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1. Introductioti -. - - 

A long-range goal in the study of quantum chromodynamics is to actually 

calculate the spectrum and wavefunctions of hadrons from first principles. An im- 

portant theoretical tool to this end is lattice gauge theory which may eventually 

provide accurate numerical values for hadronic properties.’ The Bethe-Salpeter 

approach is primarily suited to weak-binding bound state problems where higher 

irreducible kernel corrections and non-perturbative vacuum effects can be ne- 

glected. 

An alternative approach2 to relativistic bound state problems is the light-cone 

quantization method, which provides a Hamiltonian formalism and Fock-state 

representation of QCD at equal light-cone time r = t + z/c. The momentum- 

space bound-state solutions to this system of relativistic equations +(z,kl, X) 

are functions of the light-cone variables z; = (kp + kf)/(p’ +p”) and zl;, and the 

particle helicities X;. They are immediately suitable for calculations of covariant 

observables, such as structure functions, distribution amplitudes, form factors, 

anomalous moments, correlations and other hadronic properties. 

The first step in solving the full set of coupled Fock state equations on the 

light-cone is to find a simple, analytically tractable equation for the valence, 

lowest-particle-number sector, and to develop a systematic perturbation theory 

for obtaining higher particle number states and higher accuracy. These require- 

ments are satisfied by the simplest approximation, corresponding to the lowest 

order irreducible kernel; i.e. the light cone ladder approximation. Furthermore, 

one can prove that higher Fock-state contributions in light-cone ladder approxi- 

mation in a renormalizable theory are negligible at large relative transverse mo- 

mentum momenta. In gauge theories this statement is true for physical gauges 
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for the vector fields, such as light-cone gauge. -Thus the covariant ladder ap- 

proximation is equivalent to light-cone ladder approximation at large $1. This 

equivalence eliminates any possibility of cusp-like (non-analytic) behavior of the 

distribution amplitude 4(z;, Q) or light-cone wavefunction of the type described 

by Karmanov.3 Since r$(z;, Q) satisfies the evolution equation which is derived 

by taking large cl limit of the light-cone projected Bethe-Salpeter equation, one 

can prove that +(zi, Q) is analytic (i.e. cusp free) in the whole xi region and can 

be expanded by Gegenbauer polynomials in two-body bound state problems.4 

The cusp behavior is induced by the artificial limit of taking the binding energy 

. I 

to zero. 

The initial problem to be examined in this paper is the behavior of the two- 

body bound-state wave function at large values of relative momentum. To this 

end we study first the properties of the corresponding valence-quark “distribution 

amplitudes” which control high-momentum transfer exclusive reactions4 The 

distribution amplitude 4(xi, Q) is the amplitude for finding the I@) Fock-state 

in the bound state collinear up to scale Q. Its variation with Q will be described 

by an evolution equation. We find the solution of the evolution equation and 

use it to reconstruct a detailed form of the wave function at short distances. 

Although we will deal here with a simple spinless model, the methods are valid 

independent of spin. The scalar models are also of interest to the extent that 

they give a first look at the nature of wave functions for relativistic, strongly 

bound system. We perform the analysis within the Wick-Cutkosky model and 

discuss two different cases with N = 4 and N = 6 dimensions. Working in 

4-dimensions, we obtain the bound-state wave function which asymptotically 

matches the simplest approximation to the light-cone wave function. The case of 
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6 dimensions is more interesting. Even though this case-is a nonphysical one, it 

has mathematical and graphical similarity with the more physical non-Abelian 

quark-gluon theories. In particular, it has a fundamental trilinear coupling, it is 

renormalizable, and furthermore it happens to be asymptotically free. Because of 

asymptotic freedom, the higher order kernels can be neglected at short distances. 

The asymptotic behavior of the bound state Bethe-Salpeter wave function in 

such theory has also been investigated by Appelquist and Poggio.5 In this paper 

the analysis is based on the light-cone approach and the resulting light-cone 

wave function exhibits calculable anomalous dimension corrections to a naive 

asymptotic behavior. 

The paper is organized as follows: In Section 2 we present the evolution 

equation for the distribution amphtudes within the Wick-Cutkosky model. In 

section 3 we solve this equation for the case of N = 4 dimensions and use this 

solution to reconstruct the behavior of the two-body bound-state wave function 

at short distances. The QCD-like case of N = 6 dimensions is discussed in Section 

5. The light-cone equation and its relation to the Bethe-Salpeter equation and 

the distinction between their respective ladder approximations are discussed in 

Appendices A and B. 
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2. The Evolution Eqtiatior. - - 

We shall consider the light-cone description of the relativistic composite sys- 

tem of two scalar particles interaction via the exchange of a massless scalar par- 

ticle ( Wick-Cutkosky model). “’ The interaction Lagrangian is l = g$‘x, where 

$J is a “quark” field with mass m, and x is a massless “gluon” field. The bound 

state wave function can be described by means of the Fock-space components of 

the state vector 1~) (see Appendix A). 

The light-cone equation for the two-body wave function in N dimensions 

reads (See A(6)) 

?+b(x;,&) = -J- 1 

51x2 M2 _ 
mx s2h) 

2122 

1 (2.1) 

where x;, yi are the fractions of the total P+ momentum of bound state carried 

by the i-th valence quark (x1 +x2 = 1, [dy] = dwdw~(l-yl -n)>, in, & are 

the N-2 dimensional perpendicular momenta, (dNe2ti] = h dNw2tl and 

M is the mass of the bound state. 

The asymptotic behavior of the coupling constant g2(Q) has the form 

g2 for N = 4 , 

s2(Q) = 
9: 

log(811113 forN=6 , 
(2.2) 

i.e. there is a “running coupling constant” for -the theory in 6. dimensions.5 

Restricting ourselves to the one-gluon-exchange only we obtain the light cone 
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ladder approximation (LCLA) to the kernel of Eq. (2.1); - - 

O(Yl - Xl) 1 
yl _ x1 

M2 _ m2z;k; (&;f,)’ m;tl 
+ (1 * 2) . 

The high-momentum transfer exclusive reactions are controlled by “distribution 

amplitudes” 4(x;, Q), which give the probability for finding the valence quarks in 

bound state with momentum fraction xi at relative perpendicular distance not 

smaller than bl - 0(1/Q), i.e. collinear up to scale Q 

IhI< 

4hQ) = / [ dN-2kl T+!J(“)(x~, iE,) . ] (2.4 

The variation of 4 with Q comes from the upper limit of the integration as well 

as from renormalization scale dependence of the wave function 

t&Q)(x;, Cl) = Z2(Q) +(Qo)(~~, j&j , 
22(Qo) 

P-5) 

due to vertex and self-energy insertions. For the N = 4 case d2kl = ndk: and 

for the N = 6 case d4kl = n2kidk:, so that the differentiation of Eq. (2.4) 

yields the 

Q2 aQ2 
d d(xi, Q) = Q2 a 1o;;(Q) dh Q) 

+ (Q~#N--2)/z ' 
2(2+-l 

$(Q)(xi,Q) , N =4 or 6. 

P-6) 

We compute now the $(Q) f rom one-gluon exchange LCLA kernel (2.3). The 

dominant behavior of the wave function for kl -+ 00 is obtained from (2.1)-(2.3) 

6 



- 
by neglecting m,.t, relative to k 1 in the kernel and integrating over e, 5 Q. 

One obtains then 

Q 

ti(Q)(=i, Q) = & s2(Q) - jjdy] V(=i,yi) / [dN-2b] rCl(g)(~,e,) 3 (2.7) 
0 

where the evolution kernel is given by 

Vh,Yi) = qy1 - Xl) ; + (lw 2) . (2.8) 

Substituting (2.7) into (2.6) and using (2.4) one obtains an evolution equation 

for 4(x;, 9) 

Q2 aQ2 
?m 4(xi, Q) = Q2 a 1o;;(Q) 46~ 9) 

+ (KQ~)(~-~)/~ - s2(Q) - ’ 
Q4 2(27r)N-1 / 

’ (dyj V(q, yi)+(yi, Q) . 

0 

(W 

The vertex and self-energy insertions combine to the following form 

z,(Q) 
1 

= 1 + ][dy] 7 [dN-2fl] - g2(e,) - & . 
( m2 ?nW~ 12 

> 

2 . (2.10) 
- 

0 Q -1 
Y2 Yl 

The dominant behavior for Q + oo is then given by 

Z2(Q) = 1-t 
I 

’ [&/I - ~1~2 - ((9) = 1+ f l(Q) s! ,WMQ) , 

0 

where 

(2.11) 

(2.12) 

In the following we find the most general solution of Eq. (2.9), which is next 
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used to.reconstruct the short-range behavior of the bound state wave function ti 

by means of Eq. (2.6). Th is is done separately for N = 4 and N = 6 case. 

3. The Case of N = 4 Dimensions 

For the case of N = 4 dimensions the evolution equation (2.9) upon substi- 

tution of (2.2) and (2.12) reads 

Q2 c3Q2 -%+i,Q) = -$ &g2 {; 4(xi, Q) - / [dY]V(xiv Yi)d(Yi, Q)} - 

The most general solution of this equation can be expressed-as a superposition 

of separable functions. The dependence on xi is then given in terms of Gegen- 

312 bauer polynomials cn in analogy to the true QCD solution;4 the functional 

dependence at large Q2, however, is quite different 

00 
d(xiv Q) = ~1~2 c 

312 an% ( 21 - 52) e +ln~B2$jr~~ , 
n=O 

where 

7n = +f - (n + l;(, + 2) 

To derive this result we used the orthogonality and 

Gegenbauer polynomials. 

(3.2) 

. (3.3) 

recurrence relations of the 

For very large Q2 the distribution amplitude (3.2) behaves like 

00 

d(xi,Q) -+ ~1x2 c 
312 an% ( Xl - x2) * 1+ L g2 

Q2 2(2:)3 - 7n + O(l/Q4) s(3.4) 
n=O 

Given the distribution amplitude 4(xi, Qo) at some momentum Qc, the coef- 

ficients an can be determinant by using the orthogonality relations of Gegenbauer 



polynomials _ - . 

ane 
+l~g2$j3~ _ 4(2n+3) ’ 

O - (n+2)(n+l) / 
[dx] G/2 (~1 - ~2) &(xi, Qo) 9 P-5) 

0 

thus determining the behavior of 4(x,Q) for any Q2 > Qi. Alternatively, we 

show below how the coefficients an can be directly related to the asymptotic 

behavior of the two-body bound-state wave function $(xi,kl) with kl = Q2. 

Using (3.2) as an input and solving Eq. (2.6) for $(xi, Q) we obtain with help of 

Eq. (2.5) 

I (xi, Q) = g2 . Z2(Qo) ?I?? 2 a, . ,$i2(x1 _ x2) 
WQ) Q4 n=O 

* (n+l;(n+ 2) e 
1n.g2.* & 

. (3.6) 
2 f.g2+3 $ 

00 
Xl =2 

=g e O - ~4 n=O anC3,/2 (Xi - 52) c 

-. 

As the model of the two-body light-cone wave function (without self energy and 

vertex corrections) we take the expression 

+(=A) - -i 1 

xix2 M2 _ mzl+-L)2 ’ P-7) 

This expression is the light-cone projection of the Bethe-Salpeter wave function 

found as the exact sohrtion’ to the ladder approximation Bethe-Salpeter equa- 

tion for the case of M2 = 0, (see Appendix B, especially Eq. (B.18)). Since in 
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_ - 
the limit Q2 -+ oo the light-cone projection of the M2 = 0 ladder Bethe-Salpeter 

equation and the LCLA coincide, we expect the form (3.7) to serve as an excellent 

approximation of the two-body LCLA wave function in the limit Q2 --) 00: 

ti(=,Q, - 2152 

Q4 (1+ $)’ ’ 
(3.8) 

Upon comparison of the Q + oo limit of (3.6) with (3.8) one may obtain at once 

an = 0 for n 2 1 , cl2 z-m 8(W3 2 , 71 

so that Eq. (3.6) reduces to 

$(Qo)(x, Q) O( ?!!?! e-2m2/Q2 . 
Q4 

(3.9) 

(3.10) 

The expression (3.9) constitutes the condition on the strength of the coupling 

constant required to produce the bound state mass M2 = 0. We note that 

in the nonrelativistic limit the LCLA kernel reduces to the Coulomb potential 

V(r) =--o/t in momentum space where LY z g2/167rm2. Thus the result (3.9) 

corresponds to cy = 47~. We note here that within the ladder Bethe-Salpeter 

equation the mass M2 of the ground state vanishes for cy = 27r.6 The reason 

for the factor of 2 discrepancy is due to the fact that we take the condition of g2 

at the next leading Q2 term while we take for the wavefunction only the leading 

Gegenbauer polynomial corresponding to the large Q2 behavior of the kemel.g 

Actually, one can prove that the Cutkosky condition CY = 27r is obtained from 

the light-cone ladder approximation at large zl limit. 
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4. The Case of N = 6 Dirtlensicms . - 

As we pointed out previously, the case of N = 6 dimensions exhibits mathe- 

matical similarity with the QCD problem. 

The evolution equation (2.9) takes now the form 

7r2 2 

Q2 ~QZ a 4(xi,Q) = -w log(&A2) 6 
{ ‘4(xi, Q) - / [dy] V(xi, Yi)4(Yi, Q)} 

(4.1) 

and the general solution of (4.1) can be written as 

0 c 312 -w:&js 
4(xi, Q) = 51x2 * an% ( Xl - , (4.2) 

n=O 

where the anomalous dimensions 7n are again given by (3.3). Note that 70 = 

-l/3, 71 = 0, 72 = l/12 and 7n < rn+r < l/6 so that the leading (n = 0) 

term in (4.2) grows as Q2 -+ 00, whereas in the true QCD model of pion all 

anomalous dimensions rn 2 0. However, this leading term does not contribute 

if we calculate the decay of our bound state into two spinless particles. Indeed, 

calculating the matrix element of the electromagnetic current controlling such a 

dew, Co1 Jp I > 7~ , we have to take into account the particular form of the coupling 

of the spin-zero boson to electromagnetic field, given by the vertex ie(p + p’)“. 

Therefore, 

(01 J’ 1~) - e / Idx](xl - x2)4(xi,Q) 9 P-3) 

where the index l(2) stands for positively (negatively) charged constituents. 

Therefore, only odd terms in (4.2) contribute and in the limit Q2 + 00 the 

leading contribution to (4.3) comes from n = 1 term. Since 71 = 0 this yields 

just the decay constant, in analogy to the QCD model of pion. 
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-__ 

Repeating the procedure used in the last chapter we find the twobody wave 

function 

&~J)(~~,Q) = g; Z2(Q) Xl =2 

zz(Qo) Q4 lw(Q2/A2) 

00 -7d y&s 
. 

Xl =2 

* Q4 hdQ2/A2) 

Again, the coefficients a n can be determined from the knowledge of the distri- 

bution amplitude at some momentum scale Qc, or upon comparison with the 

asymptotic form of the bound state wave function. More interestingly, one can 

easily see that the asymptotic form of the wavefunction (4.4), 

- g’.,2 

‘sD(x;, Q) 0: F 
-‘-‘si^;t;;;i, 

which is derived from the distribution amplitude d(xi, Q) is consistent with the 

asymptotic Bethe-Salpeter wavefunction up to logarithmic corrections.5 

- I 
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5. Summary - 

Working within the light-cone quantization scheme, we are able to obtain a 

deeper insight into a behavior of the two-body bound state wave function at short 

distances than was so far provided by alternative methods3’5 exploiting asymp- 

totic properties of the integral kernel itself. In particular we have exploited the 

relationship between exact solution to the evolution equation for the distribution 

amplitude and wavefunction equations to extract the large momentum behavior 

of the light cone and Bethe-Salpeter wavefunctions. Using these constraints we 

are led to convenient, analytic forms of the two-body wave function which can 

serve as a basis for a perturbation theory for higher particle-number states. Fi- 

nally, as discussed in Appendix B, we identify the differences in content between 

the ladder approximations for the Bethe-Salpeter and light-cone wavefunctions 

in terms of interaction retardation and higher Fock state components. 
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APPENDIX A- -. - - 

LIGHT-CONE BOUND-STATE EQUATION 

We shall consider the light-cone description of the relativistic composite sys- 

tem of two scalar particles interacting via exchange of a massless scalar particle 

(Wick-Cutkosky model). 5’6 The interaction Lagrangian is L: = g $2x, where $ 

is a “quark” field with mass m, and x is a massless “gluon” field. The bound 

state can be described by means of the Fock-space components of the state vector 

14. 

At any given light cone time 7 = t + z we can define a set of basis states 

IO> 

I!7B : rCi> = q+(kl)q+(k2)1°) (Al) 

lqm : &ii) = ~+(kl)~+(!cz)b+(~)lO) 
where q+, q4 and b+ are the Fourier transforms of the unrenormalized operators 

at time 7 of massive field $ and massless field x, respectively, and where & = 

(k’ = k” + k3, il)i is th e momentum of the i-th parton. Of course the elements, 

other than the vacuum (we ignore here the possibility of zero modes as would be 

characteristic of spontaneous symmetry breaking.), of this Fock-space basis are 

not eigenstates of the full Hamiltonian HLC = P- = P” - P3. However, they 

form a useful basis for studying the physical states of the theory. The bound 

system under consideration (a “pion”) is described by a state 

P2) 
9Q 9Qg 

Any bound state, such as Ilr) must be an eigenstate of the full Hamiltonian. 

Working in a frame where p = (P’,x,) and P- = M2/P+, the state 1~) 
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satisfies the equation -. 

(M2 - HLc)lr) = 0 . (A3) 

Projecting this onto various Fock-states (qql, (@g(, . . . results in infinite number 

of coupled integral equations 10,ll 

r h3 1 

where V is the interaction part of HLC. 

Parameterizing the individual momenta of both partons by 

e, = (xJ=+,&) , b = (x#+, &),kf = m$:’ 

bw 

(As) 

and taking into account only the 2- and 3-body sectors of the equation (A4) we ar- 

rive at the effective equation for the two-body wave function ((dy] E dyl dyz 6(1- 

Yl - Y2)) 

1 
1 2 

m2+ki ’ 2 - (2$-l / / 
WY1 dN-2.1 I 

ZlZ2 0 

- 1 fl(Yl - 51) 1 
M2 _ ma+k: _ m2y;L: _ (i..~~$)’ 

+ (1 4-b 2) $(Yl,e’,). 
vl - xl 

21 
(A6) 

which we call the light cone ladder approximation (LCLA). This equation is 
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symbolically depicted in Fig. 1. In the case of N = 4-dimensions it is useful 

’ to introduce the dimensionless coupling constant CY, defined by cy = g2/167rm2. 

At IGll, $~I < m, 1x1 - 521 < 1, (yr - yzl < 1 the kernel of Eq. (A.6) 

reduces to the Coulomb potential V(r) = --a/r in momentum space. At a: < 1 

we can parametrize M2 = 4m2 - 4mc, lcl = IM - 2ml < m and we have 

6 = ima2 , whereas the solution of (A2) reduces to nonrelativistic wave function 

of the ground state in the Coulomb potential. 

APPENDIX B 

RELATION TO THE BETHE-SALPETER EQUATION 

Let us consider the ladder approximation Bethe-Salpeter equation for the 

wave function of bound state in the Wick-Cutkosky mode1.6’7 in the case of 

N = 4 dimensions. 

(kf - m2)(kg - m2)+BS(ki) = -AT- 
(W4 / 

d411 d4t2 6(kl + k2 - t, - l,) 

w 

We denote P = kl + k2, P2 = M2, k = i(kl - kz), 1= i(fJr - &). The solution 

of (B.l) can be formally written as 

qBS(ki) = -i 1’ dz h(z, M2) ( 
k2 + fM2 - m2 + kPz + ie)3 w 

-1 

where the function h(z) satisfies the second-order differential equation ““with 

boundary condition h(f1) = 0. Parametrizing the individual momenta by 
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(P’ = 1) _ - 

k, = (dL, & = (a,-&) Xl +x2 = 1 

w 

e, = (YJL) 42 = (Yz,-el) Yl + Y2 = 1 

we rewrite (B.l) in the form 

* 2 
. 

2 .;“2”)’ / 
de, de, [dy]d2& * s(ey + e, - M2) 

We now define the light-cone projection of Bethe-Salpeter equation by 

$(dl) = J dk; dk, b(k, + k, - Mu) $BS (xi, ZL, kf) w 

Thus the light-cone projection of (B.4) gives 

1 

H 
k; - m2;k: + $) 

. I de, dl,(dy] d2t16(l, + Lj- - M2) 

VW 

1 
+Bs (Yi, el, 

( 21 - y1) [k; - e, - (z.l:;J2 + &] 

Again, we perform the dk,: integration closing thecontour of integration in the 

upper half-plane for yl < 51 and in the lower half plane for yl > z1 (see Ref. 
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- I _  - .  

1 2 ).T h e .i n te g ra l  v a n i s h e s  u n l e s s  0  <  5 1 , 5 2  <  1 , a n d  th e -re s u l t i s -- 

M 2  _  m 2 + k i  
2 1 2 2  

d .t, d .t, b (t, +  t, -  M 2 ) 

6 ( Y l  -  5 1 )  1  
Y l  -  a  M 2 -e ;-m ~ k ;-&# -~ ~  

y 1 - z 2  

( B 7 ) .; 

+  O ( Y 2  -  z 2 )  1  

Y 2  -x 2  M 2 ----  m 2 + k 2  
1  5 5 2  

&  _  (L -L )2  +  i c  
Y z - 2 2  Y 2 -2 2  

T h i s  e q u a ti o n  i n v o l v e s  th e  l i g h t-c o n e  w a v e  fu n c ti o n  o n  th e  l e ft-h a n d  s i d e , b u t th e  

B e th e - S a l p e te r w a v e  fu n c ti o n  o n  th e  ri g h t h a n d  s i d e . W e  n o w  u s e  th e  i d e n ti ty  

1  -2 + & q ; 
A  

w h i c h  i m p l i e s  

1  

M 2  -2 , _  -  m 2 + k : _  (~ L -< L )~  
2 1  y 1 -2 1  

1  =  
M 2  -  q . -  m 2 = T k : _  & & .I?  

1  
+  -  -  

M 2  _  G o  _  m 2 z T k : +  (k ;l ;> l ) l  

- 

w  

‘i i ) ( B 9 ) 

w h e re  !? i o  i s  a n  a rb i tra ry  c o n s ta n t. N o w  w e  c a n  c a rry  o u t th e  d e ; i n te g ra ti o n  

o v e r th e  fi rs t te rm  i n  (B.9 ). A n  i d e n ti c a l  tri c k  i s  a p p l i e d  to  th e  s e c o n d  te rm  i n  

k e rn e l  o f (B.7 ). 
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Choosing the fixed points to be _ - . 

we obtain from (B.7) 

t@;,ZJ = g2 -J- 1 
2 * (2743 Xl22 M2 _ ma+c / [dYl d2h / 

2122 

d(Yl - a) 1 

yl - q M2 _ m2+f: _ m2+k: 
Y2 Zl 

(ky:-_L;f)” 

- dYi,el) + 
t J 

de, qqe, + e, - M2) - 
( 

e, - “‘,: e t 
) 

1 

M2 _ e, - m2z;k; - (B 11) 
Neglecting the terms involving .lCIBS on the right hand side we immediately arrive 

at the LCLA, Eq. (A.6). 

To obtain an insight into the structure of the discarded higher sectors terms 

we could alternatively start from Eq. (B.4), iterate it one time and then project 

onto light-cone. Again, on the right hand side we would have terms involving 

tiBS, but some of them, with help of Eq. (B.6), could be reexpressed in terms of 

light-cone wave function. Then we would arrive at. the equation 

19 



d(Yl - Zl) 1 qz1 - Yl> 
yl - Xl ’ M2 _ m2+k: (gld~)~ _ mzf: zl - yl 

21 y1-21 

c52 - Y2) , 1 1 
+ 

z2 - y2 M2 _ m2+f: m2z;P:] } ylyz M2 - m ;f; _ (F;21$)2 

+ (terms involving qBS) . 
W ) 

This equation is depicted in Fig. 2. It is easy to recognize that in addition 

to the single gluon exchange we have now the diagrams corresponding to the 

exchange of two gluons at a given light-cone time. Likewise, the terms involving 

$BS in (B.12) correspond to three- and many-gluon exchange diagrams, as it can 

be easily demonstrated upon one more iteration of Eq. (B.4). Neglecting these 

terms we still have irreducible two-gluon exchange diagrams. Dropping also these 

terms (i.e. the second term in the curly bracket in Eq. (B.12)) we obtain the 

once-iterated LCLA. 

However, even taking into account the full right hand side of Eq. (B.12) (or, 
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equivalently, Eq. (B.ll)) we drastically differ from -what we would have obtained 

taking into account the higher Fock-space sector of Eq. (A.4). Although (B.ll) 

contains any number of exchanged bosons in the intermediate states, there are 

no diagrams where any two of exchanged boson lines cross each other. On the 

other hand, all such diagrams are automatically generated from Eq. (A.4), when 

we eliminate its higher sectors. 

It is interesting to note, however, that in the weak-binding limit the approxi- 

mate solutions of (B.11) and LCLA coincide.3 This can be easily demonstrated, 

if we project the Bethe-Salpeter function (B.2) onto light-cone. For weak-binding 

the spectral function can be approximated by* h(z, M2) = 1 - IzI and the light- 

cone projection of the Bethe-Salpeter wave function (B.2) is given by 

ti&(xi,z~) = -i/ dk- jldz (k2 _ ‘M2 ; --F; kPz + 43 ’ 

-1 4 
P 13) 

We rewrite the denominator as 

k2+$E2-m2+kPz= (k + ~Pz)~ - (m2 + aM2(z2 - 1)) 

= (k’)2 - C 

where 

k’ =k+;Pz, C = m2 + iMZ(r’ - 1) . 

Since dk- - dk’- the integration is straightforward 

/ 
dk- (k’+k/- -‘k: _ C)3 - -r i (k; : C)2 a(k’+) * 
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but I . - 

k 1-t = k+ + ;l’+z E ;(k: - k,+) + fz = $x1 - 22 + z) (~16) . 

and we arrive at 

&+i,~~) = -27r . j’d’ly + m2 $!&z2 _ lj)26(x1 - 22 + z) 
-1 4 

1 
= $871 

51x2 [ M2 - zlz2 t:+rn2] 2 (1 + 1x1 - 22 I) 

which coincides with the rough approximation to the solution of (A.6) found by 

K armanov . 

We mention here, that in another extreme case, when the mass of the bound 

system vanishes, the spectral function is also known and is given’ by h(z, M2) = 

l-z2. The light-cone projection of the Bethe-Salpeter wave function is then easily 

evaluated and takes the form 

- 
$&(x~,~~) = 87r 

1 

( m2+k: 1 
2 

371572 M2 - 21z2 
P 18) 
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FIGURE CAPTIONS -. - - 

1. The Light Cone Ladder Approximation (LCLA) for the bound state wave- 

function. 

2. The structure of the light-cone bound state equation (B.12). 
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