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ABSTRACT 

-. 

A scheme is introduced in which amplitudes of weak decays of mesons can be 

analyzed without the use of the current algebra reductions, and with no reference 

to any of the hadronic models. The interaction of hadrons and their constituents 

is described by an effective field theory, with two kinds of valence vertices- 

regular and anomalous-the latter having a =wrong” flavor structure. A suitable 

parametrization in nonleptonic two-body decays is achieved, and a possibility 

for the analysis of bound-state effects in rare K decays is opened. The major 

difference from the standard approaches is that the explanation of the A I = l/2 

rule is sought within the long and not the short distance dynamics. 
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1. Introduction 

The methods of analyses of nonleptonic weak decays were devised in the early 

days of development of the current algebra.’ Its modern form was triggered by 

works of Gaillard and Lee, and Altarelli and Maiani,2 in which weak interac- 

tions of quarks were modified by QCD corrections. Soon it became possible to 

evaluate the matrix elements of the resulting operators in some of the hadronic 

models (e.g., in BAGGED or harmonic oscillato$‘ls type models). In 1977 a new set 

of operators (so-called PENGUIN operators) was introduced’ as a theoretical and 

phenomenological necessity, and the framework was completed.8 The basic ele- 

ments of today’s analyses are (a) an effective Hamiltonian (dressed by QCD), (b) 

the-usage of current algebra techniques, or some other procedure (e.g., vacuum 

insert ions) in the process of the reduction of matrix -elements, and (c) the use of ._ 

some hadronic model in actual evaluations of amplitudes. This scheme will be 

referred to later on as a =standard” one. 

Was the question of nonleptonic weak decays in this way settled down? Was 

there any necessity for further analyses of this subject? A look into the literature 

shows that nonleptonic decays are still a hot topic. Numerous recent works could 

be classified in two major categories. In the first one, on the basis of the standard 

approach (which is assumed to be mainly correct), constraints and restrictions 

on parameters (e.g. masses or mixing angles) and forms of the underlying theo- 

ries are set (e.g. restrictions on supersymmetric theories, subconstituent models, 

left-right models, etc.); or analyses and predictions for processes not yet exper- 

imentally clear (some rare K decays, P - V in high-energy scattering, weak 

decays of heavy mesons, CP violating processes, etc.) are made. It is interesting 
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that basically the same three-step procedure, (a)-(c), is in another context used 

in analyses of possible decay modes of protons.g - - 

In spite of this broadly accepted confidence in standard methods,‘O there 

exists another class of papers more critically inclined. In these works authors 

are looking for alternative approaches,11v12 or for omitted but perhaps important 

contributions.‘3 Some steps, or even the entire (a)-(c) procedure is challenged,14*15 

and the bounds on amplitudes rather than their absolute values are calculated.16 

The present situation is to a certain extent confusing, in the sense that both 

classes of works (i.e., critical of and, on the contrary, satisfied with the stan- 

dard framework) coexist in literature, although-if the criticism is for example 

justified-the predictions and restrictions obtained by standard methods may -- 
have no value. 

Indeed, the objections are all but insignificant. Here are just some of them: 

macroscopic methods (such as current algebra reductions’) are used side-by-side 

with microscopic concepts (e.g., with an effective quark-quark interaction), de- 

spite the possibility of double counting; the factorization on the soft and hard QCD 

contribution is questionable;” only leading (and more recently next to leading18) 

logarithmic corrections are taken into account in a dynamical situation where 

the other, ignored terms might be of the same importance. While the origin of 

the crucial PENGUIN operators’ is easily understood, the way they become phe- 
a .  

nomenologically important is somewhat obscure and unnatural (basically, some 

small masses appear in certain denominators), etc. If one tries to cope with such 

issues, remaining still within the standard framework, most usually a proliferation 

of assumptions is needed and a complicated and inconvenient description results. 
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In this work I’ll try to elucidate some of these problem, not from within the 

standard procedure, but devising a new simple framework for description of weak 

decays of mesons. lg The simplicity of the new approach might even tempt one to 

consider it a step backward instead of a step forward. Particularly shocking will 

be the apparent negligence of gluonic corrections. However, in the next sections 

this and similar stages will be thoroughly explained and put in a logical context. 

The goal was to build a procedure not subjected to macroscopic techniques that 

are used in standard approaches. For that purpose a kind of effective field theory 

with direct hadron-constituents couplings was introduced. As a consequence a 

diagrammatic analyses at the level of constituents was made possible, and results 

free of ambiguities related to hadronic models and to the reduction procedure 

were obtained. The new, just-described framework will often be referred to as 

a ‘microscopic”. The main purpose of this introductory paper is to establish 

the new method and to analyze some of the simplest processes (including two- 

body hadronic decays of pseudoscalars). Similarities (or differences) as related to 

earlier results and previously used methods will be clearly explained. In a future 

work a few more exciting processes are to be treated in the same way. 

- . 

After this introduction, two sections follow in which basic assumptions of the 

new model are described and discussed. In Sec. 4 the weak decay constants and 

form factors are introduced in terms of finite loop integrals. The generalization of 

the Fierz rearrangement rule to the bound state formalism is described in Sec. 5. 

The contributions of ‘regular,” and aanomalous” vertices to the K + BA decays 

are calculated in Sets. 6 and 7, respectively, and obtained results are discussed 

and compared to experiment al values in Sect. 8. In the last section the new 

and old approaches are confronted, and some concluding remarks on advantages 
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(and imperfections) of the microscopic picture are given. Throughout the work 

the four-flavor version of SU(3) x SU(2) x U( 1) model is used. The electroweak 

part of the model is described in the renormalizable gauge. In this gauge in 

addition to weak bosons, W, the Higgs-ghost particles, 4p, are also carriers of 

the weak force. However, since only the leading terms in l/J@ expansions will 

be interesting in analyses, the cp fields contributions will be whenever possible 

ignored. 

2. Microscopic Approach and Related Assumptions 

To introduce the new model, let me start with a consideration of Ma de- 

cays (M stands for a pseudoscalar meson), which are probably the most simple -- 

hadronic processes in nature. At macroscopic scale at which our detectors work, 

only a meson, a lepton and its neutrino are observed (Fig. l(a)). However, 

one can proceed a step further. The standard model teaches us that the lepton 

pair is created by a weak boson, which also interacts with hadronic constituents 

(Figs. l(b),l(c)). With even stronger ‘resolution” one would observe gluons form- 

ing an effective (qq)M vertex (Fig. 2). Unfortunately, although one knows the 

way constituents (gluons and quarks) interact mutually, the precise mechanism 

by which a meson is formed is not known. Therefore, as long as the problem of 

confinement is unsolved, Fig. l(c) with an unknown function in the (qg)M vertex 

seems to be the most one can achieve in a microscopic description of the process. 

Fortunately, it is not exactly so. 

Although one can’t theoretically determine the vertex function, its form is not 

completely arbitrary. The most important constraint is related to diagram l(c). 

Since the probability for A4 + LV decay is finite, the momentum dependence 
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of the vertex function must be such that the quark loop contribution in Fig. 

l(c) is convergent. Another important source of restrictions on vertex functions 

are various symmetries at the level of hadrons and/or constituents. One could 

proceed and impose further constraints (e.g., to require a form which doesn’t 

allow the emission of on-shell quarks from mesons), but that wouldn’t be in 

the spirit of this work. Rather than to construct an ‘ideal” model, I’ll try to 

concentrate on relations that can be reached even without the precise form of the 

(qq)M vertex. Such type of analysis will for brevity be referred to as =model- 

independent ,” although the more appropriate name would be Yndependent of 

the details of the model.” 

Let me now present the assumptions related to the framework in which in 

subsequent sections the weak decays of K meson will be analyzed. (In the next 

section some of these assumptions will be discussed more thoroughly.) It will be 

supposed that: 

(i) The interactions of macroscopic particles (mesons) and their constituents 

(quarks and gluons) can be described by an effective field theory into which 

all confining effects are integrated, leading to nonlocal meson-constituent 

vertices in momentum space. (The counterparts of these vertices in the co- 

ordinate space are wave-functions of mesons, in terms of various Fock states.) 

(ii) Only the effect of (@)M vertices will be investigated, and higher Fock 

states such as G(qq)M (where G stands for gluon), GG(qq)M, etc., will 

be ignored. In one type of vertices (gq) will correspond to the regular 

valence pair of quarks, so that the resulting picture will be similar to the 

valence api: oximation used widely in hadronic weak processes. In addition, 

-. 
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another type of (qq)M vertices (‘anomalous”) will be introduced in Sec. 7. 
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(iii) It will be assumed that interactions responsible for the formation of a reg- 

ular (qq)M vertex (a) do not spoil Lorentz invariance, (b) are SU(2)flavor 

and SU(3),,~,, invariant20; (c) conserve C, P and 2’ symmetries. Since 

the four-flavor model is used, no C&violating effects will be considered 

in this introductory work. (The generalization to the six-flavor theory is 

straightforward.) 

The assumptions (i) to (iii) lead to the most general form of effective (regular) 

vertices in the microscopic model. The appropriate vertices in n and K systems 

are denoted in Fig. 3. The vertex functions I’% and I’K appearing in the figure 

can be defined as 

-- I’&, Q) = { & ~2Qp+3?3+,, 4 + 

(24 
1 

+- 
mif 

P4 Q” k” b,, 

Momenta Q, k + Q/2 and k - Q/2 correspond to a meson, outgoing and ingoing 

quark, respectively. PI to P4 are some unknown functions. For us it is important 

that they must insure the finiteness of diagram l(c). As a consequence of the 

assumption (iii) the functions Pi can be further subdivided into the parts that are 

either even or odd on the replacements k + -k and Q + -9. Note that vertex 

-. (2.1) has pseudoscalar, axial-vector and tensor looking terms, but no scalar and 

vector terms. 

With vertices in Fig. 3 and with the definition (2.1), one may start with the 

test of the model in various exclusive weak decays. However, let me first analyze 

in more detail the logic of the assumption (ii). 
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3. Higher Fock States and Why to Neglect Them 

There is no doubt that the assumption (ii) in the previous section looks to a 

certain extent unnatural. No presently known mechanisms suppress the influence 

of higher Fock states on low energy processes (the situation might be different 

at higher energies2’). Still, I’ll insist on the valence picture. In order to explain 

better the logic behind this assumption, let me consider the situation in which 

gluons do appear in effective vertices. Then not only the (qp)M vertex but also 

the G(qq)M, GG(qq)M, . . ., vertices have to be defined, too. Two important 

features of such a complete microscopic picture are: (1) there will be an infinite 

number of new vertices with gluons; (2) once the (qq)M vertex is defined, new 

vertices are not arbitrary but are related to (qq)M vertex function. Both of these 

features are a consequence of the gauge invariance of the underlying theory. The 

situation is explained in Fig. 4. Imagine that the effective (qq)M coupling in the 

coordinate space is described by 

(3.1) 

-. 

where ~3 (and a ‘) are derivatives of outgoing (ingoing) fermion field operators, and 

F is some functional of a and a’. The gauge invariance requires (even in an effec- 

tive field theory!) that 3, is replaced in a complete model by a covariant deriva- 

tive 

D, = aP - i(g/2) i GP. Equation (3.1) therefore becomes 

thus generating an entire class of new vertices. Since Eq. (3.1) must be nonlocal 

(in order to ensure the finiteness of A4 + eV), expression (3.2) contains generally 
. 
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an infinite number of terms with all possible numbers of gluon field operators, in 

addition to meson and fermion fields. It is clear that such a scenario leads to an 

unavoidable catastrophe: if the higher Fock states are important, then one must 

take into account in any calculation an infinite number of terms describing the 

complete wave function. Most probably this cannot be done in a satisfactory way, 

and one must abandon the hope that anything could be understood in hadronic 

decays. Alternatively, the contribution of higher states could be suppressed by 

some unknown mechanism (smallness of the strong coupling constant?); but then 

the main contribution comes from Eq. (3.1), and in the first approximation higher 

states are negligible. In other words, while the picture in which a meson contains 

basically a pair of quarks is not natural, it is preferable and necessary if one 

wants to calculate anything. One could say that by testing the valence picture, 

our ability to deal with hadronic decays is tested also. 

Imagine now that the lowest order results are known, and that one wants to 

calculate (hopefully small) first order corrections. In the microscopic framework 

it immediately becomes clear that one cannot disentangle the contributions of 

the ordinary QCD corrections to the process from the contributions of higher 

Fock states. The situation is explained in Figs. 5 and 6. The diagram in Fig. 5 

looks like a typical “hard gluon” correction to the weak process described in 

a valence approximation. However, this diagram is by itself gauge-noninvariant 

and represents only a part of corrections. In Fig. 6 the complete, gauge-invariant 

form, which comprises also the diagram in Fig. 5, is shown. One sees that the 

proper way for description of one-gluon corrections is the introduction of higher 

Fock states, and not only some one-gluon exchanges. 
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Note that in the standard approach, when four-quark operators are dressed 

by QCD, one basically uses a type of corrections from Fig. 5. Although it was just 

mentioned that the diagram in Fig. 5 leads to an incomplete description, that is 

not an obvious source of problems as long as only leading log approximation is 

used. Namely, it is most probable that leading logarithmic terms (g2 b Mw) do 

not spoil the gauge invariance. The real problem for the standard approach lies 

somewhere else. In a microscopic model, at the one-gluon level, one can easily 

demonstrate the appearance of nonlogarithmic terms (e.g., some ratios of masses 

and momenta). The mass A& is simply not large enough to insure the dominance 

of the en A4w term in an expression in which various other large nonlogarit hms 

appear. There is no reason to believe that in diagrams with many gluons, the situ- 
-- 

ation will be different. The above objections suggest the following conclusions: (a) 

if one decides to include gluonic corrections, it is not enough to take into account 

only th A&w terms, because the other terms might be equally important; (b) if 

other than leading log terms are to be included, than that should be done by dia- 

grams of the type presented in Fig. 6, since otherwise the gauge invariance is lost. 

I shall return to these questions again in the concluding section. 

As explained earlier, in this work only the lowest order description, with 

valence quarks and with no gluons in vertices will be considered. Since higher 

order Fock states are neglected, it would be inconsistent to pay any attention to 

a class of QCD corrections depicted in Fig. 5. Therefore, in the simplest version 

of the microscopic model one has to deal with diagrams in which no gluon line is 

attached directly to the valence quarks. 22 Still it doesn’t mean that this model 

drags back to pre-QCD days. Note that gluons (“soft gluons”) do participate in 

the-formation of bound states from quarks. Though not explicitly appearing in 
. 
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diagrams, their presence has left a profound trace in the nonlocal character of 

the vertex functions. In addition, a class of QCD corrections is perfectly allowed; 

e.g., self-energy and vertex corrections in parts of a diagram not related to the 

valence quark propagators (see Fig. 7). 

Microscopic analyses with valence vertices are not a novelty. In a different 

framework they were already used in the literature. Two most recent serious 

attempts are by Chernyak and Zhitnitsky, and by Gilmour (see Ref. 23). In 

both of these works a particular choice for wave functions was done, so that 

the results are model-dependent. In addition, higher order QCD corrections were 

considered without a parallel introduction of higher Fock states, which might- 

in the light of the above discussion-lead to incomplete and gauge-noninvariant 

conclusions. 

4. Elementary Application 

In this section a few elementary processes will be considered. It was already 

mentioned that Ke;! decay is the most simple hadronic decay, so let’s analyze 

it first. In a macroscopic notation K -3 !u is characterized by a matrix element 

of the weak current, (OlP(AS = l)lK) = ifKP’. In the microscopic description 

the invariant amplitude is given by a loop integral (see Fig. 8). 

-. 

xrK(+p)} Qt 7/J(l - 75)G [1+ O(MfyY2)) . 

The minus sign, and the factor 3(= N) in front of the integral appear as a conse 

quence of the close fermion loop and the trace over unit matrix in a color space. 
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Only 7p75 part of the W-boson vertex gives a nonvanishing contribution to the 

integral. The kaon decay constant is then in microscopic notation given by 

ifK- 
1 

f-;-m P75 P+,,, rK(k-; 9 p) * 

Since fK must be finite, the component of I?K contributing to the integral (4.2) 

must for large momentum, k --) 00, behave at least as l/k3. (This important 

constraint was mentioned in Sec. 2.). f K+ can be defined in a similar way. Due 

to properties of rK, the relation fK+ = fK- E fK iS valid. When in Dq. (4.2) 

m, is replaced by m,20 and rK by I%, one obtains the definition of fz. 

It is clear that only the lowest Fock state can contribute to the K& decay. 

Furthermore, since an effective vertex is used in Eq. (4.1), there is no need 

for additional radiative corrections (see Fig. 9), and expressions (4.1) and (4.2) 

would remain unchanged even in an approach not restricted to valence vertices 

only. Thus (4.2) can be directly related to the experimentally measured values. 

Another simple process is K -+ lreV decay. This process will help to define 

weak form factors in terms of microscopic functions. Consider e.g., K- -+ d’& 

decay (Fig. 10). The reduced amplitude is 

ME-%$ f& ra(1 - 75)% (-3) 

(4.3) 
&7a(1 -75) s# [rK] & [l+o(A4G2)] . 

Sq stands for the propagator of a q-quark. One can now easily recognize the form 

factors. With Q = PK - Px, and ml = m3 = m, mg = m,, it follows 
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iJ’:“(Q2) [p. + Pr]” + iFzK”(Q2) [PK - Px]” 

= 3 / $8 Tf( (~-~-ml)-17a(2+~-m2)-1 

(44 
Note that only the vector part of the W-boson vertex gives a nonvanishing con- 

tribution to form factors. To the leading order in l/ww, Eq. (4.3) thus becomes 

--M=; GsiniP 1 
JZ z { Frr(P~ + P,)a + F2K” Qa} x leptonic part . (4.5) 

In a similar way one can describe all Kc3 decays in terms of the same form factors 

J’F” and PTA defined in Eq. (4.4). For example, in KS --) A-& decay 

FF”(PK + Px)” + FFr Qa} x leptonic part , (4.6) 

-. 

and so on. One can demonstrate that when m2 -+ ml in Eq. (4.4), the second 

form factor disappears, Fz( Q2) --) 0. That is clearly related to the conserved vec- 

tor current (CVC) hypothesis known from macroscopic description,’ and leaves 

us with only one form factor in the pion system. Namely, when m, is replaced 

by m, and K by A, expression (4.4) can serve as a definition of Fix” form factors. 

However, as just mentioned, due to the isospin symmetry, the part of the integral 

which defines F”” 2 gives zero contribution, and one has (Q = Pxl - Pg2), 

. 
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iFt”(Q2) [Kl + Pr21a 

= 3 
/ & x Tf{ (~-f-m)-17a(~+~wm)-1 

(4.7) 

xr, IC- ( 
I-%1+ ET2 _ m 

2 ) 1 

-l r 
% . 

Since weak (charged) and electromagnetic currents in the standard SU(2) x U( 1) 

model are members of the same isomultiplet, it is evident that Fr” in Q. (4.7) 

describes not only weak but also electromagnetic form factors. Therefore one 

obtains an additional constraint on the form of the vertex functions: FM must 

be such that Fy”(Q2 --) 0) = +1, which is the usual normalization of the 

electromagnetic form factors. 

These elementary definitions of weak decay constants and form factors, will 

find their full application in the analysis of nonleptonic decays. However, it will be 

instructive to introduce first another valuable tool in microscopic considerations, 

namely the generalized Fierz transformation. 

5. Two-Loop Integrals and Generalized Fierz Transformation 

-. In the previous section some basic functions were defined in terms of one-loop 

integrals. In the analysis of nonleptonic decays we shall mostly have to deal with 

two-loop integrals. In this section a very useful technique, by which in weak 

processes two-loop integrals can be reduced to a product of one-loop integrals, 

will be described. This technique will be illustrated in an analysis of the box 

diagram contribution to the KL 3 77 decay. . 
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As shown by Gaillard and Lee,24725 in the free field limit of the four flavor 

theory, it is the box diagram which gives the most imfiortant contribution to the 

decay amplitude. According to Ref. 24, 

Q! 4 
(5.1) 

X ; * -qj fK [%d) - fl(d)] hp+ a”A@(ql) arA6(qz) , 

where H(m) functions correspond to some calculable integrals. In the microscopic 

approach the strange and down quarks are not free; They are off-shell particles 

which can assume all possible momenta in a loop integral. Amazingly enough, 

the final result of the analysis coincides with the expression (5.1) The mecha- -- 
nism which will be referred to as the generalized Fierz transformation (GFT) is 

responsible for this coincidence. 

Here is how it works. Consider the diagram in Fig. 11. The related matrix 

element is proportional to (R = q1 - q2), 

M- (-3) / d4k,,(,(,,~) -&?Ks,+~) 

/ de (e _ k): _ qv 7p(1 - 75) 

k* (L-g) 7@s, (t-9 7% (t+;) -(WC)] 7”(1-75)) * 

This expression is quite nontransparent, but it can be simplified. In the first step 

the W-boson propagator should be expanded in a series: 

. 
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Note that an expansion in which only flw (instead of Mw - k2) is used as a 

large parameter wouldn’t do. Higher order terms would then produce an infinite 

number of UV divergences in the integral over d4k! With the expansion (5.3) one 

can evaluate the integral over d”L It is easy to demonstrate that the second and 

higher terms in the expansion are of the order O[k/(ww - k2)2]. Such terms are 

UV safe in the d4k space, and suppressed due to large denominator, and could be 

neglected. Consider now the first term in the r.h.s. of Hq. (5.3). As a consequence 

of the GIM mechanism, even when the propagator [@ - (flw - k2)]-’ is replaced 

bY [-(Mz, - k2)1-‘9 the integral over d4C in Eq. (5.2) is still convergent. But 

that means that there are no logarithmic corrections of the type Ln(ww - k2) in 

the leading part,26 and that one can write the integral over d’L as 
-- 

J da.! --) ’ 
k’-MZ, J 

dc 7p (1 - 75). [s:7~s~~7as~” 

-(u --) 41 7?1- 75) + 0 ((k2 -k)2) * (5’4) 

At this stage it is helpful to use the relation 

7,(1 - 75) F 7”(1 - 75) = -710 - 75) Tt- { f rP(l - r5) } , (54 

which is valid for any combination T^ of 7 matrices. The leading part of Eq. (5.2) 

can now be rewritten as 

M ma-- 
( 3)J rK sd ~~(1 - 

W) 

/ d4eTr{ [~;7Q;‘7~s;“-(u+e)] 7”(1-75)}+... . _ 

Dots in Eq. (5.6) d enote terms of order 0(1/M&). One can use once again the 

same trick, this time in d4k space, and stretch the 1/(k2 - Mw) ‘propagator” to 
. 
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l/(-pw), since the remaining integral is finite due to the characteristics of rK 

vertex. The result is (to the leading order in l/Ik$-- 

M - (-3) $ J d’kTr{...)xJ d4i? l?r{ . ..}+... 
W 

= - ; (-3) [ J d4k Tr{ . . . 4 .,', F3) [ J d’t Tr{ . . . }I + . . . , 

(5.7) 
where the missing expression in curly brackets are the same as in Eq. (5.6). The 

relation (5.7) is illustrated in Fig. 12. It says the following: if no divergences 

appear in a two-loop integral when the W-boson propagator is stretched to a 

point, the integral can be to the leading order factorized in a product of two one- 

loop integrals. The advantage of the procedure is clear from the second equation 

in (5.7). The integral s d4k doesn’t have to be calculated; the comparison with 

E!q. (4.2) shows that it is proportional to fK. In addition, the second integral in 

Eq. (5.7), J d4& is a convergent integral which can be shown to be identical to 

[ H(mz) - H( rnz) ] in E-q. (5.1). It is not difficult to see that the proportionality 

factors in Es. (5.7) are identical to those appearing in Eq. (5.1). Thus the 

equivalence of the free field24 and the microscopic analysis becomes evident. 

Although the transformation in Fig. 12 and in EJq. (5.7) reminds us of the 

Fierz transformation, two important differences must be pointed out. While the 

original transformation deals with free spinors, here a generalization to the ofl 

sheZZ fermions was presented. Furthermore, an exact relation for free spinors is 

replaced here by the relation valid only to leading order in l/flw. Note that 

GFT is possible basically because a (qq)M vertex improves a convergence of 

quark loop integrals. 
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There are a large number of weak decays of mesons in which the generalized 

Fierz rearrangement greatly simplifies the analyses, and GFT will be particularly 

useful as we proceed with a study of K + XA processes. However, this is the 

proper place to mention that in some decays (mainly in some rare K- decays) 

the transformation cannot be applied. In such cases the free field results will not 

coincide with the microscopic analysis, and the microscopic approach will reveal 

additional (probably important) bound state effects. The detailed analyses of 

that issue will be presented elsewhere. In a similar way, when higher Fock states 

(and QCD corrections) are introduced, GFT can be applied only partially, which 

means that the true factorization occurs only if the higher states are negligible. 

-- 
6. K -+ mr Decays 

Armed with definitions are techniques from previous sections, we are ready 

to analyze two-body hadronic decays of K mesons. The six possible decay modes 

are 

Kf --) A%rO, KS,L + or+, KS,L --+ A07r0 . (64 

-. 

In the microscopic framework one has first to construct the relevant diagrams. 

Some of them are presented in Figs. 13-15. There are all together 96 dia- 

grams contributing to processes (6.1), however one shouldn’t be too impressed 

with this number. Many of the diagrams in which the Higgs-ghost particle, 

‘p, propagates are suppressed, and other diagrams group together in just a few 

distinctive classes. Still, it might look as a surprise that to the leading order 

in l/ww, amplitudes of all processes in Eq. (6.1) are proportional to just one 

single function. 
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This effect is a consequence of three different mechanisms. The first one is 

related to GFT. Two typical examples are presented in Figs. 16 and 17. The 

same mechanism that gave rise to the factorization in the K -+ 77 box diagram 

breaks here the two-loop integrals (1.h.s. in Figs. 16, 17) into the product of 

one-loop integrals “joined” by a W-boson propagator (r.h.s. in quoted figures). 

The factor l/3(= l/N) is related to the number of colors in the model. Indicated 

relations are exact in the leading order. The use of GFT in such a way reduces the 

number of independent diagrams, relating e.g., the first and the second diagram 

in Fig. 13. In addition the evaluation of required diagrams is extremely simplified. 

The r.h.s. in Fig. 16 is namely proportional to the product of previously defined 

functions, and one obtains 
-- 

MFig.16 - 3 ’ [ Fp(Q2) (P + R)” + FF*(Q2) (I’ - R)& ] Qafx a (6.2) 

In a similar way the r.h.s. in Fig. 17 gives the contribution 

MFig.17 N :pafK [ F;“(P2) (Q - R)” + Fy(P2) (Q + R)a ] . (6.3) 

Expression (6.3) can serve as an illustration of the second reason that leads to the 

simplification of the final result. As discussed in Sec. 4, one has F,““(P2) = 0, 
-. and in addition, since the pions are on mass shell, 

Pa(Q - R)” E Q2 - R2 -+ 0 . (6.4 

Therefore, the “annihilation” diagrams, and those related to them by the GFT 

do not contribute to amplitudes of K + mr decays.27 . 
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In such a way the most of diagrams in Figs. 13-15 are either proportional 

to (6.2) or, being of the form (6.3), unimportant. It remains to consider the last 

two diagrams in each of Figs. 13-15. All these diagrams are characterized by 

a direct s --) d (or d + s) transition through a self-energy subdiagram. Such a 

transition is presented in more detail in Fig. 18. Here one is not allowed to ignore 

the Higgs-ghost exchange: Diagram 18(b) is divergent! Therefore only when the 

properly chosen counter-terms are introduced can the values of diagrams with 

self-energy insertions be obtained. However, when such counterterms are added, 

the subdiagrams become not only convergent, but lose their dominant l/flw 

part. Thus each diagram with a direct s + d (d -+ s) transition becomes of the 

order l/M& in the valence model, and does not contribute significantly to the 
-- 

amplitudes. 

The net result of the above analysis can be summarized as follows. From the 

starting 96 diagrams, 64 are suppressed by the presence of either Higgs-ghosts or 

the direct s -+ d transitions, 16 diagrams are eliminated by the isospin symmetry, 

while the remaining 16 are all proportional to &. (6.2). It is not difficult to 

write the complete amplitudes now. When all factors l/3 (from GFT) and 

&l/\/z (from some vertex functions) are collected, one obtains in the leading 

order 

A+ E M(K+ + T+A’) = 5 4X, A- s M(K- + B-#) = -$ x, 

AZ- sM(Kpn+r-)= 5 6X9 A$-= M(KLwr+r-)=O, (64 

A$0 E M(Ks + r"ro) = -I X , Afo - M(KL --m"ro)=o. 
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In an SU(N) theory, the factor 4/3 would be replaced by (N + 1)/N, the factor 

-2/3 would become -2/N, while the amplitude As_ would remain unchanged.28 

The unknown function X in Eq. (6.5) is given by 

x2 4 sin0 costi $fx[( rn& - m2,) Ff”(mz) + rnz Ft’(rnz) ] . (6.6) 

It can be seen from Eq. (6.5) that A- = -A+, and that KL + RT decays are 

forbidden as they should be, but this is just a natural consequence of the starting 

assumptions. (Remember that the CP conservation was built into the model.) 

The real challenge for any model of K decays are the remaining three ampli- 

tudes. Form Eq. (6.5) one finds that 

-- A+ = 2 As =-2Afo . 
3 - (6.7) 

While the function X in Eq. (6.6) depends on the form of the vertex function used 

in calculation, relations indicated in Eq. (6.7) are valid for any particular choice 

of I’. However, if something weren’t missing in the previous analysis, Eq. (6.7) 

would be bad news for the microscopic framework. Namely, the experimentally 

measured amplitudes (found from the widths in Ref. 29) are 

IA’1 = 18.3 eV , 

-. IAs-1 = 389.1 eV and IAfoI = 372.2 eV . (6.8) 

So, while Eq. (6.7) predicts the A+ amplitude of the order of AS amplitudes, 

experiments show that the latter are enhanced by a factor N 20. Does it mean 

the end of the valence model? No. In the next section it will be shown that an 

important contribution was missing from expression (6.5), and that its addition 

can dramatically change relations (6.7). 
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7. Anomalous Vertices 

Relations (6.7) are not a novelty. One gets the same ratios of amplitudes 

in macroscopic analyses when QCD is turned off. (Compare e.g., with results 

obtained with vacuum insertions in Ref. 30, and by current algebra in Ref. 31. 

The coefficients of operators should be set to the free field values.) To change 

this situation, in the standard approach one introduces operators dressed by hard 

gluons. The same solution cannot be applied in this work. Since I want to use 

just soft gluons which never appear explicitly in diagrams, and no hard gluon 

corrections, it seems that there is no room for a change of relations (6.5) and 

(6.7). In fact, it is not so. Let me explain that more thoroughly. 

--The mechanism by which gluons form the regular vertices is schematically 

presented in Fig. 2. Imagine now that still within the confinement radius a 

direct s --) d transition has taken place in a valence quark line. This possibility 

is presented in Fig. 19. As a result, an effective vertex with a Uwrong” flavor 

structure would appear. For the K- meson, it would be e.g., an anomalous 

(du)K- vertex in addition to the regular (3~) K- vertex. It is important to 

realize that such an anomalous vertex is as natural as regular valence vertices 

once all the soft gluons within the confinement radius are integrated in. The 

probability for its appearance might be very low, but it is certainly different 

from zero. So, let us concentrate on this probability. 

If anomalous vertices are to play any role in K ---) AK decays, their vertex 

function has to be at least of the order l/ww. Otherwise, their contribution 

would be negligible as compared to contributions of regular diagrams. On the 

other hand, as it was discussed in Sec. 6, the rate for a direct s + d transition 

is of the order l/M&. However, there is a big difference between diagrams in 
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Fig. 18 and the relevant subdiagram in the 1.h.s. of Fig. 19. While diagrams 

in Fig. 18-423 a result of GIM mechanism and renormalization-are really 

suppressed, the situation is drastically changed when one (or any number) of 

gluons is emitted from the quark line within the self-energy loop. The GIM 

mechanism then breaks, and e.g., the diagram in Fig. 20 has a nonvanishing 

l/ww part. (This fact was discovered and used in another context by ITEP 

group7.) So, it appears that the general strength of new vertex functions is 

proportional to (m2,/tiw) sin r9 costi, and not to (m&/@w)2 sin8 cosd as one 

would naively expect. Therefore anomalous vertices on equal footing with normal 

vertices take part in descriptions of K + AT decays and might provide us with a 

mechanism (within a valence picture) that could bring ratios of amplitudes closer 
-- 

to measured values. 

What is the precise form of new vertex functions? Since weak interactions 

were involved in a creations of anomalous vertices, C and P invariance are bro- 

ken. However, a combined CP invariance must still be preserved. In a similar 

way to that by which the form (2.1) was deduced, one can now find the most 

general Lorentz and momentum structure of the new vertex. The true func- 

tional dependence remains, of course, unknown. For simplicity I will not write 

down explicitly the full Lorents structure of the anomalous vertex function FK 

appearing in Fig. 21. It will be enough to mention that it has in addition to -. 

pseudoscalar, axial-vector and tensor structure, two novel terms with scalar and 

vector structure. 
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It is clear that in a complete microscopic picture, due to a gauge invariance, 

one should also introduce anomalous vertices with gluons in addition to quarks. 

Once again, for reasons mentioned in Sec. 3, such structures will be ignored 

with hope that some unknown mechanism enables one to deal only with (qq)M 

(both regular and anomalous) vertices in weak processes, and to disregard higher 

states. In Fig. 22 new vertices in a pion system are represented. They also have 

to be taken into account when a new set of diagrams corresponding to K + AA 

decays are drawn. 

So far only a possibility for an s -+ d transition was considered. One may 

think of a similar u + c transition through a self-energy loop, which would cre- 

ate another set of anomalous vertices (e.g., for K- meson, a new (gc)K- vertex, 
-- 

etc.) again of the order (m&/A&) sin r9cos 8. However, it is easy to see that 

such vertices cannot contribute to two-body K decays. Furthermore, they are 

probably much less interesting: while the magnitude of s -+ d (and d ---) a) transi- 

tions is proportional to the degree of SU(4) flavor symmet r-y breaking, transit ions 

TV -+ c(c + u) are proportional to the degree of violation of SU(3)fiavor symme- 

try. It is known that the latter is small as compared to the former. Therefore 

even in processes in which diagrams with u + c do appear (e.g., in Cabibbo sup- 

pressed D decays), the new vertices shouldn’t be that important as anomalous 

vertices contributing to K decays. -. 

There is one point I want to make particularly clear. The anomalous vertices 

described in this section are not an artifact introduced to meet demands posed 

by experiments. Although their exact strength is dictated by phenomenology, 

their mere existence fits as naturally to a confinement scheme and the valence 

picture as the existence of regular vertices does. 
. 
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8. Results and Directions for Future Work 

If one now adds contributions of diagrams with anomalous vertices (Fig. 23) 

to the results (6.5), one obtains the ultimate set of amplitudes, 

A?- = ; X+2Y , A$- = 0 (8.1) 

The function X was defined in Eq. (6.6), while Y is given by 

-. 

(a and b are defined in Figs. 19 and 22 respectively.) One immediately realizes 

that new diagrams do not contribute to K+ (K-) decays, basically due to the 

cancellation of diagrams 23(a) and (b). On the other hand, both AS amplitudes 

can gain a significant contribution provided Y function is large enough. The 

simplicity of relations (6.5) and (6.7) is to a certain extent lost,but still three 

amplitudes are described by only two functions, and from Eq. (8.1) one can form 

the sum rule 

This sum rule was for the first time derived many years ago in a macroscopic 

analysis . 32. Here its simple derivation is presented in a microscopic valence model, 

with no reference to the current algebra. While incomplete relations (6.7) were in 

a heavy conflict with the experiment, Eq. (8.3) reasonably agrees with measured 
. 
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amplitudes [see Eq. (6.8) 1. Not only the sum rule, but also the absolute values, 

Eq. (8.1), are in agreement with experiment, provided 

XwlOeV , Y - 190 eV . (8.4 

The approach presented in this work doesn’t tell us why the function Y is 

so much greater than the function X. One could argue that the integral in Y 

has a part similar to one appearing in strong V --) PP (e.g., p --) mr) decays, 

and that therefore it is so large. However, no firm conclusion can be made in a 

model-independent way, i.e., before some explicit choices for I? and F were made. 

Although the magnitude of Y cannot be predicted, one can accept the values of 

I%+ (8.4) and look f or consequences in other processes. Large Y suggests, for ex- 

ample, that decays of a short-lived kaon are enhanced as compared to the decays 

governed only by standard vertices. In this second category there are not only 

K* -+ A*K’ decays, but also many other leptonic and semileptonic decays of 

kaons, in which anomalous vertices are suppressed. In addition, Cabibbo allowed 

D + Klr decays, in which anomalous vertices cannot contribute in the leading 

order, should have amplitudes comparable to A* rather than to is. What is the 

experiment al situation ? Unfortunately, the momentum transfer Q2 in semilep- 

tonic decays is not the same one which appears in nonleptonic K + mr decays, 

where Q2 = mz. Therefore, without an additional assumption on the behavior 

of form factors J’1y2Z(Q2) for various Q2, one cannot have a conclusive test. In D 

decays the situation is slightly different. The experimental values are displayed 

in Table I for both D and K decays. In the second column the various amplitudes 

are written with Cabibbo angles factorized. Still, the amplitudes do have a di- 

mension of a mass, and since the relevant scales are not expected to be the same . 
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in D and K decays, the values in this column cannot serve for a comparison. 

In the third column the Veduced” amplitudes are listed. These numbers were 

obtained when the %atural” mass-scales-$$ in denominators, and masses of 

mesons (with an appropriate power) in numerators-were extracted. The re- 

duced amplitudes clearly show similarities in K- and D decays, and a strong 

enhancement in KS decays. It remains of course to see whether this conclusion 

survives in a more quantitative treatment.33 

So far, several processes (semileptonic K decays, D decays) were mentioned 

in which anomalous vertices do not contribute to the leading order. And when, 

in addition to KS + zlr decays, could new vertices be important? They can 

c&ainly influence radiative and rare decays of kaons. For example, significant 

(zd)KL and (%)KL vertices could dramatically change the free-field predictions 

for KL + 77 decay (see Fig. 24) and eventually explain the disagreement be- 

tween a theory and experiments even without an application of a pole model 

(see, e.g., Ma and Pramudita in Ref. 25). In a similar way new vertices will 

make important contribution to rare decays. Since both anomalous vertices and 

bound-state effects (see discussion at the end of Sec. 5) certainly affect the ex- 

isting analyses of K + F/J, K --) viiz, and other rare decays, the restrictions on 

parameters (such as masses, etc., ) obtained in the standard fashion from these 

decays might need a complete reexamination. Finally, another class of processes 

whose re-analysis can be worthwhile are CP-violating processes in a six-flavor 

theory. Since the CP violation can be introduced through the self-energy type 

diagrams, one could expect a simple and model-independent (within a valence 

model, of course) parameterization, that might shed more light on this important 

issue. In this introductory work there was no space to treat all these interesting 
. 
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problems, but with all the main steps and techniques thoroughly described in 

previous section, one has enough elements for further analyses. 

9. Discussion and Conclusions 

As mentioned in the introduction, many terms, techniques and results in this 

work might look familiar to the reader. Yet a closer consideration shows some 

important differences between this work and previous analyses. It was already 

explained in Sec. 3 how the valence model used here differs from the usual one. 

Basically, gluons are excluded not only from vertices, but also from diagrams. 

Consider now some results from Sec. 8. The least original expression is the sum 

r&, Eq. (8.3). In fact this relation was introduced more than twenty years ago,32 

and has survived through many dramatic changes -in our views on nonleptonic 

decays. In the microscopic approach, even when higher order Fock states and all 

possible QCD corrections are included, the same sum rule can be relatively easily 

demonstrated [for the related works, see Ref. 34 1. In macroscopic approaches it 

is the consequence of the lack of the AI = S/2 terms in the effective Hamiltonian. 

Note that this sum rule is determined by the underlying electroweak theory, has 

nothing to do with &CD, and therefore is one of the rare results in hadronic 

physics not depending on details of hadronization of constituents. 

In view of the previous discussion, the question “Why AI = l/2 rule is 

valid?” could be restated as “Why are A$- and A& amplitudes so close one 

to another?‘. (The sum rule then ensures the smallness of A+.) Let us first 

consider the explanation in standard approaches. The amplitudes are given in 
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terms of matrix elements of various operators. Without QCD the required ratio 

is the same as in Eq. (6.7), 

AT- -3 
Jg= ’ (9.1) -. 

When the leading logarithmic corrections in the form c, a, (g2 4!n i&)” are 

introduced, the absolute value of the ratio changes to,2 

AT- c- + 2c+ 
Tig = CL-2c+ ’ (9.2) 

which is still not close enough to one. In Ref. 7 it was noticed that the inclusion 

of terms C, b, (g2 h m,)” gives a small but very important change in the effec- 

tive Hamiltonian. In the original work’ (with vacuum insertions), the new terms 

were expected to have large matrix elements due to appearance of some small 

numbers in denominators of relevant expressions. Even in approaches based on 

the current algebra, the new terms (PENGUIN operators) are welcome; the matrix 

elements of standard terms seem to be suppressed in various hadronic models, 

while such “helicity suppression”35 doesn’t affect PENGUIN operators. In addi- 

tion, new terms have only A = l/2 part. Anyhow, the idea is to make regular 

operators that predict “incorrect” ratios (9.1) and (9.2) as negligible as possible, 

either by making the matrix elements of new operators very large (when vac- 

uum insertions are used), or by using helicity suppression as big as possible (in 

approaches based on CA). In both cases, one remains basically- with the ratio 

(AS_)~ENGU~/(A~~)~ENGU~N, which is approximately equal to one, and the 

AI = l/2 rule is satisfied. The popularity and praises to the standard approach 

can be related to the fact that one can always choose hadronic model parame- 

ters, the “&CD coefficients,” and other parameters (masses of quarks, etc.) in such 

. 
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a way that regular operators are suppressed, and the PENGUIN operators have 

just the right magnitude to describe experimental v&es.38 

A different picture is suggested in this work: the microscopic framework has 

quite a small predictive power. It provides a handy (and correct, if the valence 

model is correct) parametrization of observed results, but not much more. Too 

many unknown facts on the confining mechanism, wave functions and higher or- 

der QCD corrections, force us to use only such a quantitative description of meson 

decays. The question arises: how is it possible that the standard approach is free 

of these same problems ? The answer is simple. By using standard approaches, 

one can easily lose control over various steps in the procedure. Particularly the 

role of QCD becomes unclear once various macroscopic reductions (soft pion tech- 

niques, insertions of poles, etc., ) are used parallel to microscopic analyses (e.g., 

effective quark scattering amplitudes). So, the suggested answer is that the stan- 

dard approach is not free of mentioned difficulties. They are just hidden. The 

property of the microscopic picture to expose the problems clearly should be 

-. 

considered as an advantage, not a drawback. In the microscopic framework for 

example the factorization of amplitudes [such as one denoted in Eq. (5.7) ] is pos- 

sible only when all QCD corrections are turned off. More precisely, though some 

leading en 1Mw terms might be factorizable, the nonlogarithmic terms (which can 

be of the same magnitude, and shouldn’t be neglected) do not factorize (see Sets. 

3 and 5). Therefore, the message learned in the microscopic analyses is: QCD 

corrections (apart from those responsible for the formation of bound states), are 

either unimportant or uncalculable. In the standard approaches, due to overlaps 

of various methods and techniques, it is very difficult to present this point clearly. 

Still, no matter how hidden, this fact must affect the standard analyses. . 



The major novelty in the microscopic picture is the way in which the direct 

s -+ d transitions are treated. In the standard framework these transitions are 

built into the crucial PENGUIN operators. The coefficients of such operators are 

then calculated in the perturbative analysis. In the concept proposed in this 

work, the anomalous vertices, created also by s -+ d transitions, take over the 

role of PENGUIN operators. However, the chiral structure of anomalous vertices 

doesn’t seem to play any role, while in standard analyses, just the chiral struc- 

ture was responsible for enhancements. Furthermore, in the microscopic model 

the strength of anomalous vertices can be only determined by comparison with 

experiments, while in the standard analyses the relevant coefficients are said to 

be calculable. But the most significant difference between the two approaches 

is the environment in which the direct transitions are placed. In the standard 

approaches the PENGUIN operators are controlled by a short distance expansion 

and hard gluons. On the contrary, anomalous vertices emerge as a long distance 

effect within the confinement radius. Why do I believe that the soft and not the 

hard corrections play such an important role? Let us consider once again the 

s -+ d transit ions (Figs. 18 and 19). When no gluons are presented, such tran- 

sitions are not likely to happen (the probability for a transition is proportional 

to l/M.). So, one needs gluons as catalysts. However, hard gluons are very 

rare (compare with the smallness of coefficients of PENGUIN operators). On the -. 

other hand, the soft radiation is unrestricted, and a natural explanation within 

the context of soft corrections follows immediately. 

In conclusion, the scheme is described in which amplitudes of the weak decays 

of mesons can be analyzed at the quark level, with no use of hadronic models 

or CA 37 Two types of relativistically invariant vertices appear in the model: . 
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the regular and anomalous (with “wrong” flavor content). Both arise as a result 

of QCD confinement. The phenomenology suggests - relatively big importance 

of anomalous vertices, and that could affect considerably the analyses of rare 

K decays. The assumption that higher Fock states and QCD corrections are 

unimportant isn’t so far in contradiction with experiment, and is on the other 

hand a theoretical necessity, but more work is needed to make firmer conclusions. 

The approach has presently small predictive power and leads only to a suit- 

able parametrization. (However, it is suggested that the same is true for standard 

approaches.) Still, in many cases even such a parametrization might bring inter- 

esting and experimentally confirmable results. The AI = l/2 rule is qualitatively 

explained as a consequence of soft and not hard corrections. The radical change 
-- 

in analyses of nonleptonic decays is expected not from a refinement in the treat- 

ment of hard gluons (e.g., caclulationa of some two- or three-loop corrections) 

but, on the contrary, from better understanding of confinement mechanisms, and 

hadronic wave functions. Only the advance along these lines would enable the 

calculation of integrals in Eqs. (4.2), (4.4), (6.6) and (8.2), and turn the qualita- 

tive picture presently available into a powerful quantitative method. 

-. 
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Table 1. 

The experimental results2’ on two-body decays ofpseudoscalar mesons. The 

reduced amplitudes (see the explanation in the text) clearly show the dominance 

of decays in which anomalous vertices are expected to be important. (G is the 

Fermi constant; s z sin 6 and c E cos r9 are Cabibbo factors). 

Decay Modes Amplitudes (in KeV) Reduced Amplitudes 

K+ --+ A+~O 0.083 SC 0.0589 rng G SC 

KS -+ a+~- 1.75 SC 1.2494 rng G SC 

KS --+ AOAO 1.68 SC 1.1953 rn& G SC 

D+ + rr+xo (1.20 f 0.19) c2 (0.0158 f 0.0025) rn$ G c2 
-- 
Do + r+K- (2.01 f 0.23) c2 (0.0265 f 0.0030) rni G c2 

Do 4 aojlro (1.93 f 0.51) c2 (0.0254 f 0.0067) rn$ G c2 

D+ + K+p (2.70 f 1.85) SC (0.035 f 0.024) rni G SC 

DO --+ K+K- (3.01 f 1.01) SC (0.040 f 0.013) rng G SC 

D+ --+ ~F+AO < 2.6 SC < 0.034 rnk G SC 

DO 4 7r+fr-- (1.51 f 0.76) SC (0.02 f 0.01 ) rnk G SC 
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Figure Captions 

Fig. 1. Various stages in a description of the A4-- + & decay. The double 
line denotes a meson, the single line a quark or lepton, and the wavy line a 
weak boson. 

Fig. 2. The vertex in Fig. l(c) has an additional substructure. It is 
believed that the nonperturbative QCD leads to a confinement. Dashed lines 
represent gluons. 

Fig. 3. Regular vertices in z and K systems. The vertex functions rr and rK 
are defined in Eq. (2.1). 

Fig. 4. The gauge invariance relates (QP)M vertex to vertices containing gluons 
(G) in addition to fermions. 

Fig. 5. An incomplete and gauge dependent correction to a weak two-body 
decay. 
I& 6. The gauge invariant description of =one gluon” corrections. Higher Fock 
states are required. 

Fig. 7. A type of ‘allowed” QCD corrections in the K” i 77 decay. In this 
figure the valence quarks are denoted with heavy lines. 

Fig. 8. Diagram describing K- + & decay in the microscopic framework. 
Types of particles and their momenta are denoted. 

Fig. 9. All radiative corrections are already included in the effective vertex. 
Therefore, diagrams of that type do not appear in the microscopic model. 

Fig. 10. The microscopic description of K- --) x0& decay. 

Fig. 11. One of the box diagrams in KL + 77. 

-. Fig. 12. The generalized Fierz transformation illustrated in one of the diagrams 
contributing to KL -+ 77 decay. N denotes the number of colors. To the leading 
order GFT provides a simple relation between different types of diagrams. 

Fig. 13. Two-body decays of the charged kaon (K+) with regular vertices. The 
heavy line here denotes the strange quark. cp stands for Higgs ghost. The similar 
set of diagrams corresponds to K- + r-r0 decay. 

Fig. 14. KS 3 z”zo decay. Cross terms (with pions exchanged) should be 
added. KL + r”zo is described by a similar set of diagrams. 

. 
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Fig. 15. KS + a-z+ with regular valence vertices. The decay KL --) r-r+ 
can be described in a similar way. 

Fig. 16. GFT in K + a?r decays. The indicated relation is exact when terms 
of the order l/M& are neglected. R and & are momenta of outgoing pions. 

Fig. 17. As a consequence of GFT and assumed isospin symmetry, the entire 
class of diagrams in Figs. 13-15 give no leading contributions to decay ampli- 
tudes. Namely, the amplitude of the diagram on the r.h.s. is exactly zero in an 
SU(2) symmetric world. 

Fig. 18. The direct s ---) d transition through a ‘self-energy” loop. In spite of 
GIM mechanism, diagrams are divergent and need a renormalization. 

Fig. 19. An s --) d transition takes place within the confinement radius, which 
gives rise to an anomalous (&)K- vertex. The strength of the new vertex is 
unknown, the order of its magnitude is a = (m~/Mw)~ sin 6 cos 6. 

Fig. 20. Gluons emitted from a self-energy loop serve as a catalyst and make 
s-2 d transitions more probable. 

Fig. 21. Anomalous vertices in K system, relevent for K -i m. u was defined 
previously in Fig. 19. 

Fig. 22. Anomalous vertices in A system. b = (na%/M~)~ sin 6 cos 8. 

Fig. 23. The diagrams with anomalous vertices contributing to K+ --) A++’ 
decays. Similar sets of diagrams can be constructed for other decay modes. 

Fig. 24. K” --) 77 with th e anomalous vertices. 

-. 
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