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and 
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1 SUMMARY AND INTRODUCTION 

Since the invention of the alternating gradient principle there has been a 
rapid evolution of the mathematics and physics techniques applicable to charged 
particle optics. In this publication we derive a differential equation and a matrix 
algebra formalism valid to second-order to present the basic principles governing 
the design of charged particle beam transport systems. A notation first intro- 
duced by John Streibl is used to convey the essential principles dictating the 
‘design of such beam transport systems. For example the momentum disper- 
sion, the momentum resolution, and all second-order aberrations are expressed 
as simple integrals of the first-order trajectories (matrix elements) and of the 
magnetic field parameters (multipole components) characterizing the system. 

These integrals (listed in Tables I, II, and III) provide direct physical insight 
into the design of beam transport systems. From them one obtains an intuitive 
grasp of the mechanism of second-order aberrations. For example, the effects of 
magnetic symmetry on the minimization or elimination of the aberrations is im- 
mediately apparent. In fact it is demonstrated that all second-order aberrations 
will vanish under appropriate symmetry conditions. 

It has also proved convenient to express the magnetic fields via a multipole 
expansion about a central trajectory. In this expansion, the constant term, pro- 
portional to the field strength at the central trajectory, is the dipole term. The 
term proportional to the first derivative of the field (with respect to transverse 
dimensions) is the quad.rupole term and the second derivative is the sextupole 
term, etc. 

At high energies, a considerable design simplification results if the dipole, 
quadrupole, and sextupole functions are physically separated such that cross 
product terms among them do not appear, and if the fringing field effects are 
small compared with the contributions of the multipole elements comprising the 
system. 

At the risk of oversimplification, the basic function of the multipole elements 
may be identified in the following way: 
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The purpose of the dipole elements is to bend the central trajectory of the 
system and to generate the first-order momentum dispersion. The quadrupole 
elements provide the first-order imaging. In addition to their fundamental pur- 
pose, dipoles and quadrupoles will also introduce higher-order aberrations. If 
these aberrations are second order, they may be eliminated or at least modified 
by the introduction of sextupole elements at appropriate locations. 

Dipoles introduce both second-order geometric and chromatic aberrations. 
Quadrupoles do not generate second-order geometric aberrations but they do 
have strong chromatic (energy dependent) aberrations. 

In regions of zero momentum dispersion, a sextupole will couple with and 
modify only geometric aberrations. However, in a region where dispersion is 
present, sextupoles will also couple with and modify chromatic aberrations. 

Quadrupole elements may be introduced in any one of three characteristic 
forms: (1) via an actual physical quadrupole consisting of four poles such that a 
first field derivative exists in the field expansion about the central trajectory; (2) 
via a r6tated input or output face of a bending magnet; or (3) via a transverse 
field gradient in the dipole elements of the system. Clearly any one of these 

. three fundamental mechanisms may be used as a means of achieving first-order 
imaging in a system. Dipole elements will tend to image in the radial bending 
plane independently of whether a transverse field derivative does or does not 
exist in the system, but imaging in the plane perpendicular to the plane of 
bend is not possible without the introduction of a first field derivative. Like 
the quadrupole element, a sextupole element may be generated in one of several 
ways; first by incorporating an actual sextupole, that is, a six-pole magnet, into 
the system. However, any mechanism that introduces a second-order derivative 
of the field with respect to transverse dimensions is, in effect, introducing a 
sextupole component. 

We have included in the report a discussion of linear (first-order) optics as 
it relates to beam transport systems and to the design of circular machines and 
to the relationship between the two. Also included is a discussion of the basic 
optical building blocks that are most often used in the design of such systems. In 
addition we have provided some applications of second-order optics to the design 
of chromatic corrections in beam transport systems and circular machines. 

It is our hope that the information supplied will provide readers with the 
necessary tools to design any beam transport system suited to their particular 
needs. 

For the study of details beyond second order, computer ray tracing programs 
or higher-order formalisms such as the Lie algebra techniques developed by Alex 
Dragt and his students should be explored by the reader. 

-- 
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2 A GENERAL FIRST- AND SECOND-ORDER 
THEORY OF BEAM TRANSPORT OPTICS 

The fundamental objective is to study the trajectories described by charged 
particles in a static magnetic field. To maintain the desired generality, only 
one major restriction is imposed on the field configuration: Relative to a plane 
that is designated as the magnetic midplane, the magnetic scalar potential 4 is 
an odd function in the transverse coordinate y (the direction perpendicular to 
the midplane), i.e. $(z, y, s) = -4(z, -y, s). This restriction greatly simplifies 
the calculations, and from experience in designing beam transport systems it 
appears that for most applications there is little, if any, advantage to be gained 
from a more complicated field pattern. The trajectories are described by means 
of a Taylor expansion about a particular trajectory (which lies entirely within 
the magnetic midplane) designated henceforth as the central trajectory. Re- 
ferring to Fig. 1, the coordinate s is the arc length measured along the central 
trajectory; and z, y, and s form a right-handed curvilinear coordinate system. 

Fig. 1. Curvilinear coordinate system used in the derivation of the equations of 
motion. 
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The results are valid for describing trajectories lying close to and making small 
angles with the central trajectory. 

The basic steps in formulating the solution to the problem are as follows: 

1) A general vector differential equation is derived describing the trajec- 
tory of a charged particle in an arbitrary static magnetic field which possesses 
midplane symmetry. 

2) A Taylor series solution about the central trajectory is then assumed; this 
is substituted into the general differential equation, and terms to second order 
in the initial conditions are retained. 

3) The first-order coefficients of the Taylor expansion (for monoenergetic 
rays) satisfy homogeneous second-order differential equations characteristic of 
simple harmonic oscillator theory; and the first-order dispersion and the second- 
order coefficients of the Taylor series satisfy second order differential equations 
having-driving terms. 

4) The first-order dispersion term and the second-order coefficients are then 
evaluated via a Green’s function integral containing the driving function of the 
particular coefficient being evaluated and the characteristic solutions of the ho- 
mogeneous equations. 

In other words, the basic mathematical solution of beam transport optics 
is similar to the theory of forced vibrations or to the theory of the classical 
harmonic oscillator with driving terms. 

It is useful to express the second-order results in terms of the first-order 
coefficients of the Taylor expansion. These first-order coefficients have a one to 
one correspondence with the following five characteristic first order trajectories 
(matrix elements) of the system. 

1) The unit sinelike function sz(s) in the plane of bend defined by s,(O) = 0 
and sk(O) = 1. See Fig. 2. 

2) The unit cosine-like function cz(s) in the plane of bend defined by c,(O) = 
1 and c i(O) = 0. See Fig. 3. 

3) The dispersion function d,(s) in the plane of bend defined by d,(O) = 0 
and d;,(O) = 0 and a momentum p such that (p - po)/po = 1. See Fig. 4. 

4) The unit sinelike function sY(s) in the nonbend plane defined by ~~(0) = 0 
and s;(O) = 1. See Fig. 5. 

5) The unit cosinelike function cr,(s) in the nonbend plane defined by cy (0) = 
1 and c;(O) = 0. See Fig. 6. 
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Fig. 2. Sinelike function s=(s) in the magnetic m idplane. 
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Fig. 3. Cosinelike function c%(s) in the magnetic m idplane. 
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Fig. 4. Dispersion function d,(s) in the magnetic midplane. 

~L.l...l syw l yc, 6 
PO 

- PO L -s yo=O’ 
5- 84 r- 4809A6 

Fig. 5. Sinelike function sy(s) in the nonbend plane. 
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Fig. 6. Cosinelike function c,,(s) in the nonbend plane. 

. In the first-order Taylor expansion for the transverse position of an arbitrary 
trajectory at position s in terms of its initial conditions, the above five quantities 
are the coefficients appearing in the expansion for the transverse coordinates z 
and y as follows : 

and 

x(s) = cz(s)xo + s,(s)xb + k(s)6 

Y(S) = Cv(S)YO + Sy(S)Y ‘0 

where xc and yc are the initial transverse coordinates and x ‘0 and y b are the 
initial slopes of the arbitrary ray with respect to the central trajectory. 
6 = Ap/po = (p - po)/po is the fractional momentum deviation of the ray from 
that of the central trajectory. 

2.1 THE VECTOR DIFFERENTIAL EQUATION OF MOTION 

We begin with the usual vector relativistic equation of motion for a charged 
particle in a static magnetic field, equating the time rate of change of momentum 
to the Lorentz force: 

fi = e(V x B) 

and immediately transform this equation to one in which time has been elimi- 
nated and we are left with only spatial coordinates. The curvilinear coordinate 
system used is shown in Fig. 1. Note that the variable s is the arc distance 
measured along the central trajectory. With a little algebra, the equation of 
motion is readily transformed to the following vector forms: 
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Let e be the charge of the particle, V its velocity, V its speed, p its momen- 
tum magnitude, T its position vector and 2’ its distance to the origin. The unit 
tangent vector of the trajectory is dT/dT. Thus the velocity and momentum of 
the particle are, respectively, (dT/dT)V and (dT/dT)p. The vector equation of 
motion then becomes: 

V$($p) =eV(sxB) 

or 

p$+g(g)=e($xB) 

where B is the magnetic induction. Then, since the derivative of a unit vector 
is perpendicular to the unit vector, d2T/dT2 is perpendicular to dT/dT. It 
follows that dp/dT = 0; that is, p is a constant of the motion as expected from 
the fact that the magnetic force is always perpendicular to the velocity in a 
static magnetic field. The final result is 

$=;(gxB). 

2.2 THE COORDINATE SYSTEM 

(2.1) 

The general right-handed curvilinear coordinate system (x, y, s) used is illus- 
trated in Fig. 1. A point 0 on the central trajectory is designated as the origin. 
The direction of motion of particles on the central trajectory is designated as 
the positive direction of the coordinate s. A point A on the central trajectory 
is specified by the arc length s measured along that curve from the origin 0 to 
point A. The two sides of the magnetic symmetry plane are designated the pos- 
itive and negative sides by the sign of the coordinate y. To specify an arbitrary 
point B which lies in the symmetry plane, construct a line segment from that 
point to the central trajectory (which also lies in the symmetry plane) intersect- 
ing the latter perpendicularly at A; the point A provides one coordinate s; the 
second coordinate x is the length of the line segment BA, combined with a sign, 
(+) or (-) according as .&r observer, on the positive side of the symmetry plane 
and facing in the positive direction of the central trajectory, finds the point on 
the left or right side. In other words, x, y, and s form a right-handed curvilinear 
coordinate system. To specify a point C which lies off the symmetry plane, 
we construct a line segment from the point to the plane, intersecting the latter 
perpendicularly at B; then B provides the two coordinates s and x; the third 
coordinate y is the length of the line segment CB. 

We now define three mutually perpendicular unit vectors (S,Q,e). B is 
tangent to the central trajectory and directed in the positive s direction at the 
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point A corresponding to the coordinate s; 2 is perpendicular to the principal 
trajectory at the same point, parallel to the symmetry plane, and directed in the 
positive z direction. fi is perpendicular to the symmetry plane, and directed 
away from that plane on its positive side. The unit vectors (2, fi, 3) constitute a 
right-handed system and satisfy the relations 

The coordinate s is the primary independent variable, and we shall use the 
prime to indicate the operation d/ds. The unit vectors depend only on the 
coordinate s, and, from differential vector calculus, we may write 

f’=hi, 
$‘=O, 
$=-h& (2.3) 

where h(s) = l/p0 is the curvature of the central trajectory at point A defined 
as positive, as shown in Fig. 1. 

The equation of motion may now be rewritten in terms of the curvilinear 
coordinates defined above. To facilitate this, it is conveninent to express dT/dT 
and d2T/dT2 in the following forms: 

dT (dT/ds) T’ 
dT = (dT/ds) = T’ ’ 

or 
,2 d2T 

T @= T”-- ; $ $ (Tf2). 

The equation of motionnow takes the form 

T”- - ; $ $ (Tt2) = e T’(T’ x B) . 
P (2.4 

In this coordinate system, the differential line element is given by 

dT = Sdx + fidy + (1 + hx)iids 

and 

-- 
(dT)2 = dT - dT = dx2 + dy2 + (1 + hx)2ds2 . 
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Differentiating these equations with respect to 8, it follows that 

P=z’2+y’2+(1+hz)2, 

; $(T’2) = s’s”+y’y”+(l+hz)(hz’+h’z), 

T’=fs’+yy’+(l+hz)G, 

Using the differential vector relations of Eq. (2.3)) the expression for T ” reduces 
to 

T” = 2(x” -h(l+hz))+yy”+P(2hs’+h’s). 

The vector equation may now be separated into its component parts with the 
result 

?{(x” - h(1+ hx)) - $ (,‘z”+y’y”+(l+hs)(hz’+h’z))} 

+ P((2hx’ + h’x) - yxJ (x’x” + y’y” + (1+ hz)(hz’ + h’z))} 

= ;T’(T’ x B) 

= ;T ‘{?(y ‘B, - (1+ hx)B,) + 5((1+ hz)B, - Z’BJ 

+ P(x’By - y’B,)} . (2.5) 

Note that in this form, no approximations have been made; the equation 
of motion (2.5) is still valid to all orders in the variables x and y and their 
derivatives. 

If now we retain only terms through second order in x and y and their 
derivatives and note that T I2 = 1 + 2hx + . . a, then the x and y components of 
the equation of motion become 

x ” - h(l + hx) - x’(hx’ + h’x) = %T’(y 93. - (I + hx)B,) , 

y” - y’(hx’ + h’x) = ;T’((I + hx)B, - x1&,) . P-6) 
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The equation of motion of the central orbit is readily obtained by setting x 
and y and their derivatives equal to zero. We thus obtain 

h= = wB,(O, 0,s) or Bpo = $ . (2.7) 

This result will be useful for simplifying the final equations of motion. po is 
the momentum of a particle on the central trajectory. Note that this equation 
establishes the sign convention between h,e and B,. 

2.3 EXPANDED FORM OF A MAGNETIC FIELD HAVING MEDIAN PLANE 
SYMMETRY 

We now evolve the field components of a static magnetic field possessing 
median or midplane symmetry. See Fig. 7. We define midplane symmetry as 
follows. Relative to the plane containing the central trajectory, the magnetic 
potential 4 is an odd function in y : i.e. 4(z, y, s) = -4(x, -y, s). Stated in 
terms of the magnetic field components B,, B,, and B, this is equivalent to 

Bz(x, Y, 8) = - Bz(x, -Y, s) , 

B&,Y,s) =B&,-w) , 

B&,Y,s) = - &(x,-y,s) . 

S 

5-84 DIPOLE QUADRUPOLE SEXTUPOLE 748AlO 

Fig. 7. Illustration of the magnetic midplane for dipole, quadrupole, and sex- 
tupole elements. 
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It follows immediately that on the midplane B, = B, = 0 and only By remains 
nonzero; in other words, on the midplane B is always normal to the plane. As 
such, any trajectory initially lying in the midplane will remain in the midplane 
throughout the system. 

The expanded form of a magnetic field with median plane symmetry has 
been worked out by many people; one of the most convenient and comprehensible 
references is provided by Teng. l6 

For a magnetic field in vacuum, the field may be expressed in terms of a 
scalar potential 4 by B = VCJ~.‘~ The scalar potential will be expanded in the 
curvilinear coordinates about the central trajectory lying in the median plane 
y = 0. The curvilinear coordinates have been defined in Fig. 1, where x is the 
outward normal distance in the median plane away from the central trajectory, 
y is the perpendicular distance from the median plane, s is the distance along 
the central trajectory, and h = h(s) is the curvature of the central trajectory. 
As previously stated, these coordinates (x, y, s) form a right-handed orthogonal 
curvilinear coordinate system. 

As has been stated, the existence of the median plane requires that C$ be 
. an odd function of y, i.e. 4(x, y, s) = -4(x, -y, s). The most general expanded 
form of C$ may be expressed as follows: 

+(x,y,s) =(A10 + &lx+ 42(x2/2!)+ &3(x3/3!)+ -)Y 

+ (A30 + A31x + A32(X2/2!) + -)y3/3! + -*- 

= 2 2 Azm+1,n5 (;;;;), 
m=O n=O 

. . 
(2.8) 

where the coefficients Az~+~,~ are functions of s. 

The differential line element dT of the coordinate system is 

dT2 = c-lx2 + dy2 + (1 + hx)2(ds)2 cw 

and the Laplace equation has the form 

v24 = (1 :hz)& ((I+ hx)g) + $ + w 
(l:hx)& (l:hz)if% ( ) =" 

(2.10) 

Substitution of Eq. (2.8) into Eq. (2.10) g ives the following recursion formula 

111 For convenience, we omit the minus sign since we are restricting the problem 
to static magnetic fields. 
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for the coefficients: 

-hm+3,n =A ‘h+l,n + nhA ‘bm+l,n-1 - &‘A h+l,n-I + A2m+l,n+2 

+ (3n + 1)hA 2m+l,n+l+ n(3n - l)h2A2m+l,n 

+ n(n - l)2h3A2m+l,n-l 

+ 3nhA2,+3, n-1 + 3n(n - l)h2A2m+3,n-2 

+ n(n - l>(n - 2)h3Azm+3,n-3 (2.11) 

where prime means d/ds, and where it is understood that all coefficients A with 
one or more negative subscripts are zero. This recursion formula expresses all 
the coefficients in terms of the midplane field By(x, 0, s) via the coefficients Al,n: 

PB, 
Al,, = - ( > aXn r=O = functions of 8 . 

r=o 
(2.12) 

Since 4 is an odd function of y, on the median plane we have B, = B, = 0. The 
normal (in x direction) derivatives of B, on the reference curve defines B, over 
the entire median plane, hence the magnetic field B over the whole space. The 
components of the field are expressed in terms of r$ explicitly by B = 04 or 

By = z = 2 eA2rn+l,ns& 3 
m=O n=O 

. . 

ad’ 
Ba = (1 :hz) if% = (1 +lhx) g $ Abm+lfn$ (~~~~)l 3 (2’13) 

m-0 n-0 
. 

where Bs is not expressed in pure expansion form. This form can be obtained 
in a straightforward way by expanding l/(1 + hx) in a power series of hx and 
multiplying out the two series; however, there does not seem to be any advantage 
gained over the form given in Eq. (2.13). 

The coefficients up to sixth-degree terms in x and y are given explicitly below 
as derived from Eq. (2.11). 
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A30 = - A ‘10 - Al2 - hAll , 

A31 =- AQ + 2hA’io + h’A ‘lo - Al3 - hAla + h2All , 

A32 = - A ‘12 + 4hAQ + 2h’A’11 - 6h2A’io - 6hh’A ‘lo - Al4 

- hA13 + 2h2A12 - 2h3All , 

A33 = - A '13 + 6hA’i2 + 3h’A i2 - 18h2A’t1 - 18hh’A il 

-I- 24 h3A ‘lo + 36h2 h ‘A 'lo - A15 - hAl4 + 3h2A13 

- 6h3A12 + 6h4All , 

Asa =A “‘,,, + 2A ‘I2 - 2hA ‘il + h”All + 4h2A ‘lo + 5hh ‘A lo 

+ A14 + 2hA13 - h2A12 + h3All , 

A51 =A “‘il - 4hA “‘i. - 6h ‘A “‘lo - 4h “A ‘i. - h “‘A ‘lo + 2A ‘i3 

- 6hA’12 - 2h’A’n + h”A12 + 10h2A”i1 + 7hh’& - 4hh”A11 

- 3hf2All - 16h3A’io - 29h2h’A’lo + Al5 + 2hA14 

- 3h2A13 + 3h3A12 - 3h4All . (2.14) 

In the special case when the field has cylindrical symmetry about 6, we 
can choose a circle with radius po = l/h constant for the reference curve. The 
coefficients Asm+l,n in Eq. (2.8) and the curvature h of the reference curve are 
then all independent of s. Equations (2.14) are greatly simplified by putting all 
terms with primed quantities equal to zero. 

2.4 FIELD EXPANSION TO SECOND ORDER ONLY 

If the field expansion is terminated with second-order terms, the results 
may be considerably simplified. For this case, the scalar potential t$ and the 
field B = VCJS become 

$(x,Y,s)= (Alo+Alix+~Alzx2+...)y+(A30+...)~+... , . . 

PBy 
Al,, = - axn ;:I 

= functions of s only , 
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and 

A30 = -(A’\,-, + h&l + 4412) 

where prime means the total derivative with respect to s. Then B = 04 gives 

B&,Y,s) =% = Ally + A12xy + . . . , 

B&,Y,s) =dy - - Al0 + Alp + $412x2 + $430~~ + * - * , 
. . 

a4 
WX,Y,S) =(I ;hx)z = (l:h )(&oY+A’MY+-). x (2.15) 

By inspection it is evident .that B,, B, and Bg, are all expressed in terms of 
Alo, All, and A12 and their derivatives with respect to s. Consider then B, on 
the midplane only: 

By(x,O,s) = Alo + AIIX+ ;A12x2 + - - - 
. 

dipole quadrupole sextupole etc. 

3% = By r=O + - 
1 a2BY 

ax ;z; 
x-l-- - 

2! ax2 ;zfj 
x2$- . 

y=o 
(2.16) 

The successive derivatives identify the terms as being dipole, quadrupole, 
sextupole, octupole, etc., in the expansion of the field. To eliminate the necessity 
of continually writing these derivatives, it is useful to express the midplane field 
in terms of dimensionless quantities n(s), p(s), etc., or 

By(x,O,s) = By(O,O,s)(l - nhx +ph2x2 + yh3x3 + s-m) (2.17) 

where, as before, h(s) = l/pa, and n, p and 7 are functions of s. Direct com- 
parison of Eqs. (2.16) and (2.17) yields 

n = -[&(z)];,, and p = r,!;,, ($91 7; ’ (2’18) = 
We now make use of Eq. (2.7), the equation of motion of the central trajectory: 

B,(O,o,s) = h(F) . 

Combining Eqs. (2.7) and (2.18), the coefficients of the field expansions become 

40 =B,(O,O,s) = h(F) , 
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(3% All =- ax =; = 

$412 =$t&zo = ph”(F) , . . y=o 

~~~ = - (h ” - nh3 + 2Ph3) (F) 3 

PO Aio=h’ e , ( > 
Ail=-(2nhh’+n’h2)($). (2.19) 

To second order the expansions for the magnetic field components may now 
be expressed in the form 

Bz(x,y,s) =(F)(-nh2y+2ph3xy+...) , 

By(x, y, s) =(F) (h - nh2x + ph3x2 

-k(h”-nh3+2@h3)y2+**.), 

B&,Y,s) =(F)( h’y- (n’h2+2nhh’+hh’)xy+...) , (2.20) 

where po is the momentum of the central trajectory. 

2.5 EXPANSION OF THE MAGNETIC FIELD AS A FUNCTION OF 
MULTIPOLE COMPONENTS 

The magnetic field on the midplane may also be expressed as follows: 

By(x,O,s) = BpeKn(s)x” (2.21) 
n=o 

where Bp = B/h = pole is the magnetic rigidity of a particle of momentum po 
and charge e along the central trajectory. From Eq. (2.21) it follows that 

Kn(s) = (&J ($, (2),=,=, (2.22) 
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and 
L 

Sn = 
/ 

Kn(S)dS (2.23) 
0 

where Sn is the integrated strength of an nth order multipole component of 
length L. 

2.5.1 Multipole Strengths for Pure Multipole Fields 

Consider the scalar potential of an nth-order (2(n + 1)pole) pure multipole 
element: 

Bgr”+l 
4 = (n + l)an sin(n + l>e (2.24) 

where 

x = rcose and y = rsin6 . 

Bo is the field at the pole and a is the radial distance to the pole from the central 
‘trajectory. 

Expanding 4 as a function of x and y and differentiating, we have 

B =z=z(x”+...) Y 

from which 

and 

Kn = ($)(j$) 

sn = (g)(g) 

where L is the length of the multipole element. It2 

For a dipole (n = 0), the dipole strength is 

where (Y is the angle of bend of the central trajectory. 

(2.25) 

(2.26) 

g2 Note that in most European publications the monomial Kn(s)xn in Eq. 
(2.21) would be replaced by -Kn(s)9/ n!, which would result in a change 
of sign and the introduction of the factor n! in the definition of K, in Eq. 
(2.25) and Sn in Eq. (2.26). 

20 



I 
: 

For a quadrupole (n = 1), 

s1= (+)(g-) ; 

for a sextupole (n = 2)) 

s2 = ($)(g-) ; 

and so on for higher-order multipoles. 

2.5.2 Multipole Strengths for a Non-Uniform Field Expansion 

Consider the midplane field expansion of a non-uniform field: 

&,(x,O,s) =B,(O,O,s)(l - nhx + p(hx)2 + 7(hx)3 + . . .) 

=Bp(h - nh2x + ph3x2 + 7h4x3 + ***) 

=Bp 2 Kn(s)xn . 
n=O 

(2.27) 

The multipole strength factors are 

Ko=h, K1 = -nh2 , K2 =ph3, . . . . 

The integrated strengths Sn are 

So = hL = cr , S1 = -nh2L, S, = ,0h3L , . . . . 

2.5.3 Multipole Strengths for a Contoured Entrance or Exit Boundary of 
a Dipole 

A third method of introducing multipole components is via a curved entrance 
or exit boundary of a dipole magnet. To calculate the multipole strengths in 
this case, we integrate Eq. (2.21), holding x constant. The shape of the exit (or 
entrance) pole face is introduced by letting the limit of integration L(x) vary 
with x. Thus we have the following relation: 

Lb) L(z) 
/ B,(X,O,S)dS = BpCxn / Kn(s)ds = BpCSnxn . 
0 0 

(2.28) 
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We assume B, to be a constant inside the effective field boundary and zero 
outside (the finite extent of the fringe field is ignored). In this sharp-cutoff 
approximation, the field boundary L(x) is given by 

Lb) 
L(x) = $ / Sl S2 2 

tl 
By(x,O,s)ds = hx+ 7E-x + --- 

0 

(2.29) 

where h = l/p. 

The slope of the boundary at x = 0 is &/h. If we denote the boundary angle 
by p, the slope is also - tanp. The m inus sign defines the positive orientation 
of the angle. Thus we have 

S1 = -htanp . 

A  positive p implies radial (x-plane) defocusing and transverse (y-plane) focus- 
ing. - 

The boundary defining a sextupole component is parabolic. It is convenient 
‘(from  a construction point of view) to relate the sextupole strength to the radius 
of curvature R of the parabola at x = 0: 

252 
+ = (1 +;':2)3,2 = - hsec3/3 

or 
s 

2 
= hf=c3P 

-5x--' 

From Eq. (2.28) we conclude that a positive multipole component of the field 
increases the value s Bds as x increases. Thus a positive sextupole is represented 
by a concave surface at the boundary. Figure 8 shows the sign conventions used 
in the TRANSPORT program  for p and R. 

-- 
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A R2 

2 

P ’ =- 
o h 

748815 

Fig. 8. Field boundaries for bending magnets. The quantities illustrated in 
the figure have a positive sign when using the convention of the TRANSPORT 
program. 

2.6 THE EQUATIONS OF MOTION IN THEIR FINAL FORM TO SECOND 
ORDER 

Having derived the expressions (2.20), we are now in a position to substitute 
them into the general second-order equations of motion (2.6). We find for x 

x”-h(l+ hx) - x’(hx’+ h’x) 

=($)T’{(l+hx)[-h+nh2x-ph3x2+i(h”-nh3+2ph3)y2] 

+ h’yy’+... > 
and for y 

y”-y’(hx’ + h’x) 

- (1 + hx)(nh’y - 2ph3xy) + s-s) . 

Note that we have eliminated the charge of the particle e in the equations of 
motion. This has resulted from the use of Eq. (2.7), which is the equation of 
motion of the central trajectory. 
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Inser t ing  a  second -o rde r  e x p a n s i o n  fo r  

a n d  let t ing 

w e  fina l ly  exp ress  th e  
lows:  

T’ =  d  x l2  +  y 1 2  +  (l+  hx )2  

P O  P O  - = 1 - & p + - * (2 .30)  
P  P o ( 1  +  6 )  

di f ferent ia l  e q u a tio n s  fo r  x  a n d  y to  s e c o n d  o rde r  as  fo l -  

x” +  (1  - n )h2x  = h 6 .+  (2n  - 1  - p ) h 3 x 2  +  h ’xx’ +  ihxt2 

+  (2  - n ) h 2 x 6  +  i (h” - n h 3  +  2 p h 3 ) y 2  

+  h ’yy’- 2  !hy  I2  - h & j 2  +  h ighe r -o rde r  te rms  , 

y” +  n h 2 y  = 2 ( @ ’ - n )h3xy  +  h ’xy’ - h ’x’y +  hx’y’ +  n h 2 y 6  

+  h ighe r -o rde r  te rms  . (2 .31)  

F r o m  E q s . (2 .31)  th e  fami l ia r  e q u a tio n s  o f m o tio n  fo r  th e  f i rst-order te rms  
m a y  b e  extracted:  

x”+ ( l - n )h2x=h6  a n d  y”+ n h 2 y = 0 . (2 .32)  

S u b s titu tin g  K l =  - n h 2  in to E q s . (2.31),  th e  e q u a tio n s  o f m o tio n  fo r  a  p u r e  
q u a d r u p o l e  fie l d  resul t  by  tak ing  th e  lim it h  --) 0 , h ’ -+  0 , a n d  h ” +  0 . They  
a re  

x” +  K lx = K 1 x 6  , 

Y ” - K ly =  - K IY ~  9  

w h e r e  

K 1 =  ($)(+ J  =  (~ )(+ --) . (2 .33)  

S imi lar ly,  to  fin d  th e  e q u a tio n s  o f m o tio n  fo r  a  p u r e  sex tupo le  fie ld,  w e  subst i tute 
-- K 2  =  p h 3  in to E q s . (2 .31)  a n d  ta k e  th e  lim it h  ---) 0 , h ’ 3  0 , a n d  h ” +  0 . T h e  
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equations are 

x”+K2(x2-y2) co, 

where 

Y” - 2K2xy =o , 

K2 = ($,($) = ($)(&) - (2.34) 

2.7 THE DESCRIPTION OF THE TRAJECTORIES AND THE 
COEFFICIENTS OF THE TAYLOR EXPANSION 

The deviation of an arbitrary trajectory from the central trajectory is de- 
scribed by expressing x and y as functions of s. The expressions will also contain 
x0, yc, xb, yb, and 6, where the subscript 0 indicates that the quantity is evalu- 
ated at s = 0; these five initial values will have the value 0 for the central trajec- 
tory itself. The procedure for expressing x and y as a fivefold Taylor expansion 
will be considered in a general way using these initial values, and detailed for- 
.mulas are given for the calculations of the coefficients through quadratic terms. 
The expansions are written 

Y = ~(Ylx;Y;x bPy bYGX)x~y~x ‘o’“y b”cv . (2.35) 

Here, the parentheses are symbols for the Taylor coefficients; the first part 
of the symbol identifies the coordinate represented by the expansion, and the 
second indicates the term in question. These coefficients are functions of s to 
be determined. The C indicates summation over zero and all positive integer 
values of the exponents R, A, ~1, u, x, however, the detailed calculations will 
involve only the terms up to the second power. The constant term is zero, and 
the first-order terms that would indicate a coupling between the coordinates x 
and y are also zero; this results from the midplane symmetry. Thus we have 

(41) =(yll) = 0 , 

(XIYO) =(ylxo) = 0 , 

(XlY b) =(ylx’o) = 0 . (2.36) 

Here, the first line is a consequence of choosing xc = yo = 0, while the second and 
third lines follow directly from considerations of symmetry, or, more formally, 
from the formulas at the end of this section. 
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As mentioned in the introduction, it is convenient to introduce the following 
abbreviations for the first-order Taylor coefficients: 

(x1x0) = G(S) , (XIX b) ‘h(S) , (xl@ = h(s) , 

(YIYO) = c&d , (YIY b) =sy(s) * (2.37) 

Retaining terms to second order and using Eqs. (2.36) and (2.37)) the Taylor 
expansions of Eqs. (2.35) reduce to the following terms: 

sz 4 
x= &x0 +mxb +f$ja 

+w34 +(+0x b)xox b +(+oqxoJ 
+(xlxb2)x b2 +(x1x @)x bS +(xp2)b2 

-t(4Y,2)Yo2 +(xlYoY ‘0)YoY b +(“lY b2)Y b2 

and 
(2.38) 

‘3 % 

Y = GJYO +GJyi, 
+(YIxoYo)xoYo +(YlxoY b)XoY ‘0 +(YlxbYo)xbYo 

+(Ylx’oY b)XbY ‘0 +(Y IYo4YoJ +(YlY td)Y b6 * 

Substituting these expansions into Eqs. (2.31), we derive a differential equa- 
tion for each of the first and second order coefficients contained in the Taylor 
expansions for x and y. When this is done a systematic pattern evolves, namely 

cz” + k;c, = 0 , cy” + k;c, = 0 , 

sz” + k;s, = 0 , sy” + k;s, = 0 , 

qz” + &z = fi , qy” + k,2q, = fy 9 (2.39) 

where kz = (l- n)h2 and ki = nh2 for the x and y motions, respectively. The 
first two of these equations represent the equations of motion for the first-order 
monoenergetic terms sz, cz, sY, and cy. That there are two solutions, c and s, is 
a manifestation of the fact that the differential equation is second order; hence 
the two solutions differ only by the initial conditions of the characteristic s and 
c functions. The third differential equation for q is a type form which represents 
the solution for the first-order dispersion d, and for any one of the coefficients 
of the second-order aberrations in the system where the driving function j for 
each aberration is obtained from the substitution of the Taylor expansions of 
Eqs. (2.38) into the general differential Eqs. (2.31). 
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The coefficients satisfy the boundary conditions: 

c(0) = 1 , c'(0) = 0 , 

s(0) = 0 , s ‘(0) = 1 , 

d(0) = 0 , d’(0) = 0 , 

q(o) = 0 , q ‘(0) = 0 . (2.40) 

The driving term j is a polynomial, characteristic of the particular q whose 
terms are coefficients of order less than that of q, and their derivatives. The 
coefficients in these polynomials are themselves polynomials in h, h’, . . . , with 
coefficients that are linear functions of n, /3, . . . . For example, for q = (xix:), 

we have 

j= (2n-l-/?)h3ci+htzc;+$hc;2. (2.41) 

. In Table I-are listed the j functions for the remaining linear coefficient, the 
momentum dispersion d,(s) and all of the nonzero quadratic coefficients, shown 
in Eqs. (2.38), which represent the second-order aberrations of a system. 

The coefficients c and s (with identical subscripts) satisfy the same differ- 
ential equation, which has the form of the homogeneous equation of a harmonic 
oscillator. Here, the stiffness k2 is a function of s and may be of either sign. In 
view of their boundary conditions, it is natural to consider c and s as the analogs 
of the two fundamental solutions of a simple harmonic oscillator, namely cos ws 
and (sin ws)/w. The function q is the response of the hypothetical oscillator 
when, starting at equilibrium and at rest, it is subjected to a driving force j. 

The stiffness parameters ki and kl represent the converging powers of the 
field for the two respective coordinates. It is possible for either to be negative, 
in which case it actually represents a diverging effect. Addition of k% and ki 
yields 

k; + k; = h2 . (2.42) 

For a specific magnitude of h (within one dipole magnet), ki and ki may be 
varied by adjusting n, but the total converging power is unchanged; any increase 
in one converging power is at the expense of the other. The total converging 
power is positive. 

A special case of interest is provided by the uniform field; here h = const 
and n = 0; then ki = h2 and ki = 0. Thus, there is a converging effect for 
x resulting in the familiar semicircular focusing, which is accompanied by no 
convergence or divergence in y. 
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Table I. The Driving Terms for the Coefficients 

h 

+ (2n - 1 - /T)h%: +h’c,c ‘z ++hc L2 

+2(2n - 1 - /T)h%,a, +h’(c,a’,+c’,a,) +hc;a; 

(2 - n)h2c, +2(2n- 1- B)h3czdz +h’(c,dI, + c&d,) +hc’,d:, 

(2n - 1 - /3)h”az +h ‘aza ‘z ++ha ‘22 

(2 - n)h2az +2(2n - 1 - jI)h3a,d, +h’(a,d’z + a’&,) +ha ‘Zd; 

-h + (2 - n)h2d, +(2n - 1 - p)h3d2, i-h’d,d’, +$hdL2 

;(h” - nh3 + 2/3h3)c; +h’c,c’, -$hcb2 

(h” - nh3 + 2fih3)c,a, +h’(c,a b + c bay) -hc ;a; 

;(h” - nh3 + 2/3h3)a; +h’aya; -‘ha’ 2 
2 Y 

2(/3 - n)h3c,c, +h’(c,c’, -c&) +hc:cI, 

2(8 - n)h3c,a, +h ‘(c23 ; - c’zal/) +hc’,a’, 

2(/3 - n)h3a,c, +h’(a,c ‘ac - a ‘zcy) +ha I,C 6/ 

2(/3 - n)h3a,a, +h’(a,a’, -a&au) +ha:a; 

nh2c, +2(/3 - n)h3c,d, -h’(c,d’, - cbd,) +hc’,d’, 

nh2a, +2(8 - n)h3a,,d, -h’(a,d ‘z - a ‘,d,) +ha bd ‘z 

& = (46) 
(44) 
(+0x b) 
(44 
(+02) 
(+ b6) 
(46’) 
(4Y3 

(4YoY b) 
(4Y ‘02) 

(ilXoY0) 

(YIXOY b) 

(YWOYO) 

(YIX’OY b) 

(Y IYd 

(YlY’o4 

Another important special case is given by n = l/2; here, kz = ki = h2/2. 
Thus, both coordinates experience an identical positive convergence, and c, = cy 
and s, = sv; that is, in the linear approximation, the two coordinates behave 
identically, and if the trajectory continues through a sufficiently extended field, 
a double focus is produced. 

The method of solution of the equations for c and s will not be discussed 
here, since they are standard differential equations. The most suitable approach 
to the problem must be determined in each case. In many cases it will be 
a satisfactory approximation to consider h and n, and therefore k2 also, as 
piecewise constant. Thus, c and s are represented in each interval by a sinusoidal 
function, a hyperbolic function, a linear function of s or simply a constant. Using 
Eq. (2.39) it follows for either the z or y motions that 

-$cst- ck) = 0. 

-- 
Upon integrating and using the initial conditions on c and s in Eq. (2.40) we 
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find 

cs’-cC=l. (2.43) 

This expression is just the determinant of the first-order transfer matrix 
representing either the x or y equations of motion. It can be demonstrated that 
the fact that the determinant is equal to one is equivalent to Liouville’s theorem, 
which states that phase areas are conserved throughout any first-order system 
in both the x and the y plane motions. 

The coefficients q are evaluated using a Green’s function integral 

B 

q = 
/ 

f(dG(s,+~ 
0 

(2.44) 

where 

G(s, T) = S(S)C(T) - S(T)C(S) (2.45) 

and 

Q = s(s) j f(7-)C(T)dT - c(s) j f(T)S(T)dT . (2.46) 
0 0 

To verify this result, it should be noted that this equation, in conjunction with 
Eq. (2.43), reduces the last of Eqs. (2.39) to an identity, and that the last pair 
of Eqs. (2.40) follow readily from this proposed solution. In particular, if f = 0 
then q = 0. Then it will be seen from Table I that several coefficients are absent, 
including the linear terms that would represent a coupling between x and y . 
Frequently, the absence of a particular coefficient is obvious from considerations 
of symmetry. 

Differentiation of Eq. (2.46) yields 

Q ’ = s’(s) j f(7)C(T)dT - c’(s) j f(T)S(T)dT 
0 0 

(2.47) 

and 

q” = f + S”(S) 1 f(T)C(7-)dT - c”(S) i f(T)S(T)dT . 

0 0 

(2.48) 

The driving terms tabulated in Table I, combined with Eqs. (2.46), (2.47), 
and (2.48), complete the solution of the general second-order theory. The explicit 
solutions for specific systems or element of systems can be found in the report 
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SLAC 75 by Brown! It is useful to integrate the driving terms tabulated in 
Table I for a separated function lattice, so that the dipole, quadrupole, and 
sextupole terms are separated. The results are shown in Table II for point 
to point imaging (s~,~ (8) = 0), and in Table III for parallel to point imaging 
(cz,Js) = 0). Th e f ringing field terms containing h’(s) have been dropped. This 
is a reasonable approximation at high energies where p(s) is very large compared 
with the beam dimensions. 

Tables I, II, and III are especially useful for determining the symmetry con- 
ditions needed to make a given aberration or group of aberrations vanish, or 
to determine the coupling coefficient of the terms with respect to the multipole 

“’ strengths S’nj for the 3 element. Where n is the order of the multipole and j 
identifies distinct multipole magnets. 

Table II. The integrated values of the second-order matrix elements for a 
separated function lattice for point to point imaging (s~,~(s) = 0); fringing 
field terms are not included. 

Dipole Sextupole Quadrupole 

(~l$) E -!jCx(S) J: C L2SZda +Cz(S) Cj S2jC2Sz 

(XIXOX ‘0) E -Cx(S) J: C ‘,s’,s,da+Zc,(s) Cj S2jCxSE 

(+oq = -x(s) so’ C&~‘,SZ~~+~CZ(S) Cj S2jCxSz&-Cx(S) Cj sljcxsz 

(~1~0 ‘2) z -fCx(S) Jl S ‘,2szda +Cz(S) Cj S2jSz 

(XIX0 ‘6) = -c=(s) J; S &d ‘,s,da+2c, (s) Cj S’2jSidz -C,(S) Cj SljSE 

(x(J2) s -!jCz(S) Jo” d’,2s,da+c,(s) Cj &jsxdz -CX (S) Cj Sljsxdx 

(~lyO2) E iCz(S) J: c b2s,da -Cz(S) Cj SZjCiSx 

(sJYoYo’) g Cx(S) Jo” c~S\Szd~ -~CZ(S) CjS2jCyS~Sz 

(~1~0~~) E iCx(S) J: S i2s,da -C,(S) Cj S2jSiSz 

(YI~OYO) g -car(s) so’ C’,Cbsyd& -~c~(S)C~S~~C~C~SY 

(Y ISoY ‘1 = -r(s) Jj C ‘,S bsyda -2Cv (S) Cj SzjC,Si 

(Y 1x0 ‘Yo) = -cd4 so” S’,C;syda -~cY(S)C~S~~S~C~S~ 

(Y 1x0 ‘Yo ‘1 = -c&d J; S ‘,S ;syda-2Cy(s) Cj S2jSxSi 

(Y~YO~) E -Cy(S) J: c’,d’,s~d~-2c~(s) Cj %jcydxsy+cy (s) Cj SljCySy 

(Y IYO ‘6) %t -Cy(S) Jl S bd ‘,sgda-2cy(s) Cj S2jdzsi +Cv(S) Cj SljSi 
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Table III. The integrated values of the second-order matrix elements for 
a separated function lattice for parallel to point imaging (c~,~(s) = 0); 
fringing field terms are not included. 

Dipole Sextupole Quadrupole 

(21x;) = +;s,(s) Jo” c k2cxda -Sz (8) Cj S2jCz 

(+odl> s +sx(s) J; C LS ‘,c,da-2s,(s) Cj S2jCiSz 

(~1~06) z +Sz(S) J: c id ‘,c,da--2s,(s) Cj Szjczd, d-S,(S) Cj SljCE 

(~1~0 12) s +fSx(S) J# S k2c,da -Sz(S) Cj S2jSzCz 

(~1~0 ‘6) E +S,(S) J: S ‘,d’,c,da-2s,(S) Cj S2jsxC,dz+s,(S) Cj SljS,Cz 

(~16”) z +iS,(S) Jo” d&2c,da-s,(s) Cj S2jczdz +Sz(S) Cj S,jczd, 

(~1~8) g -:5x(S) J: C b2c,da +Sz(S) Cj S2jCiCx 

(xI~OYO ‘) E -Sz(S) J: C ;S bc,da+2s,(s) Cj S2jCySyCz 

(~1~0 ‘2) g -fSx(S) J,J S b2c,da d-S,(S) Cj SZjSiCz 

(YIXOYO) = +s&) J; C&C ;cyda +2Sy(S) Cj S2jCxCi 

(Y IXOYO ‘) = f%/(s) so” C LS bcyda +2sy(S) Cj S2jCzCySy 

(YIQ 'Yo) z A-S,(S) Jl S kc ;Cyda++,(s) Cj SzjSxCg 

(YISO 'Yo') = +s,(s) so" S LS ;cvda+2sy(s) Cj S2jSzCySy 

(YIYoS) z +Sy(S) Jt c;d’,cyda+2Sy(S) Cj &j$dx -Sy(S) Cj SljCi 

(~1~0 ‘6) E fSy(S) J: S kd’,c~da+2s~(s) Cj S2jdzCi -Sy(S) Cj SljSyCy 

3 FIRST-ORDER OPTICS 

3.1 NOTATIONS AND DEFINITIONS 

This chapter is devoted to the detailed study of first-order optics. The results 
are derived from those obtained in Chapter 2, and in particular from Eqs. (2.35) 
to (2.40). 

In order to simplify the notation, the following convention is adopted: 

The variables z, z’, y, y’, 1, 6 will be denoted by 51, x2, x3, x4, ~5, 56. 

Using this notation and restricting ourselves to first order, Eq. (2.35) can 
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be written in the following form : 

6 

Xi =  CR' 'jxOj 9 i= 1,2,...,6 
j=l 

where we have adopted for (zilzcj) the notation &j as used in linear algebra. 
Equation (3.1) can also be rewritten in compact matrix notation as 

X=RXo. 

3.1.1 Geometric Terms, Chromatic Terms, and Phase Space 

In optics studies it is customary first to study the properties of a set of optical 
elements by restricting the momentum of the test particles to one value (called 
the reference momentum), and then to study the properties as the momentum 
is changed. The elements &j of the matrix R that contain one subscript with 
the value 6 are called chromatic terms. The elements &j for which no subscript 

.is equal to 6 are referred to as geometric terms. 

The condition expressed by Eqs. (2.36) and (2.37) simplify the matrix R to 
the following expression: 

f C%‘(S) cz (4 s/(s) h(S) 0 0 0 0 0 0 d,‘(s) 6 (4 

0 0 
CY (4 

0 0 
R= sds) - 0 0 cy’(s) sy’(s) 0 0 

R51 R52 R53 R54 R55 R56 

&l &2 &3 R64 h5 &i6 

Because there is no coupling between the variables x1,x2 and x3,x4 (resulting 
from  m idplane symmetry) it is convenient, when one is not considering the 
chromatic terms, to retain only the two by two matrices describing the motion 
in the planes defined by the coordinates xi, x2 or x, x’ and by the coordinates 
x3, ~4 or Y, Y’. The first plane is the horizontal phase space or the (x,x’) phase 
plane, and the second is the vertical phase plane or the (y, y’) phase plane. The 
matrix R, called the,transfer matrix, then reduces to the simple 2 x 2 form  for 
each plane: 

R(s) = 
Rrl (s) R12 (8) 

R21(s) R22 (s) 

-- 
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3.2 GREEN’S FUNCTION INTERPRETATION 

Consider two points in a beam line defined by the positions r and s (assumed 
in increasing order) of the longitudinal coordinate, as illustrated in Fig. 9. An 
interesting problem is to determine at the point s the effect of a punctual (zero 
length) magnetic element located at coordinate r. It is understood that only 
angular kicks can be achieved by such elements. 

6 -84 4809A24 

Fig 9. Green’s function interpretation: an angular kick at position r 
results in an effect at position 8. 

Let x’(r) denote the angular kick produced at position r. The values of x(s) 
and x’(s) denoting the effect *at position s are given by 

where R is the linear transformation matrix between positions r and s. 

Since the matrix 

transfers data from position 0 to position r, the transfer matrix &,B between r 
and s is obtained as follows: 

R(s) = &,s R(r) 

from which one gets 

or, in explicit form, 

R-w = R(s)R(r)-' 



from which 

@12)z,r = -C(S)S(T) + S(S)C(T) 

and 

(R22)7,e = -C’(S)S(T) + S’(S)C(T) . 

(RI~)~,~ is the Green’s function for x(s) and (R 22 7,S is the Green’s function for ) 
x’(s). 

3.2.1 Example of the Use of the Green’s Function 

Find the expression for the first-order dispersion in terms of the c and s 
functions and find the condition (in terms of the same functions) for first-order 
achromaticity (a dispersion-free system). The dispersion function d,(s) is the 
solution of the equation 

d; + k:d, = h(s) = (l/pa) . 

In this equation h(s) is the driving term f for the dispersion d,; then, from Eqs. 
(2.46) and (2.47), we have 

d,(s) = 1 f(T)G(q s)dr = j h(T)G(q s)dT 
0 0 

‘S&J> j c&)h(T)dr - c%(s) j s&)h(r)dr . 
0 0 

Denoting dr/pc by do, the differential angle of bend of the central trajectory, 
we obtain 

d,(s) = sz(s) i c,(T)da - c&j j s,(T)da 
0 0 

and 

d;(s) = s;(s) j c&)da - c;(s) j s,(T)da . 
0 0 

From these two formulas defining the dispersion and its derivative in terms of 
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th e  c a n d  s fu n c tio n s  w e  g e t th e  a c h r o m a ticity cond i t ions  as  

s s  

/ 
c , ( r )da = 0  =  

/ 
& ( + a  , 

0  0  

I S  

/ 

s,(r)dcr = 0  =  
/ 

R n ( + a  . 
0  0  

3 .3  L I N E A R  B E A M  O P T ICS 

B y  th e  w o r d  b e a m  w e  m e a n  a  set  o f n  par t ic les w h e r e  n  is a  l a rge  in teger .  T h e  
behav io r  o f b e a m s  c a n  b e  s tud ied  by  th e  t rac ing o f a  l a rge  n u m b e r  o f ind iv idua l  
par t ic les o r  by  s tudy ing  th e  t ransfer  p roper t ies  o f a lgebra ic  curves  wh ich  a re  
a s s u m e d  to  b o u n d  th e  par t ic les c o n ta i n e d  in  th e  b e a m . It is a  p roper ty  o f l inear  
a l geb ra  th a t th e  on ly  curves  th a t a re  s imp le  to  t ransfer  a re  th e  ton ics  (second-  

.d e g r e e  curves) .  There fore ,  as  a  s impl i f icat ion dec is ion,  it wi l l  b e  a s s u m e d  th a t 
b e a m s  restr icted to  two d imens ions  a re  a d e q u a te ly  desc r ibed  in  l inear  o p tics by  
a n  e l l ipse.  

3 .3 .1  E l l ipt ical B e a m  E n v e l o p e s  

L e t us  first cons ide r  th e  two-d imens iona l  case  in  th e  hor izonta l  p h a s e  p l a n e  
x,x’. 

T h e  gene ra l  e q u a tio n  o f a n  e l l ipse,  c e n te r e d  o n  th e  or ig in,  is 

a x 2 + 2 b x x t+cx t2  = m  

wh ich  c a n  b e  wri t ten in  m a trix fo r m  as  

X tB X  =  m  

w h e r e  B  is a  posi t ive d e fin i te  s y m m e tric m a trix d e fin e d  by  th e  c o e ff icients a , b , c  
as  fo l lows:  

B =  a n d  X =  

-- 

a n d  X t is th e  t ranspose  o f X . T h e  m u l tip l icat ion o f a l l  fou r  c o e ff icients by  a  
c o m m o n  factor  d o e s  n o t c h a n g e  th e  e l l ipse.  O n e  h a s  th e n  th e  cho ice  o f e i ther  
let t ing m  =  1  o r  d e t B  =  1 . In  th e  first ins tance th e  a r e a  o f th e  e l l ipse is g i ven  
by  z/d- a n d  in  th e  s e c o n d  ins tance th e  a r e a  equa l s  K m . 
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Let us adopt the definition 

XtBX = 1 

and denote Q as the inverse of matrix B  

(34 

One can prove, by using techniques of dual spaces in linear algebra, that fi 
and fi are the tangential projections of the extreme points of the ellipse on 
the axes x and x’ respectively, as shown in Fig. 10. 

7-04 4809A25 

X’ 

Centroid 

Fig. 10. A  beam ellipse based on the Q matrix. The maximum 
extent of the ellipse and its orientation are shown as a function 
of the matrix elements. 

W ith this dennition the equation of the ellipse may also be expressed as 

Pa-'X=1 

or alternatively as 

022x2 - 2a2lxx’ + ullx r2 = det Q 

and its area is A  = nd=. 
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This definition may be extended in a straightforward way to n-dimensions. 
An n-dimensional ellipsoid is defined by O, a positive definite symmetric matrix, 
and has the equation 

Pa-‘X = 1 

where now X stands for an n-dimensional vector. The volume enclosed by the 
ellipsoid is given by 

In particular for dimensions 4 and 6 the volume of the ellipsoid is given by 
(7r2/2)dG and by (7r3/6)dG respectively. 

3.3.2 Beam Ellipse Transformation 

Assume a beam to be defined at a longitudinal position sr by the matrix or. 
Its equation is 

x;uI’x1 = 1 . 

. Consider the point s2 and assume that R is the linear transfer matrix from sr 
to 62. The coordinate transformation satisfies the following relations: 

X2 = RX1 and Xl = R-‘X2 . 

This linear transformation will change the ellipse 01 at point si into another 
ellipse t72 at point 82. The equation of the second ellipse is 

x;cq1x2 = 1 . 

We need to find the relation between 02 and 01. To do so we express p2 and 
X2 in terms of pr and Xl. We obtain 

XtRtcrlRXI = 1 1 2 

from which we conclude 
-1 

Ol = R%,‘R 

and, by inverting, 

u1 = R-‘a2(Rt)-’ 

or equivalently 

o2 = RalRt . 

Note that since det R = 1 (Liouville’s theorem) it follows that 

det 01 = det 02 , 

showing that the transformation has preserved the phase volume of the beam. 
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B e fo re  pu rsu ing  th e  s tudy o f th e  t ransmiss ion  o f b e a m s  th r o u g h  a  sys tem w e  
sha l l  l ook  a t th e  fo rmu las  th a t g o v e r n  s ing le-par t ic le  m o tio n  in  c losed  m a c h i n e s . 

3 .4  S I N G L E - P A R T ICLE  O P T ICS F O R  A  C L O S E D  M A C H INE 

T h e  f i rst-order e q u a tio n s  o f m o tio n s  a re  g i ven  by  

d 2 x  
d s 2  +  k;(s)x = -  =  

P (S)  
W s) , 

d 2 y  d s 2  +  k;(s)y = 0  . 

In  a  c losed  m a c h i n e  th e  fu n c tio n s  k=(s) ,  ky(s) a n d  p(s)  a re  per iod ic  fu n c tio n s  
o f s  . L e t us  cons ide r  so lu t ions fo r  th e  nond ispe rs i ve  (6  =  0 )  s tab le  case.  T h e  
th e o r e m  o f F l o q u e t states th a t th e r e  exist  two fu n c tio n s  p(s)  (per iod ic )  a n d  $(s)  
in  te rms  o f wh ich  th e  gene ra l  so lu t ion  x(s) c a n  b e  expressed :  

w h e r e  E  a n d  4  a re  two arbi t rary constants  a n d  th e  two fu n c tio n s  p(s)  a n d  $J(s)  
a re  n o t i n d e p e n d e n t, b u t a re  l i nked  by  th e  re la t ion 

$(s)  is ca l led  th e  “m a c h i n e  p h a s e  shift” b e tween  p o i n ts 0  a n d  s . Di f ferent iat ion 
o f x(s) wi th respect  to  s  y ie lds  

x’(s) =  \r  ziL W  C O S ($J(S ) +  4 ) -  & @ J(sin ($(s)  +  4 )&)  Ns)  2  
= - d $ f(  4s )  c4W  +  4 ) +  sin ( ti(s) +  4 ))  S  

‘w h e r e  w e  d e fin e  th e  fu n c tio n  a(s)  by  

p(s)  =  -248 )  . 

A lte r n a tively x’(s) c a n  b e  wri t ten in  th e  fo r m  

x’(s) =  d G @ cos(x(s)  +  4 )  
--  
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w h e r e  x(s) sat isf ies th e  re la t ion 

w ? w  - xw =  &  
or  equ iva len t ly  

sin (N f4  -  x(4 ) =  -  & -+ ) 
a n d  th e  fu n c tio n  7(s)  is d e fin e d  by  

7(s)  =  1 +  a(s)2  
P (s) * 

L e t us  n o te  th a t th e  fu n c tio n s  p(s),  a(s),  a n d  7(s)  a re  per iod ic  wi th th e  pe r i od  
L  w h e r e  L  is th e  l e n g th  o f th e  c losed  m a c h i n e . Cons ide r  n o w  th e  va lues  o f th e  
so lu t ion  x a n d  its der ivat ive a t success ive  revo lu t ions  a t a  f ixed p o i n t s. W e  
c a n  desc r ibe  th e  m o tio n  a t pos i t ion  s by  p lot t ing th e  va lues  o f x  a n d  x’ in  th e  

. “x -phase  p l a n e ”. E lim inat ing  th e  t r igonometr ic  fu n c tio n s  f rom th e  express ions  
o f x(s) a n d  z’(s) y ie lds,  a fte r  s o m e  m a n i p u l a tio n , 

7 (s )x2  +  2a(s)xx’ +  p(s)x’2  =  c , 

wh ich  s h o w s  th a t th e  pos i t ions (x, x  ‘) o f a  par t ic le  a t th e  coord ina te  s  u p o n  
success ive  tu rns  l ie  o n  a n  e l l ipse.  Th is  e l l ipse c a n  a lso  b e  wri t ten in  m a trix fo r m . 

T h e  p a r a m e ters  cr, p , a n d  7  a re  s o m e tim e s  re fer red to  in  th e  l i terature as  
th e  Twiss p a r a m e ters. 

3 .4 .1  T h e  M a c h i n e  E l l ipse 

L e t 2 ’ d e n o te  th e  m a trix 

T  
( 

P (s) - 44  =  
-44  7(s)  >  

(3 .4 )  

w h e r e  T  h a s  a  d e te r m i n a n t e q u a l  to  1 . T h e  e q u a tio n  o f th e  e l l ipse character is t ic  
o f th e  m a c h i n e  m a y  th e n  a lso  b e  wri t ten in  th e  m a trix fo r m  

X tT-‘X  =  E  . P -5)  

T h e  a r e a  o f th is  e l l ipse is 7rc.  A s  w a s  s h o w n  fo r  th e  b e a m  e l l ipse in  a  p rev ious  
p a r a g r a p h , w e  c a n  c o m p u te  th e  m a x i m u m  x excurs ion  x m a x  a n d  th e  m a x i m u m  
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. x ’ excursron x lmbx. They are given by the expressions : 

%mc=dE , Gmx=J% 

From the explicit equation of the ellipse one can also obtain the coordinates of 
the intercepts with the axes: 

E 
xinter = d- r ’ 

5 ‘inter =  
$ 

$. 

From these expression one can deduce alternative expressions for the area of the 
ellipse: 

A rea = KE = TX,,X ‘inter = zq,t,,z Imax . 

This result can also be generalized to dimension n. For n dimensions E  is the 
product of one intercept ,one maximum and (n - 2) maxima of subspace inter- 
cepts. Figure 11 illustrates these points in two dimensions. 

5- 84 

Centroid 

3989Al 

Fig. 11. An ellipse based on the machine parameters p, ar, 
7, illustrating single-particle motion in a closed machine. The 
area of the ellipse is A  = m . 
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Consider now two points Sr and Sz on the reference orbit of the closed 
machine. Let 2’1 and 2’2 denote the machine ellipse matrices at these two points 
and R the transfer matrix from point Sr to point Sz. As for the beam ellipses, 
we have the following transformation relating T2 to Tl: 

T2 = RTIRt 

or 

R121 -2Rdh R:2 

-RI&~ 1+2.&&l -RI&~ 

R221 -2&l&2 R222 

3.5 THE RELATIONSHIP BETWEEN THE BEAM ELLIPSE AND THE 
- MACHINE ELLIPSE 

Having- defined ellipses both for beams of particles and for single-particle 
motion in closed machines, we now turn our attention to the relationship between 
the two. Consider a closed machine that is characterized by the ellipse El with 
emittance c and area Al, as shown in Fig. 12. Let Pr denote a point on that 
ellipse and let 0 denote the origin of the axes. After successive turns around 
the machine the point Pr will reappear at Pz, Pa, etc. Since the transformation 
R governing this motion is linear and area preserving, the area OPlPz is equal 

5-04 I 4809A11 

Fig. 12. The superposition of beam ellipses 
I32 and Es with a machine ellipse El. 
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to area OP2P3, etc. It also follows that these areas and A1 satisfy the following 
relation: 

OPl p2 

4 
= mod& 1) 

where mod(s, 1) denotes the fractional part of x . Here we have introduced the 
new notation ~1, defined as 

P = W) Y 

which is the phase shift for one complete revolution of a closed machine, where 
L is the length of the closed machine. The ratio ~/27r is denoted by v and is 
called the tune of the machine. Consider now an ellipse E2 inscribed in El with 
a contact point at PI. Let the ellipse E2 represent a beam of particles circulating 
in the machine. Ellipse E2 becomes, after one turn, ellipse E3 with contact point 
P2. Ellipses ,732 and Es have the same area. 

When the beam ellipse E2 is concentric and similar to the machine ellipse 
El, the beam is said to be matched to the machine. In this instance the beam 

.reappears on successive turns as the same ellipse, but the individual particles in 
the beam rotate around the ellipse as did the points PI etc. This observation 
shows that the phase space area (and consequently the physical aperture) needed 
to accommodate a given beam is minimum when the beam is matched to the 
machine. We shall now use the above properties to define beamlines in various 
ways which prove useful in practice. 

Let us find the transfer matrix which transforms the ellipse defined by the 
input values pr and a1 at position sr into an ellipse with the values /32 and CQ 
at position 82. 

Consider the solutions as given by the Floquet theorem: 

x’(s) = - pFs, J=(4) cos(+,(s) + 4) + sin(ti(s) + 4)) - 

Expanding the trigonometric functions and simplifying the notation gives 

5 =@(cos+cos+- sin+sin4) , 

X t- -- 

$ 
5’ ocos$~cos~- arsintC,sinf$+sin7jcos~+cos$sin~) . 

The point having $J = 0 is assumed to be associated with the values /31 and al 
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and x1 and xl’; these values then satisfy the following relations: 

Xl =dz=P , 

Xl’ = - $ f’ a1 cosf$ +sin4) . 
1 

Denoting by pz, 9, x2, and 5’2 the values associated with $J nonzero, and 
eliminating cos 4 and sin 4 from the previous four equations, one gets 

x2 =x1 
i- 

$(,os+ + a1 sin $) + zl’&&in ti 3 
1 

x2’ =x1 
-arzcos+--sin+-- ar2cq sin $J + or cos $J 

m 
+ Xl’ 

\i 
~(cos$ - a2 sin+) . 

2 

From the above equations we deduce the transfer matrix between position 1 and 
position 2 to be 

R= 
(cos AT/J + or sin A$) d%?%sin Ati 

(1 + al CY~) sin AII, + (~2 - al) cos A$J - 
m $ 

$(cos A$J - CQ sin A$) 
2 

(: 

where A$J is the phase shift between position sr and sz. 

In the particular case where the input values (PI, or) are equal to the output 
values (pz, az) the transfer matrix becomes 

R= 
cosp + asinj.4 psinp 

-7 sin p cosp - crsinfi 

where we have defined 

. p=p1=p2, cY=q=cY2, cl=w, 

and 

Formula (3.7) expresses the elements of the transfer matrix R in terms of the 
input parameters ,&, or, the output parameters pz, ~2, and the phase advance 
A$J between positions sr and sz. 

-- 
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It is also possible to express the output Twiss parameters and the phase 
advance in terms of the input Twiss parameters and the matrix elements. The 
fist part of this inversion process is achieved in formula (3.6) which we reproduce 
here: 

I( R121 -2RnR12 G2 

= -Rdh l+ 2RnR21 --RI&Z. 

R221 -2&l&2 R222 

t A$ is derived from formula (3.7) as 

P2 

a2 

72 

The phase shifl 

or 

tan A$ = R12 

RllPl - R12a1 

R12 sin A+ = - 
m 

(3.9) 

(3.10) 

or equivalently by the formulas relating $(s) and P(S): 

2 

Let us look at some elementary configurations and determine their phase 
shifts: 

a) A thin lens is characterized by sr = sz so that A$ = 0. 

b) If R12 = 0 (point to point imaging) then A$ = nr. 

c) If Rll = 0 (parallel to point imaging) then tan A$ = -l/cur. 

d) For a drift of length L, R12 = L and sin A$ = L/Jm. 

3.5.1 Introduction to an Alternative Notation for Beam Definition 

In obtaining Eq. (3.3) we have shown that a beam contained in an ellipse 
can be characterized by the matrix 

fJ=p= . 

Let us recall that the square roots of the diagonal terms give the maximum 
extent of the beam, and that the number E = d&% is called the emittance 
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of the beam. The area of the beam ellipse is then ATE. With this notation the 
equation (3.2) of the boundary ellipse is 

X9X=1 

where B is the inverse of 0 and its determinant is equal to cm2. Let us multiply 
each element of the matrix 23 by the scalar c and let us denote the newly obtained 
matrix by E and let 

E= 1;. 
( ) 

(3.11) 

0 bserve that 

det E = bc - a2 = 1 

and the Eq. (3.2) of the ellipse becomes 

XtEX=e. (3.12) 

The above results show that a beam contained in an ellipse may be defined in 
two equivalent modes, either by the four parameters: 

011 412 422 c 

and the relation 

diiZ-G=E 

or by the parameters 

a b c E 

and the relation 

bc - a2 = 1 . 

Let us now turn our attention to Eqs. (3.4) and (3.5), in which we defined an 
ellipse associated with the transfer matrix for single-particle motion in a closed 

where 

and 

T = 

machine. This ellipse has the form 

XtT-‘X = c 

P --cy 

-a 7 

(3.13) 

(3.14) " 

p7-cY2 =l . 

The mathematical similarity between the relations (3.14), (3.13) and (3.11), 
(3.12) is clear. This has led many designers to use the parameters p, CY, 7, and E 
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to define a beam ellipse as well as to define a transfer ellipse for a closed machine. 
This habit can lead to some confusion. It is certainly mathematically correct, 
but the interpretation of the physics is clearly different. 

To illustrate this mathematical equivalence let us consider an optical cell 
characterized by the machine transfer matrix 

R= 
cosp + arsinp /?sinp 

-7 sin p cosp - crsinp > 

and an input beam characterized by the matrix 

I El r c1 a1 . 

( > a1 bl 

El will be transformed as follows: 

I32 = (Rt)-lEIR-’ . 

With the explicit multiplication of the above matrix relation one can show that 
E2 = El when the beam defined by El is such that 

bl=P, al=a, c1=7. 

When these conditions are met one says that the beam is matched to the cell. 
This alternate notation for a beam defining ellipse gives a very simple form to 
the matching conditions. 

This fact alone justifies the usefulness of the alternative notation presented 
here. 

4 OPTICAL BUILDING BLOCKS 

Having studied the behavior of beams in a general context, we shall now 
turn our attention to the study of special elements or sets of elements which can 
be used to design modules with specific functions in beam optics. The following 
sections are devoted to the study of a few simple and practical modules that 
occur frequently as lattice building blocks. 

-- 
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4.0.1 A Drift Space or Field-Free Region 

The transfer matrix of a drift is 

from which one derives 

Ax = x2 - x1 = Lx1 ’ and 22 ’ = x1 ’ = a constant . 

R= 

The Twiss parameters transform as follows according to formula (3.8): 

From this relation one obtains 

Acu = a2 - ozl = -Lrl and 72 = 71 = a constant . 

The relation (3.10) applied to the drift gives 

R12 s~A$=~=& 

showing the relation between the phase advance and the length. The relation 
(3.9) gives 

tanA+ = R12 L 
RllPl - R12w = PI - La1 * 

Consider the extreme point on the beam ellipse shown in Fig. 13. 

As the beam travels through the drift space, this point will be displaced by 
Ax given by 

Ax=L,/=+L -!- 
\I Pw 

where p,,, is the p value achieved at the point where the beam has a waist. 
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xs 1 
= xf = constant 

Ax=(x2-x,)=Lx{ 

I X’ I 

* 

xhax=fi = constant 

I 

/- 

2 

/\ I/\ 
\ 

X 
! 

\ 

+ 

xint= E  = constant 
VY 

xf= constant 7 =constant 

5-84 Ax= Lx’ Aa=-Ly 39WA2 

Fig. 13. The transformation of an ellipse through a drift (field-free) space. 

4.0.2 A  Thin Lens 

A focusing thin lens has the following transfer matrix: 

R= 

from which one derives 

22 = x1 = a constant and Ax’=x2’-xl’->. 

The Twiss parameters transform according to formula (3.8), 

which gives 

P2 = Pl = a constant and Pl Acx=~~-cY~=~. 

The relation (3.9) gives 

tanA+= R12 

&IA - R12a = 
0 
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and so AtC, = 0 because the integral 

A$= 
/ 

since the thin lens has a length equal to zero. The transformation of an ellipse 
through a focusing thin lens is illustrated in Fig. 14. 

XI I 
’ int 

= If- *= a constant I 
= x, 

x;.-:+x, 

xlll 
c-- 

X2 

“i 
F xi 

-xmOx = JiZ = constant 

x = constant 

S-84 

13 = constant 

3989A3 

Fig. 14. The transformation of an ellipse through a focusing thin lens. 

4.0.3 A Quadrupole 

The thin lens quadrupole behaves in each phase plane (x, x’) and (y, y ‘) like 
a thin lens of opposite signs. If the lens is focusing in the x-plane, the matrices 
can be written as follows: 

1 0 
R= 

( > ~fl/F 1 ’ 

We have assumed here that the quantity F is positive. 

The phase advance is zero in both planes, and p is constant in both planes. 
The change in CY is given by 

P Aa=fF. 

In these expressions the upper sign applies to the (x, x ‘) focusing plane and the 
lower sign to the (y, y ‘) defocusing plane. 
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4.0.4 A thin Dipole 

A wedge dipole with the field index n equal to 0 (i.e. a uniform field) can 
be simulated as a thin element (having zero length), located at its middle, and 
having the following transfer matrix: 

R= (-S{CY/~ % si%a) 

where cx is the deflection angle of the central trajectory and where the third row 
and column describe the part of the transformation associated with the energy- 
dependent parameter 6 = (Ap/p). Th e wedge dipole behaves like a thin lens 
of focal length F = p/ sina! in the (x,x’) plane. In the (y, y’) plane the wedge 
dipole behaves like a drift for a sharp cutoff field boundary. The matrix R gives 
us - 

x2 = x1 - a constant and A5’~5~‘-q’= - x1 sin a 
+ 6sina . 

P 

The formula (3.8) becomes 

1 0 0 

sin c~/p 1 0 

sin2 a/p2 2sincr/p 1 

which gives 

pz = pr = a constant and AcY=cY~---cY~= 
p1 sin 0 

P * 

As for the thin lens, the relation (3.10) shows that A$ = 0 for the zero length 
dipole. The transformation of an ellipse through a wedge dipole magnet is 
illustrated in Fig. 15. 

-- 
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Fig. 15. A wedge dipole magnet from input to output principal planes. 

4.1 STUDY OF SIMPLE USEFUL COMPOSITE MODULES 

Using the basic elements discussed in the previous section we shall now 
explore some typical composite modules. 

4.1.1 Basic Focusing Module 

If a focusing thin lens of focal length F is placed between two drifts of length 
F, the transfer matrix for the composite system is 

From the matrix R we observe that angles are transformed to displacements and 
displacements to angles as follows: 

x2 -= Fxl’ and x21=-%. 
F 
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From the relation (3.8) we have 

from which 

P2 = F2rl 

Relations (3.9) and (3.10) yield 

and 012 = -011 . 

tanA+ = -$ and 

from which we can conclude the following result: If cur = (~2 = 0 then, since 
sin A$ > 0, we must have A$ = 7r/2 and F = dm. 

This relation links the lens focal length F and the length L = 2F of the 
module to the magnitude of the /3 values. 

Practical two-dimensional modules based on this concept are typically achieved 
by symmetric triplets or by quadruplets, as shown in Fig. 16. 

For the triplet, the focal length is different in the two phase planes (x,x’) 
and (y, y ‘) because of basic properties of triplets. 

If it is required that Fz = Fy, then a symmetric quadruplet array of quadrupoles 
may be used as illustrated in Fig. 16. 

Fx= Fy 

6-84 fl f2 f2 fl 4809A22 

Fig. 16. A triplet and a quadruplet lens system pos- 
sessing parallel to point and point to parallel imag- 
ing in both planes. 
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4.1.2 The FODO Array 

The FODO array is perhaps the most common building block used in the 
design of machine lattices and beam lines. Its structure is illustrated in Fig. li. 

6-84 4809A21 

Fig. 17. A FODO array as a building block for 
lattices. 1) The transformation for one cell be- 
tween the centers of the lenses. 2) The trans- 
formation for one cell between the centers of the 
drift regions. 

It is informative to study the FODO array at two different observation points 
in order to better understand its basic properties. 

1) First case: The cell begins and ends at the center of a lens, then the 
transfer matrix for the z and y planes is obtained by the following multiplication: 

where again the upper sign applies to the (x,x’) plane and the lower sign to the 
(Y, Y ‘1 place. 

If we assume that p1 = fl2 = p and (~1 = ~2 = Q, then 

R= 
c+cYs ps 

)i 

(1-g) 2L(l4 
= 

-799 c - as 
-&(-4) (1-S) 
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from which 

and 

P _ 2Ll f sin(d2) 
Z,Y - sin ~1 > 

%Y - -0, 

and, using symmetry arguments, the ratio of the beta functions in the focusing 
and defocusing lenses is given by 

_ 1 + sin(&J) P max 

P min 1 - sin(j.4/2) ’ 

‘Note that this ratio is independent of the length of the cell. 

2) Second case: If we now begin the FODO array in the middle of one 
of its drifts, the transfer matrix for one cell is given by 

R=(i “i”) (*:,, :) (i :) (,;, :) (i ,i”) ; 

then 

L3 
c + OS 

R= 
Ps 

2L - - 
4f2 

from which we obtain 
L2 

cosp= l-- 
( > 2f2 ’ 

0 L sin I = - 
2 2f ’ 

which is the same as in case 1, but 

-- 
&Y = & (2 - sin2(j4/2)) 
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. 

and 

G,y = =f 
2 sin(p/2) 

ShI( 
. 

The last two relations show that at this location we have the interesting relations 

/3% = fly and cyz = -cyy , 

which is the same property possessed by a thin lens quadrupole. 

A particular case of interest is obtained when p = n/2. This corresponds 
to (L/f) = 4. This FODO cell is then often referred to as a ‘quarter-wave’ or 
X/4 transformer and is shown schematically in Fig. 18. 

-tL/2-()- L -+ ,n+ 

f f 

6 - 04 P = lr/2 
4809A20 

Fig. 18. The X/4 transformer. 

The transfer matrix R of this quarter-wave transformer is 

and we have the interesting property R11 = -R22 and R11, and R22 both change 
signs between the x and y planes. 

We shall use all of the above properties later when we discuss the problem 
of matching between two dissimilar FODO arrays. 

4.1.3 A Telescopic System 

The optical system illustrated in Fig. 19 is called telescopic. 

Its transfer matrix is given by 

-- 
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L 

X2 =-Mx, 

a  - constant 
P2= M2/3, 
A+= 7 = Phase Shift 3989b.5 

Fig. 19. A one-dimensional telescopic system. 

R=(i 3(-1;F2 :) (ii .:,) (-l;Fl :) (; :) 

-F2IJi ZZ  
0 -F;,F2) = (-,” -10/M) ’ 

From the R matrix we obtain 

x2= -Mzl and x2’=+. 

The relation (3.8) becomes:  

(t)-(M^ : ,,k,) (3 

which shows that 

(4.1) 

P2 = M2Pr and q. = cy1 = a  constant . 
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Since Rr2 = 0, the relations (3.9) and (3.10) reduce to 

tanA$=O and sin A$ = 0 . 

Using the formula (3.7) rewritten as 

R= 
0 

we deduce that cos A$ < 0, and consequently that Aplr = 7r. 

A telescopic system has an optical magnification M given by 

It also has the property that the transfer matrix R is an invariant if a drift 
length situated to the right of the lenses is transported to the front with the 
multiplication factor M2. To prove and illustrate this property, consider the 
telescopic system having the transfer matrix of Eq. (4.1) and let it be preceded 
by a drift of length Zr and followed by a drift of length 22. The total matrix is 

-M 0 
RT = 

0 -(l/M) 

-M -ML1 -12/M 
= 

0 > -(l/M) * 

The matrix RT is equal to the matrix of the original telescopic system if and 
only if the following condition holds: 

Ml1 + la/M = 0 

or equivalently 

I2 = -M211 . 

-- 

In practice, to achieve a telescope in. both planes one needs at least two 
quadrupoles to simulate each lens of the telescope. Figure 20 shows such a 
solution. 
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Fig. 20. A twc+dimensional telescopic system. 

The magnification may be different in each plane; therefore, the general 4  x  4  
transfer matrix of the system becomes 

-Mz 0 0  0  

0  R= -l/Mz  0 0  

0  0  -My 0 

or 

R= 

\ 0  0  0  -l/M ,) 

0  0  

-0 - 0 

0 0  

0  0  
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4.1.4 Repetitive Cells 

Consider the following transfer matrix: 

R, = 
cosp+a!sinp psinp 

> 
. 

-7 sin ~1 cosp - crsinp 

If the cell characterized by this transfer matrix is repeated n times, the total 
transfer matrix becomes 

Rn _ 
( 

co+w) + -i+-v-4 P sin(w) 
C- -7 sin(np) cos(np) - crsin(np) ) 

such that after each successive cell 

p1 = p2 = . . . = pn = p 

and 
Ql = (3.2, = . . . = cyn = (II . 

This system is nonmagnifying in /?. 

4.1.5 Repetitive Magnifying Cells 

How can one obtain a set of magnifying cells that would have the properties 

a1 = cy2 = . . . = Ly, 

and 

in other words each cell has a transverse magnification equal to r? Since phase 
space areas must be preserved, the transverse slopes will be subjected to a 
magnification of l/r. Consider then the following matrices RA and M: 

RA = 
cosp+ cY1sinp 

-71 sin i2 

If the first cell in such a sequence has the matrix 

RI =MRA= 
r(c + a1s) $0 

-71+ (c - ws>/r > 
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and the successive cells are defined by a similarity transformation 

then the total matrix for a sequence of n cells becomes 

RT = R,***Rl = MnRz 

or 
P(COS np + a1 sin np) rn/31 sin np 

RT = 71 sin np cos np - cq sin np - 
rn rn 

In the particular case where /.L is chosen so that np = 7rIT, the total matrix RT 
becomes 

- RT=(-; -Grn)=(-y vd;l,on) 

and the set of n magnifying cells becomes a telescopic system with an optical 
magnification of P. 

4.2 CELL MATCHING 

In a previous paragraph we derived the conditions under which a beam 
contained in an ellipse is matched to a cell. It was also indicated in paragraph 
3.5 that when the matching conditions were satisfied between a beam and a set 
of repetitive cells the aperture required to contain the beam is minimized. 

All lattices, be they beamlines or segments of circular machines, are made 
by the juxtaposition of a series of cells having different transfer properties. One 
important problem facing the designer can be expressed in the following way: 

Consider a section Sz which is to follow a section Sr. Suppose the beam is 
matched to the section Sr. Generally this beam will not be matched to section 
Sz. Is it possible to design an intermediate section Srz so that the beam is 
matched from Sr to Sz?. The problem of finding such a section Srz is called the 

. section matching problem. 

Many design programs help the designer in solving this problem in its gen- 
erality. It is, however, important to have some rational guidelines on how this 
matching can be achieved. The following paragraphs indicate two general meth- 
ods for matching one FODO array to another FODO array. 
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4.2.1 General Considerations on FODO Cell Matching 

Consider the matched symmetric FODO cell that was described in paragraph 
4.1.2. If we choose the beginning of the cell to be halfway between the two 
quadrupoles, the following conditions hold at this point in every cell: 

Pz = Py and cyZ=-cyY. 

Consider now two sets of FODO cells characterized by the two sets of rela- 
t ions 

Plz = Ply and wz = -my 9 

P2z = P2y and cQz = -cqy . 

What properties should a matching section have in order to transform the 
values PI, or, 71 into the values pz, (~2, 72. 3 If the transfer matrix of the 
matching section for the x,x’ plane is 

R= 

then the following relation exists: 

P2 

0 i 

11121 -2RllRl2 R12 

a2 = --RllR21 Rdh2 + &&I --h&n 

72 R221 -2&r R22 R222 

Let us note the following: 

If at the input of the matching cell we have 

Plz = Ply and a12 = --my P-3) 

and if the transfer matrix R of the matching cell is such that the underlined ele- 
ments in Eq. (4.2) change sign from the (x,x’) plane to the (y, y’) plane and the 
other elements do not change sign, then it follows from the Twiss transformation 
that: 

P 22 = fl2Y and cQz = -cY2y . 

When such a situation iscreated, then the values of a FODO cell are matched 
to the values of another FODO cell. This, however, does not mean that the 
above procedure matches any FODO cell to another arbitrarily chosen FODO 
cell. The following procedure will exemplify and extend the preceding one. 
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The first condition can be realized generally in two ways: either the matrix 
R is such that 

or it is such that 

where we have underlined the elements that must change sign as one switches 
from plane (z, z’) to plane (y, y’). An example of a practical matching system 
is the following. 

4.2.2 Beam Matching with a Quarter-Wave Transformer 

Consider the quarter-wave transformer defined in the FODO array section 
of paragraph 4.1.2 and illustrated in Fig. 21 . 

. *L/2.+-L+L,2+ 

QI f f Q2 
6-84 4809AlE 

Fig. 21. A quarter-wave matching transformer. 

The matrix element of this cell can be written as 

where, according to our convention, the underlined elements change sign when 
switching from the (x,z’) plane to the (y, y’) plane. 

The transformation of this cell satisfies the condition of the previous para- 
graph, and this cell will match pairs of FODO cells whose parameters both 
satisfy the relation 

Using the X/4 cell, which matches specific pairs of FODO cells, one can obtain, 
by the addition of two elements, a cell which will match any two pairs of FODO 
cells (with some constraint on the range of /3z). 
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Consider a quarter-wave transformer to which we add a quadrupole Qr at 
its entrance and another quadrupole 92 at its exit. 

The insertion of quadrupole 92 does not change the exit value p2 but will 
change the value a2 of the planes (x,z’) and (y, y’) in opposite directions and 
so preserves the condition ~2~ = --cozy. 

The insertion of quadrupole Qr at the entrance does not change the value 
/?I or the relation cylz = -ory but it does change the absolute values of (~1% 
and ory. The Twiss transformation, Eq. (3.8), for the quarter-wave transformer 
shows that this variation of Qr will change the values of both p2 and CY~ while 
preserving the conditions /?I% = pry and (~1% = -crly. 

Using the transformation matrix of the quarter-wave transformer and con- 
sidering ~1 to be variable (via variation of the strength of Qr), one can show 
that the value /?2 that can be matched by the preceding cell has a minimum 
value equal to b2/P1, as follows: 

The expression for /?2 is 

p2 =a2P1 - 2abcq + b2yl 

=a2/31 - 2abcq + b2(1 + a;) 
Pl - 

The first and second derivatives with respect to or are 

4% 2b2cq - = -2ab+ - 
da1 Pl 

and 
d2P2 _ 2b2 > o 
da: A ’ 

Therefore, a minimum will be achieved if 

and the value of this minimum is 

P ; 2*h = - . 
1 

The procedure of adjustment of the matching cell then becomes: 

The quadrupole Qr is adjusted so that, given the input values /?I, ~1, the 
required output value /?2 is achieved at the exit. Quadrupole Q2 is then adjusted 
to obtain the required ~2, and the match is accomplished. 

-- 
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4.2.3 Beam Matching with Half-Wave Transformers 

Telescopic systems which have a phase shift of 7~ may also be used as match- 
ing transformers with the restriction that a2 = or and pz = M2Pr, where M 
is the optical magnification of the transformer. Their most obviousapplication 
is to match between two points where al = cyz = 0 (the location of an erect 
phase ellipse). They have the advantage that MZ does not have to equal My. 
They also have the property of minimizing the higher-order optical distortions 
because of their optical symmetry. Half-wave matching transformness are illus- 
trated schematically in Fig. 22. 

Fig. 22. A half-wave matching transformer: 1) using doublets; 2) using triplets. 

-- 
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5 SECOND-ORDER OPTICS 

In Chapter 2 we introduced a general notation for the coefficients of the 
Taylor expansion of the solution of the equations of motion. The notation of the 
first-order terms was simplified in order to conform with the standard matrix 
notation. For example, 

&I = (~1x0) , R21 = (~‘1x0) , R34 = (YIY~) . 

In order to ease the writing, a similar simplification of notation is introduced 
for the second-order terms: the tensor Tijk can be defined in a similar way. For 
example, 

57112 =+lxo4> , fi46 = (X’Idd) - 

The following discussion will frequently use the adjectives geometric and 
chromatic to describe the optical properties of beam lines. 

All terms for which no subscript is equal to 6 will be referred to as geometric 
. terms or alternatively as geometric aberrations because they depend only upon 
the central momentum PO. 

Any term &j or Tijk where one subscript is equal to 6 will be referred to as 
a chromatic term (or chromatic aberration) by virtue of the fact that its effect 
depends on the momentum deviation 6 = ApIp of the particle. 

5.1 SECOND-ORDER PROPERTIES OF BASIC ELEMENTS 

In Chapter 2, table I gives the driving terms which generate the various 
second-order coefficients for a general magnetic element . From this table it is 
possible to deduce the contributions to second-order terms from the following 
basic elements: dipole, quadrupole, and sextupole. 

For a pure dipole n = 0 and p = 0 with h(s) = (~/PO) # 0. 

For a pure quadrupole let p = 0 and take the lim(h) = 0 and lim(nh2) = 
-k; = -K1. 

For a pure sextupole let h = 0, nh2 = 0 and take the lim(ph3) = K2. 

A careful examination of Tables I, II, and III will show that the following 
statements are correct. 

Dipoles introduce both second-order geometric and second-order chromatic 
aberrations. 

Quadrupoles do not introduce second-order geometric aberrations. 

Quadrupoles do introduce chromatic aberrations. 
-- 
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Sextupoles introduce both second-order geometric and chromatic aberra- 
tions. 

The chromatic aberrations of a quadrupole can be interpreted simply in the 
following way: 

The magnetic induction of a quadrupole is a linear function of either vari- 
able x or y. In other words the gradient of the induction is constant within 
a quadrupole. A particle with momentum p will be affected differently than 
a particle with momentum po. The corresponding strengths of the quadrupole 
Kl(p) and Kl(po) satisfy the relation 

Klb) _ PO 
K&o) P ’ 

In other words, the focal strength of a quadrupole decreases as the momentum 
of the particle increases. 

The chromatic properties of a sextupole may be interpreted in a similar 
fashion. 

The geometric properties of a sextupole may be understood in the following 
simplified way: 

The magnetic field of a sextupole varies quadratically with the variable x. Or 
the gradient of the field varies linearly with x. In the immediate neighborhood 
of x the sextupole can be considered to be a quadrupole whose gradient varies 
linearly with the variable x. This intuitive view of the sextupolar field will be 
helpful in the understanding of the underlying principle of chromatic corrections 
in beam lines to be discussed later. 

5.2 OBJECTIVES IN SECOND-ORDER OPTICS STUDIES 

Second-order optics studies come as a complement to the first-order studies 
and serve to detect and correct deviations from the results obtained in first- 
order studies. These deviations, generally called aberrations, are of two types: 
chromatic and geometric. In some cases, as for example in resonant extraction, 
the second-order properties of a lattice are an essential feature. 

5.3 CHROMATIC CORRECTIONS 

As described in a previous section, chromatic effects occur because particles 
with different momenta respond differently to a given magnetic field. Consider 
a lattice made up entirely of quadrupoles, as illustrated schematically in Fig. 
23. 
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Fig. 23. Schematic representation of a lattice with quadrupoles. 

A particle with nominal momentum po and initial coordinates xi = 0 follows 
the axis of the system. The linear motion of neighboring particles of the same 

momentum is described by the functions $(s) and p(s). These two functions 
determine the amplitude of oscillation and the phase advance of individual par- 
ticles. A particle with the same input coordinates but a different momentum p1 
(its sixth coordinate 6 # 0) will follow the same central axis in the quadrupoles, 
and the motion of neighboring particles having this new momentum p1 is de- 
scribed by the functions $(s, S) and p(s,S). The difference in the values of 
the functions is the result of the fact that the particles with momentum p1 see 
the quadrupoles with strengths different from the strengths experienced by the 

. particles with momentum po. 

To compensate for this chromatic difference a lattice may be designed where 
particles of greater momentum encounter an extra quadrupolar field to com- 
pensate for the increased momentum. This is achieved by the introduction of 
dipoles and sextupoles into the lattice structure. 

Figure 24 shows a lattice made up of quadrupoles and dipoles which has the 
potential for chromatic corrections because particles of different momenta follow 
different trajectories. 

Position I 

a- a4 
4809A30 

Fig. 24. A chromatic correction lattice. 

A particle PO with zero initial coordinates and nominal momentum follows 
the central trajectory (axis of the figure). The particle Pr with zero initial coor- 
dinates but with 6 # 0 will follow the trajectory defined by the function 6d,(s). 
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This function is nonzero after the first dipole of the lattice. Consider position 
1 in the lattice. At this point particle Pr will have encountered quadrupolar 
strengths that are slightly different from the strengths encountered by particle 
PO. Let us introduce at point Pr a sextupolar element with its axis coincident to 
the reference axis of the lattice. Particle PO and neighboring particles will not 
experience any first-order disturbance of their motion from the sextupole (a sex- 
tupole field has zero gradient on its axis). However, particle Pr will experience 
a gradient that is proportional to its displacement and therefore is proportional 
to the quantity 6. If the strength of the sextupole is appropriately chosen, the 
extra gradient will exactly compensate the difference in gradient experienced by 
particles with different momenta in the preceding quadrupoles. By progressing 
along the lattice it seems feasible to set up a family of sextupoles that would 
exactly compensate for the chromatic aberrations arising from the quadrupolar 
fields. 

However, in this process, the sextupoles will in general introduce geometric 
distortions. In the next section we describe a simple procedure that eliminates 
the chromatic aberrations to second order without introducing second-order ge- 

. ometric aberrations. 

5.3.1 Module for Sextupolar Chromatic Correction 

Consider two FODO cells set up as in paragraph 4.1.2 and tuned so that 
JL=,~ = 90 degrees for each cell. Such a setup is often referred to as a -I telescopic 
transformer because its transfer matrix in both the x and y transverse planes is 

-1 0 
R =,Y = -I= ( > 0 -1 * 

In Fig. 25 is a schematic representation of such a -I transformer. Let 1 and 2 
denote the entrance and exit positions. 

AK 

L 
2 

-1 
I 

6-84 

Fig. 25. Principle of a -I transformer. 
4809A17 

A particle at position l.with coordinates x1,4 will emerge at position 2 with 
coordinates x2,4 given by 

22 = -21 and 4 = -4. 

Imagine now that we place at position 1 a thin magnetic element that produces 
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an angle kick to the particle, say AK. The particle of momentum po will now 
arrive at position 2 with the coordinates 

x2 = -21’ and d=-&AK. 

If we now submit the particle to another angle kick equal to AK at position 2, 
we see that the exit coordinates are the same as they were without kicks. In 
conclusion, when particles are submitted to equal angle kicks at the entrance 
and exit points of a -I transformer, there is no visible effect on their behavior 
outside the -I transformer for monoenergetic particles having momentum pc. 

Let us apply this principle, using some of our elementary building blocks. 

1) Dipoles: Dipoles are even-order elements in the sense that the angle 
kick they deliver to a particle is an even function of the lateral displacement (in 
this case a constant function). Thus, if we place two identical dipole magnets 
(one at-the entrance and one at the exit) of a -I transformer, there will be no 
net angular deflection experienced by particles of momentum po outside of the 
-I transformer. 

2) Quadrupoles: The angular displacement produced by a, quadrupole 
is an odd function of the lateral position x. (In this case the angle kick is 
proportional to x.) Consequently two identical quadrupoles of opposite polarity 
placed at the entrance and exit of a -I transformer will have no net effect 
outside the transformer. 

3) Sextupoles: Sextupoles are even-order elements . The angular kick 
they produce is proportional to x2. In this instance pairs of equal strength 
sextupoles will have no net effect outside the -I transformer. 

Thus, in summary, all odd-order elements (quadrupoles, octupoles, etc.) will 
have to be introduced in pairs of opposite polarity, and all even-order elements 
(dipoles, sextupoles, etc.) have to be introduced in pairs with the same polarity 
in order for the cancellation to be effective. 

5.3.2 A -I nansform Sextupolar Chromatic Correction 

Consider now a -I transformer with two sextupoles of equal strength placed 
at the entrance and exit, and suppose that dipoles have been inserted in each 
cell of the -I transformer. From the previous discussion we know that the 
sextupoles will not introduce geometric aberrations. The presence of the dipoles 
between the sextupoles ensures that there will be coupling between the sextupole 
strengths and the chromatic behavior of particles. Having thus demonstrated 
the principle of the chromatic correction, let us analyze its feasibility in greater 
detail. 
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In practice one must do at least one chromatic correction per phase plane, 
and sometimes two or more per plane. The ideal situation, from the point of 
view of the second-order geometric aberrations, is to assemble enough -I trans- 
formers so that the different sextupole pairs (placed -I apart) do not interfere 
with each other. This condition is often prohibitive in its space requirement and 
in its cost. So let us analyze the effect of interlacing sextupole pairs used in 
chromatic corrections. 

Consider, as shown in Fig. 26, two consecutive -I transformers containing 
two interlaced pairs of sextupoles Sr and S2. 

Sl 

6 - 04 
4809A16 

Fig. 26. Interlaced sextupole pairs. 

If the sextupoles are pure second-order elements, no additional second-order 
aberrations are introduced by the coupling between the sextupoles of the two 
pairs. 

Suppose a particle arrives at the first sextupole Sr with displacement xl. 
As it reaches the tist sextupole of the pair S2, its motion, within the -I trans- 
former that separates the pair Sr, is perturbed, and the particle will reach the 
second sextupole of the Sr pair with a displacement that is not equal to -zr. 
Consequently the second sextupole of the Sr pair will not exactly compensate 
the geometries introduced by the the first sextupole. However since the distur- 
bance introduced by the sextupole S2 is of order two, the uncorrected geometric 
aberration of the pair Sr is of order three and four. 

In a following paragraph we shall show a complete practical setup of a cor- 
rection scheme using interlaced families of sextupoles. 

. 5.4 GEOMETRIC CORRECTION USING REPETITIVE SYMMETRY 

The second-order aberrations are obtained by the computation of integrals 
containing the sinelike and cosinelike functions (see, for example, Tables II and 
III). The first-order condition that a lattice be stable implies that the sinelike 
and cosinelike functions oscillate in a manner similar to the circular functions. 
Symmetries introduced in the design of a lattice may have the desirable effect 
of canceling some second-order aberrations. Among the important symmetries 
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to be considered are mirror symmetry, rotational symmetry, (x, y) symmetry, 
repetitive symmetry, and repetitive symmetry with magnification. 

Let us look at a general approach to the study of the effect of some of these 
symmetries on the second-order aberrations. 

Inspection of Tables I, II, and III shows that the second-order geometric 
aberration terms can be expressed as 

L 

T. . rJk = 
J 

Kp(Rij(S))n(Rik(S))mdS where (n+m)=3 
0 

where KO is the dipole strength per unit length and K2 is the sextupole strength 
per unit length. Pure quad&poles do not generate second-order geometric aber- 
rations. 

Sin_ce the &j(s) are linear combinations of sin A+ and cos A$, we can write 

L 

Tijk = 
J 

Fp sin”(AG) cosm(A$)ds 
0 

where the functions Fp are equal to the strengths Kp multiplied by some power 
of the ,8(s) functions. Adopting a complex variable notation, we obtain the 
condition for having all second-order geometric terms Tijk vanish, namely, 

L L 

J 
F,e*‘$ds = 0 and J Fpei3’+ds = 0 . 

0 0 

The integral of the expressions Fpe*ig and Fpe*3ig for each separate element 
of a lattice can be represented geometrically as a vector in the complex plane, as 
shown in Fig. 27. The integrals over the total lattice become the vector sums of 
all the complex vectors representing the geometric aberrations of the individual 
elements, namely, 

N N 

c Fk eitik and c Fkesitik . 
1 1 

For reasons that should appear clear in the next paragraph, one generally places 
the vectors corresponding to ;1c, in one diagram and the vectors corresponding 
to 3i$ in another. The second-order geometric aberrations are zero if both these 
sums are zero. 
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We shall now restrict our study to the case of repetitive symmetry. 

Fig. 27. Complex plane diagram for second-order aberrations. 

5.4.1 First-Order Repetitive Geometric Correction 

For repetitive symmetry (i.e: when the lattice is made of the juxtaposition of 
.equal cells), the beta functions are equal from cell to cell and so are the element 
strengths. 

In this case the functions Fp(s) are equal in value at the same location from 
cell to cell. Let us analyze two special cases: a lattice containing four identical 
cells and a lattice containing three identical cells, and such that the total phase 
advance for the lattice is 27r in both cases. 

Consider the Q plot of Fig. 28. The vectors correspond to the number of 
the cell to which they belong. In the $ plane they appear in consecutive order 
with an angle of 90 degrees. Their sum obviously is zero. In the 3$~ plane the 
angle between consecutive vectors becomes 270 degrees, and their sum will also 
be zero. 

In conclusion, in a lattice made of four equal cells with total phase shift of 
27r, the second-order geometric aberrations originating in individual elements 
will cancel. 

Consider now the cjr.plot of Fig. 29. The three vectors display an angle of 
120 degrees, and so their sum is also zero. However, in the 311, plot they will 

. have an angle of 360 degrees and will all coincide. Their sum is not zero unless 
their amplitude is zero. 

In conclusion, for a lattice with three cells and a total phase shift of 27r, 
some geometric aberrations do not cancel. 

We can now formulate the following important theorem: 

In a lattice made of n identical cells with n > 3 and having a total phase 
shift of 2m?r, all second-order geometric aberrations will cancel. 
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Fig. 28. Complex plane diagram for second-order aberrations in a four-cell 
lattice with.repetitive symmetry and a 27r phase shift. 

4809A 15 

Fig. 29. Complex plane diagram for second-order aberrations in a three-cell 
lattice with repetitive symmetry and a 27r phase shift. 

5.5 THE SECOND-ORDER ACHROMAT 

Modem high energy machines require long beam lines to transport the beam 
from one region to another or to perform specific functions within a lattice. 
These beam lines are expected to transport the beam achromatically to as high 
an order as possible without introducing appreciable geometric aberrations. We 
call an achromat a line that would meet that goal perfectly. We qualify the name 
with nth order when the goal is met up to the order n in the Taylor expansion 
of the motion. 
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In the following sections we restrict our analysis to repetitive cell structures. 

5.5.1 The First-Order Achromat 

Consider a lattice made of n identical cells having the following transfer 
matrix: 

The total transfer matrix T will be 

Mn M?b-11J + jp-2 w’+ . ..+w’ 
T = ( > 

. 
0 1 

The dispersive vector of the total transfer matrix T can be written in the fol- 
. lowing form: 

t-f= (Mn--l + Mn-2 +a.. + I)G = (Mn - I)(M - I)%il . 

From the above expression one can deduce the following theorem: 

A lattice made of n identical cells is achromatic to first order if and only if 

1) Mn=I 

or 

2) w’=o. 

In other words, it is achromatic if and only if each cell is achromatic, or 
the total transfer matrix is the identity matrix (equivalently if the total phase 
advance is 2m?r for any integer m). 

This first-order result is the basis for the building of achromatic beam lines. 

5.5.2 A Practical Second-Order Achromat 

Figure 30 shows a possible layout for a four-cell second-order achromat. 
The labels BD stand for bending dipoles. The labels QF and QD stand for 
horizontally focusing quadrupoles and horizontally defocusing quadrupoles. We 
assume that the quadrupoles have been tuned to provide a total phase advance 
of 27r. 
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Fig. 30. Example of a practical second-order achromat with four cells. 

Sextupoles have been introduced so that the chromatic correction procedure 
can be performed in both the (2,~‘) and the (y, y’) plane. 

The sextupoles of the family SF will couple predominantly with the z plane 
because they are located close to the focusing quadrupoles, where the values of 
the p,-function are greater. 

Similarly the sextupoles of the family SD will couple predominantly to the 
. y motion, where &, is larger. 

Once the quadrupoles have been tuned to provide a 27r phase shift, the 
second-order geometric aberrations introduced by the dipoles and by the sex- 
tupoles cancel exactly. 

One then tunes the sextupoles SF and SD so that one of the second-order 
chromatic terms Tlje or Tqs and one of Tsje or Tdje are zero. It has been shown 
previously’ that all the second-order chromatic terms except T566 then become 
simultaneously zero. 

We now have a system that is completely achromatic to second order with 
the only exception being the momentum dependence of the path length. 

5.5.3 Application of the Achromat Concept to Chromatic Corrections 

-- 

The second-order achromat as described above is an optical system whose 
transformation matrix is the identity matrix to a precision of second order in 
all of the phase space variables z, z’, y, y’, 1, and 6 except for the second order 
matrix element relating the path length to the square of the momentum. 

While the second-order achromat may not be directly applicable to the de- 
sign of circular machines, the optical principles evolved for its development are 
definitely useful when formulating the sextupole configurations necessary for the 
chromatic corrections in circular machines and in particular for storage rings, 
where the interaction regions have very small beta functions. Let us review the 
salient features of the second-order correction theory developed above that are 
applicable to this problem. 
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1) Any family of sextupoles inserted into a lattice such that their vector sums 
cancel in the $ and 3$~ diagrams described above will not introduce second-order 
geometric aberrations. 

2) The interlacing of two or more sextupole families, each of which satisfies 
criterion l), does not introduce second-order geometric aberrations. 

3) Interlacing of one sextupole family with another sextupole family will 
introduce third- and higher-order distortions to the lattice. 

4) It should be noted that in order for the sextupoles not to introduce second- 
order geometric distortions, the tune shift per cell of the lattice in the region 
of the sextupoles must remain fixed and must be equal in both the x phase 
plane and the y phase plane. The quadrupoles in this region must not be used 
to vary the tune of the machine. The variation in tune must be achieved in a 
‘sextupole-free’ region. 

It follows from the above that a simple recipe for the introduction of sex- 
tupole families to correct for chromatic effects and at the same time minimize 
the optical distortions at the interaction regions may be evolved by following 
the guide lines contained in the preceding paragraphs. This has been discussed 
in previously,g and has been implemented in the design of many of the new ma- 
chines in the last decade. Some examples are the LEP machine at CERN, the 
EROS ring at Saskatoon, the SLC at SLAC, and the CEBAF ring at SURA. All 
of these machines have a lattice design that permits these important principles 
to be implemented. 

The basic procedure is the following: The sextupole families are chosen 
according to the above rules, and their strengths are then adjusted to correct 
for the second-order chromaticity introduced by the quadrupoles in the lattice 
and to correct locally for the momentum dependence of the beta functions. 
If there are enough (at least three) independent families in each phase plane, 
the strengths of the families can be adjusted relative to each other so as to 
minimize the optical distortions caused by the cross coupling between families. 
This is not a trivial exercise, and special programs have been written to handle 
this particular problem. 
Donald l4 

Examples are the program HARMON dEveloped by 
and the program PATRICIA developed by Wiedemann. 
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