Box and Cox(1964)). Although they did 

not call their procedure a smoother, it estimated a variance-stabilizing trans- 

formation (smooth curve) by maximum likelihood from a one or two parameter 

family of transformations. 

3.2 Some Examples 

3.2.1 Gaussian Location 

The Gaussian location model is the E. Colt’ of this subject. We have YllX - 

N(p(X), (r2) where the observations are independent of each other and a2 is a 

constant. The likelihood is 

n 
L= II 

,-$-bi-P(4)2 1 

j=l&a 

but it is clear that we can’t just maximize the observed likelihood L as a function 

of p(a) since that collapses to the tautological solution b (xi) = yi i = 1,. . . , n. 

A more reasonable approach is to set the expected value of the score function 

to zero; that is to maximize the expected value of the log likelihood. This leads 

easily to the ordinary least squares smoother. We can estimate p(e) and u jointly 

by this method, getting b2 = ACy==,(yi - ii (xi))2. 
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3.2.2 Cauchy Location 

We have the situation of section 3.2.1 except that the errors-are-independent 

standard Cauchy random variables. We would not want to use a least squares 

smoother on such data. It is also reasonable that the Cauchy maximum likelihood 

smoother would be robust against outlying values of Y. 

The likelihood equations are 

EC y - CL(X) 
l+(Y-p(X))2)=o 

which, just as in the single parameter case, cannot be expressed in closed form. 

(Notice that the expectation of the numerator does not exist, but that the ex- 

pectation of the ratio does.) An iterative procedure is called for. 

Notice that a sufficient condition for the likelihood equations is 

&( 1+(Y-p(X y ))Jx=x) 

p(x) = E( l+(y&x~I x = x ) 

and we can use this to estimate cl(+) iteratively. We obtain p @+I)( .) by evaluating 

the right hand side of the condition above with p(‘)(e). When this produces no 

change in ~(a), we have a solution to the likelihood equations. This algorithm 

is a direct generalization of one we might use to estimate the Cauchy location 

parameter in an i.i.d. sample. We could start the iteration with p s 0. (An iter- 

ative estimation of location should be capable of starting with 0 and an iterative 

estimation of scale should be capable of starting with 1.) 

3.2.3 Logistic Location Model 

If one obtains the likelihood equations for Y-e(x) having the standard logistic 

distribution, conditions on X and rearranges the result, one obtains 

,Y 
e(x) = log2&( 1+ ,cu4(X) [X=x) 

which can be used in an iterative fashion to estimate- e(a). 
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3.2.4 Binomial Probabilify 

The model is that Y - Bbn(n(X), 6(X)) where O(e) is. smooth the Ys are 

independent, and every n(X) is known. The likelihood equation is equivalent to 

Y - tz(X)t9(X) 
‘( e(x)(i - e(x)) ) = O 

which suggests using an iterative procedure based on smoothing Y/n on X with 
4X) weights B x 1-Ox . The algorithm can be started with weights proportional to 

n(X). 

3.2.5 Poisson Intensity 

Suppose we have independent observations from Y - &(X(X)) where X(X) 

is smooth. The likelihood equation is 

Y 
&( qq-l)=o 

which suggests an iterative scheme 

A('+')( .) t &( YIX = - ; l/X(‘)(X) ) 

starting with X(O) - 1. 

3.2.6 Non-Regular Cases 

When the usual regularity conditions don’t hold for the underlying model 

there is no reason to hope it will when the parameter is replaced by a smooth func- 

tion of X. Consider the model in which the Y are independent Unif[a(X), b(X)] 

where a(s) and b(x) are smooth. The likelihood is 

n 

II 
1 

j=l b(xi) - a(xi)) 

if all yi E [a(xi), b(xi)] and zero otherwise. Expected scores won’t work here; 

what is called for is the smallest possible intervals that are guaranteed to hold 
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all the data. We need to estimate something like a(.) = Mux(YIX = s), b(e) = 

-- Min(YIX = a). 
_ - 

Another non-regular case is the double exponential location distribution. In 

the i.i.d. sample case, the maximum likelihood estimate is the median. (The 

non-regularity is that the derivative of the log-likelihood does not exist at the 

sample points.) The likelihood equations here reduce to 

0 = t( P(Y > e(x)) - p(Y < e(x)) ) 

which is satisfied by e(x) = M.DIAN(YI X = x ). 

3.3 Location Maximum Likelihood Smoothers 

We generalize maximum likelihood smoothers to location families YlX - 

ind g(y - e(X)) f or a sufficiently regular density g. The likelihood equation is 

f( S’F- wa ) - g(r - e(x)) = 
0 

which will often be estimable by an iterative method. 

There is a striking similarity of the above to -Ee=O(s’(Y(j))lS(Y(j,)) which is 
the optimal weight for the j’th order statistic in a rank test of 0 = 0 when 0 is a 

constant, Since the optimal rank test for location shifts in a logistic distribution 

is the Wilcoxon test, perhaps it is fair to call the logistic maximum likelihood 

smoother the ‘Wilcoxon Smoother’. 

If it happens that h(a) = 9/(.)/g(.) is invertible and vanishes at the origin 

(as it would for many symmetric unimodal densities) then for any trial smooth 

parameter t?(s), there is a ‘smooth residual’ Res(x) = &( h(Y - e(X))! X = x ) 

to guide us in improving e(e). If this residual is identically zero, then we have a 

solution to the likelihood equations. Otherwise we can update via 0(‘+‘)(m) + 
e(i)(.) - h-l(Res(-)). 
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3.4 Location Scale Maximum Likelihood Smoothers 

3.4.1 Normal Case _ - 

In this model the conditional distribution of Y given X = 2 is N(p(z), 02(x)), 

where ~(5) and a(z) are smooth and the Ys are independent of each other. 

The likelihood equations are 

,=E(~(x)-y) 
f12W) 

O=&( - -1 + (Y - PW)J2 ) 
4X) 03W) 

which are to be solved jointly. We can estimate the model by alternating between 

Cl(X) t &( YlX;&-- ) and a2(X) 

we can initialize by setting g2 E 1. 

+ &( (Y - P(X))~/X ; &l) which 

Not only can the smoother adapt itself to heteroscedasticity, it provides an 

estimate of the local variance which may be of interest in its own right. 

3.4.2 General Case 

The general location-scale model l/a(z)g((y-p(z))/o(z)) has likelihood equa- 

tions 

where 2 = (Y - p(X))/a(X), which will often be estimable by an iterative 
method. 

With a scale model we can take p E 0 in the second equation, and drop the 

first equation. 
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3.5 Location-Scale-Correlation Models 

We might complicate the Gaussian location-scale model by introducing con- 

ditional covariances of the form Cov(Y, Y’) = p(z, b)a(z)&(z’) where p(., .) is a 

smooth correlation function. 

If p is known for all pairs of x values, then we can use a generalized least 

squares smoother (adapted to estimate the scale parameter as well). Otherwise 

we might consider alternating between the generalized least squares smoother 

and a method of estimating the correlations. 

We take p to be a univariate function po(d(z, 2)‘)) where d(., .) is a metric. 

(For example d could be 0 or 1 depending on whether its arguments were equal 

or not, or d(z;, ~j) could be Ii - iI for some ordering of the observations, or d 

could be the euclidean distance between its arguments.) We require PO(O) = 1, 
and in general other conditions will need to be applied to guarantee that p is a 

bona fide correlation. (A sufficient condition on po is that it is positive, convex 

and decreasing.) 

For fixed p(X) and o(X) the likelihood equation for p is 

l&j 14 O=&(-- 2 PI - f tr(EE”) -&jjw9 ) 

where E is the vector of standardized residuals (y - P(z))/~(z) and R is the 

matrix of correlations. 

If fo_r a given correlation model the likelihood equations are intractable an 

intuitive estimator is 

p(e) = q E(z)E’(4ld(z, 4 = * ) 

although this is likely to be less efficient than the likelihood equations, which I 

conjecture are more like a weighted version of the above. Of course the smoother 

used to estimate p must be constrained to always produce a valid correlation func- 

tion. One way to do this is to estimate the correlation as a convex combination 

of some basic correlation functions such as ‘symmetric triangular’ functions. 
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3.6 Higher Moments 

If one has a density model with coefficients for higher moments,_then in prin- 

ciple one can solve the likelihood for those coefficients to estimate moving versions 

of skewness, kurtosis and so on. A cruder approach is to raise the residuals from 

a location-scale smooth to the power k and smooth the powers against X, but 

this does not correspond to maximum likelihood. A more systematic approach 

is discussed in the method of moments smoother in section 4.1. 

3.7 Exponential Family Models 

We now consider a one parameter exponential family with the parameter 

depending in a smooth way on X. That is the Y are independent with conditional 

density 

e~PMw))b(Y) + c(G)) + d(Y))* 

The likelihood equation is 

0 = E( a’(B(X))b(Y) + c’(e(x)) ) 

which in many cases is simply solved. 

If a( .) and c(e) h ave two continuous derivatives we can write 

a’(z) =a(%) + p(z)% 
c’(z) =7( %) + b( z)z, where 
p( %) =a”( z); c?( %) = a’( %) - /3( %)% 
6(z) =f!‘(%); 7(z) = c’(z) - 6(Z)%. 

The likelihood equation becomes 

0 = &( (4W)) + Pwww))~( WIX I+ 7(Q-v) + wvww) 1 

which we estimate iteratively via 

&i+l)(.) = -a(e(‘)o))t( b(~)Ix = - ) - 7(e(i)(-)) 
p(eQ))q b(~)Ix = . ) j- s(eQ)) ’ 
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This technique is called delinearization because it resembles complex demod- 

-- ulation. (It has a long history at S.L.A.C.) It amounts to a seperate first order 

Taylor’s series approximation at each point of the-curve. -On any -data set, the 

slopes and intercepts are obtained for each point in the sample. 

If either a’(a) or c’(e) is invertible then we can obtain an updating equation 

for 0(=) in the way used for the Cauchy and the Logistic models. 

The generalization to multiparameter exponential families is straightforward. 

The smooth parameters might all depend on the same covariate X or there may 

be several covariates each with one or more smooth parameters depending on it. 

3.8 Fisher Information 

3.8.1 The Appropriate Notion 

There are three ways to approach the Fisher information: the observed in- 

formation, the expected value of the observed information, and the information 

at the maximum likelihood estimate. In the finite parameter case the first two 

are the same. In the smooth parameter case the first of these is tautological, the 

last is trivial and the other is useful. 

To fix ideas we consider maximum likelihood smoothing in the Gaussian 

location model with unit variance. The score vector (a sample version of the 

‘score functional’) has i’th element ei = yi - p(Si) and we want to estimate an 

underlying Fisher information surface for p. We will only be able to estimate 

the surface over a finite grid of points, but can extend it by assuming that is 

smooth. The information, in direct analogy with the finite parameter case is 

G4+44) = &( E x E’ 1. 

For any maximum likelihood estimate of p(s) the Fisher information at that 

estimate is 1 if x = z’ and 0 otherwise, because of the conditional independence 

of Y given X. That is the ‘surface’ is 0 over all but the diagonal of X2 where it 

is 1. This tells us nothing about dependecies among the estimated values of cr. 

The observed Fisher information is the matrix with &‘(yi, Zi) ~!?(yj, zj) as its 
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(i, j) element. If as is common, the X; are distinct with probability 1, we will 

-- find that no matter how large the sample, the information estimate uses at most 

two observations at any point. 
_ - 

Th,e expected value of the observed information is 

Q(X), P(X’)) =q (Y - cr (xw - fi (x’)) 1 
=&( E( (Y - ji (X)(Y' - b (X'))lX, x' ) ) 

which we can estimate with a two-dimensional smoother using our estimate of 

~(a). This is just the observed information, smoothed. 

If our smoother were a finite parameter regression we could obtain an estimate 

of the variance-covariance matrix for the parameters. From this we could obtain 

an estimate of the variance+covariance matrix of the vector i of point specific 

mean estimates. This matrix would be of order n, but its rank would in general be 

equal to the number of parameters in the regression. We could take a generalized 

inverse of this matrix as the information estimate for the vector. Without such a 

model, we start from the low rank estimate of the information matrix and take a 

generalized inverse as an estimate of the variance-covariance matrix of the vector 

of estimated means. 

Call this information estimate i,. It is reasonable to expect that b(a) - 

/A(.) will have an asymptotic normal distribution with mean zero and variance- 

covariance matrix ii, a generalized inverse of i,. (That is the ~1 estimates 

for any fixed set of observations should have an asymptotic covariance obtained 

from ‘their components’ of the information estimate as the number of subsequent 

observations tends to infinity.) 

3.8.2 Bootstrap Confidence Envelopes 

When the asymptotic normality referred to above holds, we can use the piv- 

otal quantity (i,)+fi (*)-p(e)) t o f orm confidence regions for ~1. The distribution 

of this quantity does not depend on cl, but it does depend in a possibly compli- 

cated way on the smoothing algorithm used. The distribution of /i(m) - p(m) is 

that of a vector of independent standard normal variables multiplied by a matrix 
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square root of a generalized inverse of the information estimate, and using this 

---- we can ‘invert the pivot’. We generate a large number of normal vectors, mul- 

tiply them by the matrix square root, and add fi(-). In this way we estimate a 

bootstrap confidence measure for p(e). Denote by p*j(.) the j’th such bootstrap 

value. (For a discussion of the bootstrap see Efron (1982).) This is easier than 

resampling the data and smoothing the bootstrap samples a large number of 

times, although that option is always available if we suspect that the sample size 

is too small for asymptotic normality to hold. 

We can obtain a (usually degenerate) confidence ellipsoid for the vector of /J 

values directly from the information matrix. However, we are more interested 

in a confidence envelope- two curves between which p(e) lies with a specified 

degree of confidence. Such an envelope corresponds to a rectangular confidence 

region for the vector, for which no convenient analytic expressions are available. 

It is reasonable to have the envelope’s width at z proportional to the estimated 

standard error of b(z). In that case we need merely record for each bootstrap 

sample the largest ratio of the form lb (si) - p*j(~i)l/S(~i) where a(si) is the 

estimate of the standard deviation of fi(s;) obtained from the diagonal of the 

information estimate. If lOO(1 - cu) percent of these suprema are less that k, 

then fi(.) f k,a(-) is a lOO(1 - Q) percent central confidence envelope for p(s). 
One-sided envelopes can be obtained in a similar way. 

If our model has two parameters of the same argument X then the joint 

values of the parameters can be thought of as a space curve or trajectory. We 

then can consider putting confidence tubes around the estimated trajectory. If 

the model has two parameters of different arguments (that are not related in a 

degenerate way) then the confidence region for the estimated surface is a four 

dimensional object. For any trajectory in the estimated surface the confidence 

region is a tube. 

3.8.3 Significance Levels for Curves 

3.8.3.1 Inverting Confidence Envelopes 
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Within most models with smooth curves are simpler models in which the 

-- curves are zero or linear. We need techniques for estimating the significance of 

- 
_ - 

the non-linearity of a given transformation. 

A simple graphical approach is to invert the confidence envelopes discussed 

above. For example if we have a set of central o-level confidence envelopes for 

p(e), we can consider the greatest value of Q for which the zero function is en- 

tirely within the confidence envelope. The significance of the non-linearity is 

obtained in a similar way: find the greatest value of (Y for which the confidence 

envelope contains a line. The generalization to the significance of the difference 

between p(e) and any other set of functions is similarly found, although the cal- 

culations could be horrendous if the set of functions is unusual. Reasonable sets 

of functions are: monotone functions, convex functions, sinusoids, exponentials, 

positive functions, and functions that are everywhere greater than a prespeci- 

fied function. The latter two examples would best be evaluated using one-sided 

confidence envelopes. 

In principle we could invert higher dimensional confidence regions to assess 

the significance of complicated relations between two or more smooth curves. 

In practice many statisticians will be understandably reluctant to invert any 

confidence region that cannot be displayed on a graphical output device. 

3.8.3.2 Likelihood Ratio Methods 

If we fit a p parameter model Ml with a q parameter submodel M2 in it, then 

we expect that the log likelihood ratio of Ml to M2 should be asymptotically 

XL) when M2 is true. 

It is often clear how many parameters A42 has, since M2 typically specifies 

constancy, linearity, or some other finite parameter model. To generalize Wilks 

likelihood ratio test we need to generalize the notion of the number of parame- 

ters in a model. One approach to this problem is via the degrees of overfitting 

introduced in section 1.6.1. 

3.8.3.3 F-Statistic Methods 
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If we have a good notion of the degrees of freedom of a smoother or mode! 

---- we can use it to mimic the classical F-tests. 
_ - 

If we constrain all the smooth functions in a model to-be linear then it will 
generally be easy to count up the degrees of freedom; call it dL. If our general 

model has degrees of freedom dG > dL then we can set up a psuedo-ANOVA 

table: 

SOURCE ‘D. F.’ s. s. M. S. 

Linearity dL SSFL SSFL PL 
Non-Linearity dG - dL SSFG - SSFL tssFG - SSFL) / (dG - ‘-fL) 
Error N-dG-I SSE SSE/ (N - dG - 1) 

Total N-l SST SST/ (N - 1) 

where SSF refers to the sum of squared fits (about the mean) of the model 

corresponding to its subscript and SST is the total sum of squares of the response 

about its mean. The choice of F-test will depend as usual on whether the effects 

are considered to be random or fixed, a matter which leads to lively discussions 

even in the ordinary ANOVA formulation. 

If the model contains several smooth curves, we can partition the sum of 

squares for non-linearity to see what the source of the non-linearity is. For an 

example of this in which two transformations have a non-zero interaction see 

Owen(1983a, ~~15-17). To test in such situations one would have to obtain a 

value for the relevant interaction degrees of freedom. 

There is as yet no Cochran’s theorem for this problem. 

3.9 The Distribution of X 

Suppose that X is a (vector) random variable with density h(z) and that 

conditionally on X = 2, Y has density g(ylX = Z; e(.)), where 0( .) is a smooth 

parameter. The overall likelihood is 

L = fi h(Zi)g($/ilXi = Xi; e(g) 
j= 1 

which is equivalent to the likelihoods considered above, provided that h(z) does 

not-involve et.). 
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3.10 Maximum Likelihood Estimation of Nonlinear Models 

3.10.1 Nonlinear Regression -._ - - 

We have a location model where YlX - g(Y - C&, 4JXj)) and X = 

Wl,... ,Xk)’ is the vector covariate. 

We can estimate this model by starting with initial values for all the 4i(+) and 

updating them in sequence by solving the likelihood equations for one function 

at a time until convergence. 

When the error distribution is Gaussian, this reduces to a special case of the 

ACE model of Breiman and Friedman (1982) and the resulting estimation is that 

of the ACE algorithm. 

3.10.2 The ACE model 

Here we have the location model of 3.10.1, but we apply it to 0(Y) instead of Y 

itself, where e(e) is smooth and is to be estimated along with the other parameters. 

Typically the ACE model is estimated with some sort of least squares smoother 

and so the error model is implicitly Gaussian. 

If we maximize the likelihood over all smooth functions we get into trouble. 

The’ algorit)hm finds the global optimum in which all the transformations are 

identically zero (or constant). 

Breiman and Friedman get out of this pitfall by imposing the constraints 

&( e(Y) ) = 0 and &( 0(Y)2 ) = 1 on the parameter e(e) After each estimation 

of e(.) they rescale et.) via 

flu t 
W) - &( WY 1 

@am’ 

This corresponds to maximization of the expected log likelihood using two La- 

grangian multipliers by an algorithm that estimates in sequence: 0(e), the multi- 

pliers, and the $j(.) until convergence. 

The ACE algorithm also allows any of the smooth curves to be constrained 

to be monotone. This is done by fitting an unconstrained smooth to the cor- 
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responding variable (at each iteration) and then finding the closest monotone 

-- function to the result via an algorithm of Kruskal(1965). Since the closeness 

measure. chosen is least squared error, this corresponds closely to constrained 

maximum likelihood equation. (For a discussion of this technique see Friedman 

and Tibshirani (1983).) 

3.10.1 Projection Pursuit Regression 

The projection pursuit regression model of Friedman and Stuetzle (1981) fits 

a location model 

YIX - ind g(Y - 

where the fm(.) ‘s are smooth real valued functions, the cym’s are unit vectors, 

and X is a vector of covariates. They estimate the model by least squares. 

The smooth location parameter can be made arbitrarily close to the conditional 

expectation by including enough terms, whereas the ACE model as written is not 

so general. 

3.10.4 Predictive ACE 

The predictive ACE model of Friedman and Owen(1984) fits a model for Y 

with location /(Es=, 4j(Xj)), where f(e) and the +j(+) are smooth. The con- 

straints imposed are &( r$j(Xj) ) = 0, i = 1,. . . , k and &( (I& dj(Xj)):! ) = 
1. As with the ACE model the constraints are imposed by adjusting each con- 

strained item after each estimation of it. The estimation is by least squares. 

3.10.5 Other Models 

Recent work at SLAC involves extending models involving smooth curves to 

various special domains in statistics. Examples include Time Series ( McDon- 

ald( 1983) Owen( 1983a)), S urvival Analysis (Tibshirani( 1982)) and Multivariate 

Statistics (Hastie (1983)). 

-No doubt similar work is going on at other sites as well. 
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4 Other Methods of Smoothing 

.4.0 Other Notions 

Maximum likelihood and least squares are not by any means the only well 

developed areas of modern statistics. It seems that most other techniques of 

statistics are applicable to models involving smooth curves, and a few examples 

are given below. 

4.1 Method of Moments Smoother 

Suppose we wish to estimate the first k moving moments of Y, which depend 

on X in a smooth way, and we are willing to assume that there is an interval 

containing the origin over which the moment generating function of YIX = z 

exists for all 5. 

We begin by smoothing etY against X with a simple smoother. We do this for 

each t values on a grid near the origin.The result is an estimate of the conditional 

moment generating function of Y given X near the origin. We get the moments 

by estimating the derivatives of the moving moment generating function near 

the origin. (Our grid must have more than k points in it, or we will not be able 

to estimate the k’th derivative.) 

Next we realize that Vaf(etylX = 5) = &( e2tYIX = 2 )- &( etYIX = x )2 

and so we can improve our initial estimate by updating with a weighted smooth 

(the weights being obtained from the initial estimate). This leads us to choose 

as our grid of t values a geometric progression with ratio 2 on either side of the 

origin. At the first updating stage we cannot update the smooth for the largest 

positive grid point, and at each subsequent stage one fewer positive grid point 

can be estimated. A similar situation holds for the negative grid points. 

If we were extremely fastidious we would note the linear combination of the 

smooths that is to be used for each moment, put a quadratic loss function on 

the error of the moment vector and pick our updating weights accordingly. (The 

author is not this fastidious.) 
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It is generally difficult to estimate the higher moments of a distribution and 

moving higher moments must be still more difficult. While this method seems 

to provide an approach, it will be likely to require very large sample sizes to get 

reliable estimates of the moments. Since each moment is a linear combination 

of some estimates of the moment generating fuction, it will be relatively easy 

to obtain confidence envelopes to assess the reliability of the moment estimates. 

Note also that the moment estimates will be correlated. 

If we are unwilling to assume that a moment generating function exists we 

can estimate a moving characteristic function. That is we smooth eitY versus 

X for a grid of t values. Since the expected squared modulus of eitY is always 

unity we need not bother with weighted estimates, so there may be no particular 

advantage to a geometric progression grid. We can obtain moving moments from 

the derivatives of the moving characteristic function. 

Another, somewhat anachronistic, approach to this problem is to estimate a 

moving version of the Pearsonian family of frequency curves. 

4.1 M-estimate Smoothers 

The M-estimate of location generalizes the maximum likelihood estimation 

of location. (For a thorough discussion of M-estimation see Huber(l981).) The 

maximum likelihood estimate is that (constant) 0 such that 

e /‘(Yiwe) = 
i=l f(Yi - e, 

o 

whereas for M-estimation f’(.)/J(.) is replaced by a function $J(.) that need not 

correspond to any particular density f(e). Much effort has been put into chasing 

T/J(.) to obtain robustness at as small as possible a cost in efficiency. For example 

if $(.) is bounded, outliers cannot dominate the estimation. 

With maximum likelihood estimation we went from setting the score to zero 

to setting the expected score to zero to guard against drastic overfitting. If we 

adopt the same approach to M-estimation we get 

0 =&( f+w - e(x)) ) 
=&( &( !w - ~(X)lX 1 1. 
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For specific +(a) there may be a natural and easy sufficient condition for the above 

on which to base an iterative. For many of the commonly used $J functions 

the updating formula O(‘+l)(.) + d(‘)(.) - qbD1(Res(-)) where?Zes(.) is the 

smooth residual &( $(Y - e(‘)(X))1 X = . ) is applicable. When $(-) can be 

continuously differentiated, the delinearization technique introduced with the 

exponential family maximum likelihood smoother can be used. For example, 

Tukey’s biweight (Huber, Chapter 3) is continuously differentiable. 

M-estimate smoothers are extended to location-scale problems in the same 

way that maximum likelihood smoothers are. 

4.3 Nonparametric Smoothers 

Many of the common nonparametric statistical techniques are obtained by 

substituting ranks for observations in the formula for the commonly used par- 

metric technique. For example, the two-sample Wilcoxon test for a location shift 

is equivalent to the t-test applied to the ranks in the pooled sample of the ob- 

servations in each sample. 

The analogy for smoothers is to smooth the ranks of Y on X or its ranks. 

The resulting smooths can be translated back to their original metric by inverting 

the sample distribution functions (or a smooth estimate thereof). 

4.4 Bayesian Smoothers 

In the smooth location problem, we can put a prior distribution ?r on p(s) 

and maximize the expected log posterior. This would continue the analogy with 

the way we generelized maximum likelihood to smoothers. The prior will typi- 

cally be a stochastic process, and we will want it to give rise to smooth p(e) with 

high probability. Possible priors are Brownian motion, a nonstationary ARIMA 

process (trending processes look more smooth), or polynomials in X with ran- 

dom variables for coefficients. Suppose that the prior distribution depends on a 

parameter 0. If 8 is known, or well estimated, we solve for p(a) in 
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and if 8 is to be jointly estimated, we solve the above jointly with 

o = f( g&W); 4 ~-. - - 

4 fw;  4 )* 

Bayesian smoothers have been used in LANDSAT image processing. There 

the parameter to estimate is a ‘smooth map’ of categories in the plane. When 

there are only a finite number of categories, the specification of the prior is 

simplified, although it is not trivial. For examples of such Bayesian smoothers 

see Switzer, Kowalik, and Lyon (1981), or Owen (1983b). 

Decision Theoretic Smoothers 

We can, of course, formulate smoothing as a decision problem, where the loss 

is some function L(p(-), fi (e)). Th e risk incurred when the true parameter is /J is 

R(b) = ~,.MP~~Y) d t an no ions of minimax smoothers and minimum Bayes risk 

smoothers are in sight. 

5 Other Models 

5.0 Other Problems 

Up to now, we have concentrated on estimating location models. Many other 

statistical models can make use of smooth curves, and we illustrate some of them 

in this section. 

5.1 Density Estimation 

For most smoothers, there is a natural way to interpolate between the sample 

points. With such a smoother, we can smooth the order statistics Y(i) against 

T to estimate the distribution function of Y, interpolate the smooth, and 

differentiate the result to estimate the density. 

The estimation of multivariate densities by projection pursuit methods is 

treated in Friedman, Stuetzle and Schroeder (1981). 
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5.2 Sequential Methods with Smooth Curves 

5.2.1 S.P.R.T.s 
_ - . 

Suppose we have a model in which the distribution of Y depends on X 

through a smooth function e(e), and that the space of values for that function is 

partitioned into two sets w and w c. To fix ideas, suppose that we know that 0( .) 

is monotone and that w contains the increasing functions. 

The application of the sequential probability ratio test is straightforward. 

Having observed the data, we obtain the constrained maximum likelihood esti- 

mates of p(a) under the two competing hypotheses, and form the ratio of the 

maximized likelihood under wc to that under w. If this ratio exceeds a prespeci- 

fied value B > 1, we decide wc, if it is less than A < 1 we decide w, and otherwise 

we take another observation. The values A and B are chosen to control the error 

probabilities of types I and II. 

5.2.2 Sequential Estimation of a Curve 

One could keep taking data until the curve e(s) is estimated with sufficient 

precision. One way to guage this precision is by the width of the family of 

confidence envelopes for e(e). 

5.3 Stochastic Process Models 

5.3.1 Estimating the Spectral Density 

There is a large literature on the problem of estimating the spectral density of 

a stationary stochastic process. It is well known that the periodogram is a poor 

estimate in that it severely overfits. One approach to estimating the spectral 

density is to smooth the periodogram (see Anderson (1971,Ch. 9)). The most 

commonly used smoothers are kernel smoothers. Wegman and Wright (1983) 

discuss the use of smoothing splines to estimate the spectral density, and Palmer 

(1983) uses several methods including the Supersmoother. 
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5.3.2 Slowly Varying Poisson Intensity 

Consider a point process in time with time-dependent.intensity X(t). If we 

assume that X(e) changes slowly with respect to the rate at which points are 

generated, then the waiting times are well approximated by exponential distri- 

butions. 

The likelihood equations for A(-) are 

1 
O =‘( X( ti) ------- (ti - ti-1) ) 

=&( -x( ti)(ti - ti-1) + 1 
x(ti) 1 

which we can solve iteratively via: 

h(‘+l)(.) + &( t lt 1 ti ; 4 - 44 ). 
: ‘- i-1 X(i)0 

Notice that no matter how long we observe the process, we will only get a 

few observations near any value of t. Hence the smoother will not be consistent 

for anything. Parameters are being added at essentially the same rate as the 

data. 

The situation improves when X(e) is actually a function of t mod T for some 

period T > 0. Then the argument of X is a phase angle, and the number of 

observations used to estimate each part of it tends to infinity as more data are 

observed. This setup could, for example, be a model for the rate at which calls 

arrive at- a switch, with T = 1 day. We can add weekly, monthly and yearly 

cycles (and even a dummy variable for Christmas), in an obvious way. 

This model is an easy adaptation of the one in McDonald (1983) for finding 

a periodic decomposition of a real valued time series. McDonald also has a way 

of estimating the period lengths jointly with the cyclical functions. 

5.3.3 Evolving Markov Transition Probabilities 

The point process model can be adapted in a straightforward way to Markov 

processes in which transitions out of a state occur at-a rate which depends on t 
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(and also on the state), and the state to which a transition is made is selected at 

-.-- random according to the probabilities in a transition matrix whose elements are 
_ - 

smooth functions of t. 

6 Conclusions 

This paper shows the variety of models and methods that can be used in 

conjunction with smooth curves. Experience with algorithms of the type con- 

sidered here has shown that they typically have good convergence behaviour, 

although formal proofs are difficult. For example, Breiman and Friedman (1982) 

show that the ACE algorithm expressed in terms of the true conditional expec- 

tations converges in general to a unique (up to sign) set of functions. They also 

show that the algorithm when implemented with ‘sample conditional expecta- 

tions’ (i.e. smooths) is weakly mean square consistent for the minimizing curves, 

when a mean square consistent smoother is used. 

Current work is focussed on developing criteria by which to assess different 

methods for estimating a curve, finding sufficient regularity conditions for their 

use, and writing the necessary software. There is also work to do in checking the 

asymptotic results referred to. 
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