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ABSTRACT 

A new definition of the topological charge density for four dimensional lattice 
gauge theory is given. Using a systematic expansion we find a cusp in the vacuum 
energy at f? = A signaling the spontaneous breaking of CP there. Unlike its two 
dimensional analogue (QEDz), QCD confines at 8 = A. As a by-product an 
expression for the topological mass term for 2 + 1 dimensional lattice gauge 
theory is obtained. 
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We present here a variant of Luscher’s”’ definition of the topological charge 
density for four dimensional lattice gauge theories.“‘” - -The definition, although 
quite complicated, enables analytic study of 9 vacua”’ in a systematic expansion. 
Following Ref. [5] we impose the following requirements: 

1. q,, has the correct continuum limit. 

2. En Qn = integer in a finite volume with periodic boundary conditions. 

The second requirement guarantees the absence of a =perturbative tail” in various 
topological quantities. 

We start by considering the higher dimensional generalization of QED2, 

namely the theory of a gauge fieid of the fourth kind in four dimensions. The 
seemingly unrelated problem is based on the abelian gauge potential KPP which 

transforms as KPVP --+ I&,, + L$,AUpl (Avp - the gauge function). The gauge 
invariant electric field F = Epvpat3pKvpa is a Lorentz.singlet. Like QED2 this is ._ 
a trivial field theory and it has a topological charge 

d’z q(z) = $ 

In finite volume with periodic boundary conditions Q is quantized if the U(1) 
gauge symmetry is compact. A O-term is possible and it has the interpretation 
of a background electric field.“’ 

It is easy to construct a lattice version of this theory.‘” The gauge fields are 
elements of U(1) #n,p = eiknlp defined on the cubes (labelled by a site index n 
and the direction p which is not in the cube). The gauge functions are defined 
on the plaquettes and the simplest gauge invariant object is the oriented product 

of h,p around a hypercube 

dn = eiCr(-l)‘(k.,,-k’+~,‘) . 

In analogy to QED2 ‘W the topological charge density is 

. Qn =&pen -fr<-iCntjn<u. (3) 
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It has the correct continuum limit and C, qn = integer when periodic boundary - . 
conditions are imposed. 

The Euclidean lattice theory defined by 

eaVF(‘) = /n n,p dt* n,Cc eieQj. (4 

(V - the number of sites in the lattice) is easily analyzed. Following Ref. [9) we 
find with periodic boundary conditions 

F(B) = -Ln(i sin:) 161 5 A 

F(6 + 27r k) otherwise . 
(5) 

The cusp at 0 = A is a result of the periodicity in 8. The vacuum is two-fold 
degenerate at this point and CP is spontaneously broken. The analogue of the 

- Wilson loop for this theory is the ‘Wilson bag” I”’ - the oriented product of 

d nlP around a four volume. Two Srolume tensions” are obtained (depending on 
the orientation of the bag) 

2A-e 
ukl =.hT, 

2r+e 
uk2 = tn - . 

e (6) 
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Note that OkI = 0 and the theory does not confine at that point. The physical 
interpretation of all these phenomena is identical to that in QED2.‘““” 

The relation between this trivial model and QCD with 0”’ is made clear by 
writing the topological charge density as 

where A, and Fpy are matrices. When a non-abelian gauge transformation A(z) 
is performed on A,, Kypo transforms as a gauge field of the fourth kind.“0’““9 
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Our definition of the topological charge density is based on this feature. We 

assign a U( 1) element #n, p(U) = eikn*p f’) which depends on the gauge fields U 

to every cube and, as in the previous example, we define 

Qn(U) = $j cn4n(U) - A 5 -ih#,(U) < % . (8) 
g&,(U) is the oriented product of #n,p(U) around the hypercube labelled by n. 
Regardless of the particular form of kn,p( U), c,, q,, = integer. It is not easy, 
however, to find a function kn,p (U) which has the correct continuum limit and 
transforms under a gauge transformation such that qn(U) of Eq. (8) is gauge 
invariant. Such a construction will be presented later. 

We first discuss some of the physical consequences which are independent 
of the detailed construction of k,,,(U). We introduce an auxiliary field &,, = 
eiZJd in terms of which we write the topological charge density fn = & Cn& 
(--1~ 5 -i tn $n < A). Jn is the oriented product of Jnle around the hypercube. 
Consider the lattice model ,-vwbe) = 

(9) 
+QCCos[k,p-k,p(U,] +iex&} 

n9p n 

(Up - the oriented product of the link variables around the plaquette p). For a 4 
00 the auxiliary field Fn,p Freezes” on # n,p(U). In this limit the theory becomes 
an ordinary non-abelian gauge theory with a B-term based on the topological 
charge of Eq. (8). On the other hand, for small a the 6 dependence can be 
easily analyzed. There are two almost decoupled sectors: a no-abelian gauge 
theory (sector I) and an abelian gauge theory of the fourth kind (sector II). With 
periodic boundary conditions 

F(P,d) = F(&O, 0) - Cn (8 sin $) + 0(a2) 101 5 x 
F(P, a, 6’ + 2rk) 

(10) 
ot hex-wise. 

For zero Q the two sectors are completely decoupled. The observables of sector 
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I are independent of 6 and sector II is identical to the previously considered 
example. 

When a is non-zero but small, it can be treated perturbatively. The expan- 
sion in o is a strong-coupling like expansion and hence it has a finite radius of 

convergence. The 8 dependence of every diagram in the expansion can be found 
exactly (for a similar computation in two dimensions, see ref. 9). The /3 depen- 
dence of every diagram is much more difficult to find. It is given by expectation 
values of operators which depend on k,,,,,(U) in the non-abelian theory at 8 = 0. 

This calculation depends, of course, on the precise form of kn, p( U) and is practi- 
cally impossible unless km, p( U) is a simple function, and even then Monte-Carlo 
techniques are needed when /3 is large. 

The cusp in F(P,a,t?) at 6 = z which represents a first order phase transition 
cannot be destroyed by small O(an) corrections. Hence, at least for small a 

- CP is spontaneously broken at B = A. For zero a, the string tension of sector 
I is independent of 8. When a # 0 and small, it has a weak 8 dependence. 
By examining the possible diagrams taking into account the gauge invariance 

of sector II, it becomes clear that the Wilson loop cannot be screened and the 
string tension remains non-zero for all values of 8 including 8 = z. The Wilson 
bag, on the other hand,is screened by the gluons; contributions of order ~8 in 
the expansion (L-the number of cubes around the bag) lead to a ‘perimeter” 
law with a coefficient f(P)tn i + O(cc2). 

It is instructive to make an analogy between our results and the two dimen- 
sional CPN-’ model at large N”” or in strong coupling.“] The dummy gauge 
field of the CPN-’ model is analogous to the ktr field.“o1 The Wilson loop in 
two dimensions is similar to our Wilson bag.“” The inverse correlation length in 
the CPN-’ case is the mass of the Z’Z bound state and in the four dimensional 
case it is related to the string tension. This quantity does not vanish in the 
CPN-’ model at 8 = A neither for large N “” nor for strong coupling,“’ and it 
does not vanish in our case either. 
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We cannot prove that the structure observed for small a persists all the way 
to the interesting point a = 00. We can show, however, that at least for 8 N 0, 
F(p, a, 8) is smooth 

F(P, a, 8) = F(B,O,O) - 46, IO(a) + 6(e2) . (11) 

So far we have not needed the exact form of kn,p( U), we only had to know that 
such a construction exists. We now present one possible definition of k,,&(U). 

It leads to an expression for qn(U) which is very similar but not identical to 
that given by OLuscher.“l For simplicity we consider an SU(2) gauge theory. 
The generalization to other groups is straightforward. Following Ref. [l] we 

first introduce a standard labelling of the comers of the cube (Fig. 1) and of 
the_ corners of each of the six plaquet tes (i = 1,. . . ,6) around it (Fig. 2). The 
orientation is picked such that a < @  < 7 and 6 < e. The coordinates zx (A = 

- a,P, y, 6, e) vary between zero and one and label the interior of the cube. 

For every plaquette (i = 1,. . . ,6) we assign a group element P(‘)(n) at the 
comers (n = a,b,c, d) which is the gauge transformation to a complete axial 
gauge in the plaquette, i.e. the three link elements on the thick lines in Fig. 2 
are transformed to U = 1 by P(‘)(n) and P’(a) = 1. We also assign a group 
element S(n) n = 0,. . . ,7 to every comer of the cube. S(n) transforms the cube 
to a complete axial gauge; i.e. the 7 thick links in Fig. 1 are transformed to 
U = 1 by S(n) and S(0) = 1. 

If a gauge transformation iI(n) is performed on U, S(n) -+ n(O) S(n) n+(n) 

and P(‘)(n) + n(a) P(‘)(n) W(n). 

We now continuously interpolate S(n) and P(‘)(n) on the plaquettes such 
that for every n(n) (except possibly a set of zero measure) at the corners, there 
exists a continuous interpolation n(z) on the plaquettes such that 

1. S(z) --* S’(z) = n(0) S(z) n+(z) 

2. P(j)(Z) ---) P(‘)‘(Z) = n(a) P(i)(z) n+(%) 
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3. 

Such 

n(z) on a plaquette depends only on n at its comers and the gauge fields 
around it. 

an interpolation exists for all gauge configurations except for a set of eero 
measures: 

S(z) = 
P(‘)(z) for i = 1,2,3 

R(‘)(z)Pqz) for i = 4,5,6 
WV 

R(“)(zj,z,) = [(uo~CT3,u,2u2O)~~uo2(u27u~~u~6u~2)~7 

* u26u61(u16u6,usu51~27~lo(uolulb~53u~)27]2~ 
(~03~35~51~lo)27~01 

-- IP)(z,, 27) = (~03~37~72~20)='~02 

Ryz,,z/J) = u03 

where U” = (ei7.“>’ E ,i.t.f I-i’] < r and U” is ambiguous for U = -1. 
Due to this ambiguity, we cannot define kn,p for a set of ‘exceptional configura- 

tions”. Luckily, this set is of zero measure. Note that every configuration can be 
gauge transformed to an exceptional configuration. Such gauge transformations 
are on lines in the group space and hence, they are of eero measure. 

-. 

It is straightforward to check that S(z) of Eq. (12b) is continuous even 
on the links. The interpolation of n(z) = fl(O)S(z)S’+(z) is, therefore, con- 
tinuous too. The requirement that P(‘)(z) and S(z) are transformed by the 
same n(z) is trivially obeyed for i = 1,2,3. For the other plaquettes it fol- 
lows from R(‘)(z) --) 23(O) R(‘)(z) n+(l), R(‘)(z) + zI(0) R(‘)(z) n+(2) and 
R@)(z) ---) n(O) R@)(z) n+(3). The requirement that n(z) on a plaquette de- 
pends only on fl at its comers and the gauge fields around it is satisfied since 
c-l(z) = f-l(o) P(‘)(z) P(;)‘+(z). I n particular, 0(z) on the link between n = r and 
n = 9 depends only on n(r), iI(s) and Ur,: Cl(z) = [n(s) U,,fl+(r)]“tl(r) U,t,. 
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We now interpolate S(z) in the cube and define 

h&,&q = (-1)‘k [j d32 qsa,s-‘) (saps-‘) (sa,s-‘) 

c 

+ 3 
/ 

d% Trpa,q (s-‘a,q] . 
l3C 

03) 

The first term is the volume in the group enclosed by S(z) on ac. It is independent 
of the precise interpolation of S(z) in the cube up to adding a multiple of 2~ 

which results form the total volume of the group. This ambiguity does not affect 

,h,, * The second term contains a sign depending on the orientation of the 
plaquette. p and CT are the two directions in the plaquette. Note that actually 
only two out of the six plaquettes (i = 4,s) contribute to this term. -- 

If a gauge transformation a(n) is performed, _ 

bk,,,(U) = (-1y g 
v 

d32 np+a,n) (n+a,n) (n+aonj 
c 

+ 3 d20(n+a,n) (~-la,~) / 
. 

lk I 

04 

Hence km,,(V) has th e correct transformation properties. Note that the oriented 

sum fn(u> of k+(U) around a hypercube is not gauge invariant; it may change 
by Znainteger. However, e”/n(al and therefore q,,(U) = & tn eifn (-$ < q,, < {) 

are gauge invariant. 

It is tedious but straightforward to verify that qn(U) has the correct contin- 
uum limit.“’ 

The construction presented here is very similar to that of Luscher’s.“’ His 
result, however, is not identical to ours. He fixes a different gauge for every 
hypercube and all his objects are defined in this gauge. Therefore, he does not 
assign zr unique kR+(U) t o every cube. Moreover, his value for qn(U) may differ 
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from ours by an integer. This difference becomes irrelevant in the continuum 
limit. It should be pointed out that both definitions are not manifestly cubic 
invariant. 

We would like to mention that the object k,,+(U) defined earlier can be used 
as a lattice version of the topological mass term in 2 + 1 dimensional QCD.“” 
Just as in the continuum k,o(U) and even c,, &,0(U) (the sum is over all cubes in 
the three dimensional lattice orthogonal to 6) are not gauge invariant. En k,,o(U) 
may change by 2zeinteger (for periodic boundary conditions) and hence its coef- 
ficient must be quantized in order to have a gauge inmriant theory.“” 
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FIGURE CAPTIONS 

1. Standard labelling of the corners of the cube and the six plaquettes. 

2. Standard labelling of the corners of a plaquette. 
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