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ABSTRACT 

We review the applications of quantum chromodynamics to nuclear multiquark systems. In 
particular, predictions are given for the deuteron reduced form factor in the high momentum 
transfer region, hidden color components in nuclear wavefunctions, and the short distance 
effective force between nucleons. A new antisymmetrieation technique is presented which 
allows a basis for relativistic multiquark wavefunctions and solutions to their evolution to 
short distances. Areas in which conventional nuclear theory conflicts with QCD are also 
briefly reviewed. 

INTRODUCTION 

Nuclear chromodynamics is concerned with the application of quantum chromodynamics to 
nuclear physics. Its goal is to give a fundamental description of nuclear dynamics and nuclear 
properties in terms of quark and gluon fields at short distance, and to obtain a synthesis 
at long distances with the normal nucleon, isobar, and meson degrees of freedom. Nuclear 
chromodynamics provides an important testing ground for coherent effects in QCD and nuclear 
effects at the interface between perturbative and non-perturbative dynamics. It1 

Among the areas of interest: 
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1. The representation of the nuclear force in terms of quark and gluon subprocesses.u2 
The nuclear force between nucleons can in principle be represented at a fundamental 
level in QCD in terms of quark interchange (equivalent at large distances to pion and 
other meson exchange) and multiple-gluon exchange. Although calculations from first __--- 
principles are still too complicated, recent results derived from effective potential, bag, 
and soliton models suggest that many of the basic features of the nuclear force can be 
understood from the underlying QCD substructure. At a more basic level we will show 
directly from QCD that the nucleon-nucleon force must be repulsive at short distances. 
At high momentum transfer the nucleon-nucleon interactions agree with the scaling laws 
predicted by the simplest constituent exchange processes. 

2. The composition of the nucleon and nuclear state in terms of quark and gluon quanta. 
The light-cone quantieation formalism provides a consistent relativistic Fock state mo- 
mentum space representation of multiquark and gluon color singlet bound states. 

3. The propagation of quarks and gluons through nuclear matter: one is interested in the 
interplay between multiple scattering, t13 induced radiation, the Landau-Pomeranchuk 
coherence effect,” shadowing phenomena, and confinement. 

4. Factorization theorems for inclusive and exclusive u5 reactions: for nuclear reactions one 
is particularly interested in the origin of the EMC non-additivity effect’ and other 
nuclear-induced effects in high transverse momentum reactions. 

f2 For a recent discussion of progress in the derivation of nuclear forces from QCD-based models, see K. 
Maltman and N. Isgur, Phys. Rev. Lett. 59, 1827 (1983), E. L. Lomon, MIT preprint CTP No. 1116 
(1983); and references therein. The quark interchange mechanism for N - N scattering is discussed in 
J. F. Gunion, S. J. Brodsky, and R. Blankenbecler, Phys. Rev. D8, 287 (1973). Qualitative QCD-based 
arguments for the repulsive N -N potential at short distances are given in C. Detar, HU-TFT-826 (1982); -I 
M. Harvey, Nucl. Phys. A352, 301 (1981); m,326 (1981); R. L. Jajfe, Phys. Rev. Lett. 24,228 (1983); 
and G. E. Brown, in Erice 1981, Proceedings, Quarks and the Nucleus. The possibility that the deuteron 
form factor is dominated at large momentum transfer by hidden color components is discussed in V. A. 
Matveev and P. Sorba, Nuovo Cimento m, 257 (1978); Nuavo Cimento 20, 435 (1977). 

f3 The eikonal scattering of quarks in hard scattering processes such as massive lepton pair production, 
including kl smearing and induced radiation is discussed by G. Bodwin, S. J. Brodsky, and G. P. Lepage, 
SLAC-PUB-2927 (1982) and S. J. Brodsky, SLAC-PUB-3263 (1984), to be published in Acta Physica 
Polonica. Other uses of the Drell-Yan process for studying quark and gluon distributions and shadowing 
processes in nuclei are discussed by L. L. Frankfurt and M. I. Strikman, Leningrad preprint 838 (1983). 

f4 L. Landau and I. Pomeranchuk, Dok. Akademii Nauk SSSR 92,535 (1953), and 92,735 (1953); L. Stodolsky, 
MPI-PAE/TH 23/75 (1981); I. M. Dremin, Lebedev preprint 250 (1981). The Landau-Pomeranchuk effect, 
which is an essential component of factorization theorems for inclusive reactions, predicts that there is no 
induced hard radiation within a nucleus for incident constituents of energy large compared to the nucleon 
length. This leads to new conditions for the validity of QCD factorization for the Drell-Yan process, etc. 
Details are found in Ref. 3. 

I5 For a comprehensive review of exclusive processes in QCD and further references, see V. L. Chemyak and 
A. R. Zhitnisky, Novosibirsk preprints 85105, 83-105, 83-106, 85107 and 85108 (1983). 

f6 R. T. Aubert, et al., Phys. Lett. w, 315, 322 (1981); Phys. Lett. m, 123, 275 (1983). A. Bodek, 
et al., Phys. Rev. Lett. 50, 1431; 5l, 524 (1983). For recent theoretical discussions and references to the 
EMC effect see e.g., M. Chemtob and R. Peschanski, Saclay preprint SPh.T/83/116 (1983), and J. Pirner 
(this volume). Various models are discussed in H. J. Pimer and J. P. Vary, Phys. Rev. Lett. 46, 1376 
(1981); R. Jaffe, Phys. Rev. Lett. 50, 228 (1983). L. S. Celenza and C. Shakin, Brooklyn College preprint 
BCINT-82/111/117 (1982). M. Staszel, J. Roznek, G. Wilk, Warsaw preprint IFT19/83 (1983). F. E. 
Close, R. B. Robert, G. G. Ross, Rutherford preprint RG83-051 (1983). 0. Nachtmann and J. H. Pimer, 
Heidelberg preprint HD-THE-8858 (1983). 
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5. Novel nuclear phenomena in QCD such as (a) color coherence effects in high momentum 
transfer quasi-elastic reactions in nuclei;u7 (b) the nuclear number dependence of strange 
and charm quarks in the sea; (c) new color singlet multiquark states. 

6. The use of reduced nuclear amplitudes” in order to obtain a consistent and covariant ---- 
identification of the effects of nucleon compositeness iu nuclear reactions. . - 

Because of asymptotic freedom, the effective strength of QCD interactions’ becomes loga- 
rithmically weak at short distances and large momentum transfer 

08(Q2) = p log(;~A&) 
(Q2 w A2) . (1) 

[Here /9 = 11 - g nf is derived from the gluonic and quark loop corrections to the effective 
coupling constant; nf is the number of quark contributions to the vacuum polarizations with 
rn; 5 Q2.] The parameter AQCD normalizes the value of a,(Qi) at a given momentum 
transfer Qi >> A2, given a specific renormalization or cutoff scheme. Recently Q, has been 
determined fairly unambiguously using the measured branching ratio for upsilon radiative 
decay ‘I’(@ + ~X:ug9t110 

aJO.157 MT) = a,(1.5 GeV) = 0.23 f 0.13 . (2) 

nking the standard m dimensional regularization scheme, this gives Am = 1192 ii MeV. 
In more physical terms, the effective potential between infinitely heavy quarks has the form 

icF = 4/3 for n, = 3],‘l” 

V(Q2) = -CF 4ra;;Q2’ 

(3) 

av(Q2) = ~log(;,aF) (Q2 w A;) 

where AV = Am e5fa H 270 f 100 MeV. Thus the effective physical scale of QCD is 
N 1 fir. At momentum transfers beyond this scale, Q, becomes small, QCD perturbation 

f7 Because of color cancellations, QCD predicts no initial or final state corrections to quasi-elastic high mo- 
mentum transfer reactions such 89 rA + rN(A - 1). See A. H. Mueller, to be published in Proceedings 
of the Moriond Conference (1982). Applications to elastic hadron-nucleus amplitudes are given in S. J. 
Brodsky and B. T. Chertok, Phys. Rev. Lett. 31, 269 (1976). Color singlet cancellations for valence 
states interacting inclusively in nuclei are discussed in G. Bertsch, S. J. Brodsky, A. S. Goldhaber and J. 
F. Gunion, Phys. Rev. Lett. g, 297 (1981). Further discussion may be found in S. J. B&sky, SLAG 
PUB-2970 (1982), published in the Proceedings of the XIIIth International Symposium on Multiparticle 
Dynamics, Volendam, The Netherlands (1982). The generalization of ~-scaling to such reactions appears 
to be successful phenomenologically. [S. Gurvitz, private communication.] 

f8 S. J. Brodsky and J. R. Hiller, Phys. Rev. 9, 475 (1983). Fig. 7 is corwcted for a phase-space factor 
dm. S. J. Brodsky and B. T. Chertok, Phys. Rev. Lett. 37, 269 (1976); Phys. Rev. D>, 3008 
(1976). S. J. Brodsky, in Proceedings of the International Conference on Few Body Problems in Nuclear 
and Particle Physics, Laval University, Quebec (1974). 

f9 C. Klopfenstein, et al., CUSB St07 (1983). 
jl0 S. J. Brodsky, G. P. Lepage, P. B. Mackenzie, Phys. Rev. DB, 228 (1983). 
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theory becomes applicable, and a microscopic description of short-distance hadronic and nu- 
clear phenomena in terms of quark and gluon subprocesses becomes viable. In these lectures 
we will particularly emphasize the use of asymptotic freedom and light-cone quantization till 

to derive factorization theorems, rigorous boundary conditions, and exact results for nu- ---- 
clear amplitudes at short distances. ‘12 This includes .the nucleon form factoru12’n13’u14 at 
large momentum transfer, meson photoproduction amplitude& deuteron photo- and electro- 
disintegration” and most important for nuclear physics, exact results for the form of form 
factors of nuclei at large momentum transfer.“5 Eventually it should be possible to construct 
fully analytic nuclear amplitudes which at low energies fit the standard chiral constraints and 
low energy theories of traditional nuclear physics while at the same time satisfying the scaling 
lawsol and anomalous dimension structure predicted by QCD at high momentum transfer. 

Conversely, nuclear chromodynamics implies in some cases a breakdown of traditional nuclear 
physics concepts. For example, we can identify where off-shell effects modify traditional 
nuclear physics formulas, such as the impulse approximation for elastic nuclear form factors. to7 

At high momentum transfer nuclear amplitudes are predicted to have a power law fall off in 
QCD in contrast to the Gaussian or exponential fall off usually assumed in nuclear physics. 
There are other areas where conventional techniques in nuclear theory, such as the use of local 
meson nucleon field theories break down. We discuss some of these problems in the last section 
of this chapter. When we deal with complex nuclear systems we begin to realize how little is 
understood about the nucleon system: even the size and the shape parameters of the hadron 
wave functions in terms of quark and gluon degrees of freedom are still unknown. We briefly 
discuss in this chapter known constraints on the wave functions of mesons and nucleona. 

In QCD, the fundamental degrees of freedom of nuclei as well as hadrons are postulated to be 
the spin-l/2 quark and spin-l gluon quanta. Nuclear systems are identified as color-singlet .: 
composites of quark and gluon fields, beginning with the six-quark Fock component of the 
deuteron. An immediate consequence is that nuclear states are a mixture of several color 
representations which cannot be described solely in terms of the conventional nucleon, meson, 
and isobar degrees of freedom: there must also exist “hidden color” multiquark wavefunction 
components-nuclear states which are not separable at large distances into the usual color 
singlet nucleon clusters. 

The goal of nuclear chromodynamics is thus to understand the fundamental basis of nuclear 
amplitudes. Solutions to QCD for bound states eventually may be obtained from lattice gauge 

fll Details of light-cone Fock methods are given in G. P Lepage, S. J. Brodsky, T. Huang, and P. B. Macken- 
zie CLNS-82/522, published in proceedings of the Banff Summer Institute on Particle Physics, Alberta, 
Canada; S. J. Brodsky and G. P. Lepage, Phys. Rev. DA, 1808 (1981) and S. J. Brodsky, in proceeding 
of Quarks and Nuclear Forces, Springer 100, Bad LiebenzeR (1981). 

I12 G. P. Lepage and S. J. Brodsky, Phys. Rev. Dn, 2157 (1980). 
f13 S. J. Brodsky, G. P. Lepage, S.A.A. Zaidi, Phys. Rev. Dn, 1152 (1981); G. R. Farrar, E. Maim, and F. 

Neri, Rutgers preprint RU-84-13 (1984). 
fl4 V. L. Chemyak and A. R. Zhitnitsky, Novosibirsk preprint 83-103. There is an overall sign disagreement 

between the results of this reference and that of Refs. 12 and 13. 
fl5 S. J. Brodsky, C.-R. Ji, G. P. Lepage, Phys. Rev. L&t. 5l, 83 (1983). 
fll6 S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 3l, 1153 (1973), and Phys. Rev. DA, 1309 (1975); V. 

A. Matveev, R. M. Muradyau and A. V. Tavkheldize, Lett. Nuovo Cimento 7, 719 (1973). 
fl7 A detailed discussion will be given in S. J. Brodsky and C.-R. Ji (to be published). 
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theory or the light-cone quantization formalism. Nevertheless, even without explicit solutions, 
(1) we can use asymptotic freedom to calculate the underlying quark and gluon subprocess 
amplitudes at short distances, (2) we can derive factorization theorems for both inclusive 

----and exclusive processes which separate the hadronic bound state physics from perturbative 
dynamics, and (3) we can use the apparatus of light cone guantization (i.e.: equal time 
7 = t + z/c wave functions) to represent bound states of composite systems in a consistent 
covariant manner. In some cases, we can derive exact constraints on the wave functions, or use 
approximation methods and sum rules to model the wave functions. L111’t112 We can also derive 
connections with the non-relativistic wavefunctions. I8 In the case of multiquark systems we 
can derive asymptotic constraints such as the form of the deuteron wavefunction. Using these 
techniques we can analyze the role of hidden color degrees of freedom in ordinary nuclei, and 
understand the role of QCD relativistic effects. The introduction of reduced nuclear amplitudes 
then allows the direct phenomenological study of the specific role of QCD in nuclear physics. 
Finally, we can derive constraints on the hadronic meson nucleon vertices which are required 
for calculating meson and exchange currents and similar coherent phenomena. 

Just as Bohr’s correspondence principle played a crucial role in bridging the gap between 
classical and quantum mechanics, we also need a similar correspondence principle to bridge 
the gap between nuclear physics at large distances and QCD at short distances. Since QCD 
has the same natural length scale N 1 jm as nuclear physics it is difficult to argue that 
nuclear physics can be studied in isolation from QCD. Thus one of the most interesting 
questions in nuclear physics is the transition between conventional meson-nucleon degrees 
of freedom to the quark and gluon degrees of freedom of QCD. As one probes distances 
shorter than A$D H 1 jm the meson-nucleon degrees of freedom must break down, and 
we expect new nuclear phenomena, new physics intrinsic to composite nucleons and mesons, 
and new phenomena outside the range of traditional nuclear physics. One apparent signal .: 
for this is the experimental evidenceps’tl18 from deep inelastic lepton-nucleus scattering that 
nuclear structure functions deviate significantly from simple nucleon additivity,p6’p1g much 
more than would have been expected for lightly bound systems. p20 F’urther, as discussed in 
later sections, there are many areas where QCD predictions conflict with traditional concepts 
of nuclear dynamics. 

fl8 The experimental situation is reviewed in this volume by E. Gabathler. 
I19 There are many possible origins of non-additive effects in nuclear structure functions including rearrange- 

ments of meson, nucleon, and isobar degrees of freedom (see, e.g., J. Szwed, this volume), increasing size of 
a nucleon inside a nucleus (C. Shakin, Brooklyn College preprints; C. Wilk, this volume), color conductivity 
and quark flow between nucleons which are related to meson exchange effects (see J. Pirner, this volume). 
In addition the effect of QCD radiative corrections can be modihed by the nucleus at low momentum trans- 
fer (see Pirner and Nachtman). [It should be emphasized the nuclear state is not itself changed (in leading 
twist) by the momentum transfer of the probe.] Strange quarks in the nucleus would be non-additive if 
the origin of heavy quarks is due to higher dimension operators (S. Brodsky and M. Soldate, unpublished). 
Theories of the EMC effect also have to account for the indicated absence of deviation from additivity for 
low zbj in deep inelastic neutrino reactions and the low energy American University/SLAG data. See R. 
G. Arnold et al., SLAC-PUB-3320 (1984). 

f20 Actually the small value of binding energy per nucleon is not a reliable guide to the magnitude of non- 
additivity effects, as witnessed by the strikingly large nuclear effects (0(20%/o)) observed for the gt magnetic 
moment of the nucleons in high orbital states. See T. Yamagishi, in Mesons and Nuclei, Vol. II, (North- 
Holland, Amsterdam), edited by M. Rho and D. Wilkinson (1979), and T. Yamagishi, this volume. 
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It is apparently true that for distances greater than 1 fm, i.e.: momentum transfer less than 200 
MeV, non-relativistic Schroedinger equation and potential theory give an accurate phenomeno- 
logical description of nuclear matter. Similarly, in the short distance domain (distances less 

---than 0.2 fm or momentum transfer 1 1 GeV) the quark-gluon degrees of QCD give a good 
representation of strong interaction dynamics. The zynthesiz between nuclear physics and 
QCD is then the analogue to the correspondence principle. For example, the nuclear potential 
can now be understood in terms of quark interchange ” and gluon exchange amplitude at the 
high momentum transfer region. p2 At long distances these contributions must merge into the 
traditional meson and Yukawa force. The nuclear state, which can be primarily represented 
as meson and nucleon degrees of freedom at large distances; at short distances must give way 
to a description in terms of quark and gluon degrees of freedom, specifically hidden color com- 
ponents, at very short distances. The electromagnetic and weak interactions of the nucleus, 
which is traditionally described in terms of nucleon and meson currents, is replaced in QCD 
by interactions which couple directly to the quark currents at any momentum transfer scale. 
What we perceive at large distances and refer to as meson and nucleon degrees of freedom are 
coherent effects of QCD. The form factor in nuclear physics in the non-relativistic domain can 
be represented as a Fourier transform of a charge distribution. At relativistic energies, this is 
replaced by an exact QCD calculation of the probability amplitude for the nuclear system to 
remain intact. Asymptotic results are given in later sections of this chapter. 

The joining of nuclear physics at long distances and QCD at short distances also brings a 
number of new general analytical tools, including (a) light cone quantization, (b) a relativistic 
Fock state expansion, (c) factorization theorems, (d) evolution equations which give the leading 
behavior of hadronic amplitudes at short distances, and (e) a system of counting rules for 
obtaining the leading power behavior ‘12 and leading helicity behavior of nuclear reduced 
amplitudes. p22 In particular, one now has a completely relativistic framework for multi- :. 
particle systems applicable to nuclear systems: light cone quantization provides a Hamiltonian 
formulation for QCD and is an alternative to the Bethe-Salpeter formalism. 

Despite its generality, in concept, and often in practice, light-cone quantization is as simple 
to use as Schroedinger many body theory.p11’p12 Using this formalism one can readily obtain 
exact results for the form of the nucleon, meson, and nuclear form factors and other exclu- 
sive nuclear amplitudes at large momentum transfer, such as the photo-disintegration of the 
deuteron at large ~CM. One obtains rigorous constraints on the six-quark wave function of 
the deuteron at small relative distances as well as a value for the percentage of hidden color 
at short distances in the deuteron wave function. More generally, as we discuss in a later zec- 
tion, one can identify the degrees of freedom of multi-quark system and obtain a completely 
anti-symmetrized basis Fock state representation for multi-quark states. 

The fact that the degrees of freedom and permutation symmetries of the covariant QCD 
equation of motion for multiquark states on the light-cone are the same az those of the non- 
relativistic quark modelp23 can account for the successes of the non-relativistic approach for 

$21 A new systematic treatment of quark interchange effects in the nucleus is given by J. Hiller, Purdue preprint 
(1984). 

g22 S. J. Brodsky and G. P. Lepage, Phys. Rev. m, 2848 (1981). 
$23 See the chapter by G. Karl, this volume. 



describing the hadronic spectrum despite the dynamical failure of non-relativistic equations 
for describing wavefunctions and structure functions. 

---- APPLICATIONS OF QCD TO HIGH MOMENTUM TRANSFER 
HADRONIC AND NUCLEAR PROCESSES - - 

Although we cannot yet compute hadxonic wave functions in quantum chromodynamics, it is 
still possible to make predictions at large momentum transfer directly from the theory. The 
results are rigorous and can be proved to arbitrary order in perturbation theory.p5’12’p24 The 
processes which are most easily analyzed are those in which all final particles are measured 
at large invariant masses compared to each other, i.e.: large momentum transfer exclusive 
reactions. This includes form factors of hadrons and nuclei at large momentum transfer Q 
and large angle scattering reactions such as photoproduction 7p * R+IL, nucleon-nucleon 
scattering, photodisintegration yd -+ np at large angles and energies, etc. A key result is that 
such amplitudes factorize at large momentum transfer in the form of a convolution of a hard 
scattering amplitude T’a which can be computed perturbatively from quark-gluon subprocesses 
multiplied by process-independent =distribution amplitudes” d(z, Q) which contain all of the 
bound-state non-perturbative dynamics of each of the interacting hadrons.‘12 To leading 
order in l/Q the scattering amplitude has the form 

Here T= is the probability amplitude to scatter quarks with fractional momentum 0 < zj < 1 
from the incident to final hadron directions, and #ai is the probability amplitude to find quarks 
in the wavefunction of hadron H; collinear up to the scale Q, and 

[dz] = fidZj6(1 -g~k) 
j=l k 

A key to the derivation of this facjorization of perturbative and non-perturbative dynamics 
is the use of a Fock basis {$,(z;, kl;, Ai)} defined at equal r = t + z/c on the light-cone to 
represent relativistic color singlet bound states. Here Ai are the helicities; zi G (kf + kt)/(pO + 

P*)r CC;“=1 =i = l)$ and zli, (CZl iii = 0), are the relative momentum coordinates. Thus 
the proton is represented as a column vector of states ti4zQ, ggQQQ, tierclgz.. . . In the light-cone 
gauge, A+ = A0 + A3 = 0, only the minimal “valence” Fock state needs to be considered at 
large momentum transfer since any additional quark or gluon forced to absorb large momentum 
transfer yields a power-law suppressed contribution to the hadronic amplitude. For example 
at large Q2, the baryon form factor takes the form [Fig. l(a)] 

0 0 

where to leading order in a,(Q2), TH is computed from 3q + r* -+ 3q tree graph amplitudes: 

fl24 M. Peskin, Phys. Lett. m, 128 (1979); A. Duncan and A. H. Mueller, Phys. Lett. m, 159 (1980); 
Phys. Rev. D 21, 1636 (1980). 



P%3* WI 

TE = [ a8g2)] 2f(zi, Yi) (7) 

and ---_ 
#B(Zi, Q) = /[Pkl.] tlV(zi9 iii)e(& < 8’) - (8) 

is the valence three-quark wavefunction [Fig. l(c)] evaluated at quark impact separation 

h - O(Q-‘). Since #B only depends logarithmically on Q2 in QCD, the main dynamical 
dependence of FB ( Q2) is the power behavior (Q2)-2 derived from zcaling of the elementary 
propagators in Ta. Thus, modulo logarithmic factors, one obtains a dimensional counting 
rule for any hadronic or nuclear form factor at large Q2 (A = A’ = 0 or l/2) 

(a) %lq 

(b) 

i?- 

(Cl =E . - 83 

+ 

= 

+ 

+ 

!!3c + 
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3 + . . . 
/ 

=oE + . . . 
3791*13 

Fig. 1. (a) Factorization of the nucleon form factor at large Q2 in QCD. The 
optimal scale 0 for the distribution amplitude #(z,o) is discussed in Ref. 9. (b) 
The leading order diagrams for the hard scattering amplitude TH. The dots indicate 
insertions which enter the renormalization of the coupling constant. (c) The leading 
order diagrams which determine the Q2 dependence of #B(Z,Q). 



where n’is the minimum number of fields in the hadron. Since quark helicity is conserved in Ta 
and #(zip Q) is the L, = 0 projection of the wavefunction, total hadronic helicity is conserved 
at large momentum transfer for any QCD exclusive reaction. The dominant nucleon form 
factor thus corresponds to Fl(Q2) or GM(Q~); the Pauli form factor F2(Q2) iz suppressed 
by an extra power of Q2. In the case of the deutevn, the dominant form factor has helicity __-- 
A = A’ = 0, corresponding to dm. The general form of the logarithmic dependence of 
F(Q2) can be derived from the operator product expansion $24.‘ at short distance or by solving 
an evolution equation ‘12 for the distribution amplitude computed from gluon exchange [Fig. 
l(c)], as we discuss in more detail in the next section. The result for the large Q2 behavior of 
the baryon for& factor in QCD isn12924 

J’B (Q2) = a’($2’ C dnm (Ln $)-7m-‘n 
n,m 

(11) 

where the T,, are computable anomalous dimensions of the baryon three-quark wave function 
at short distance and the dm, are determined from the value of the distribution amplitude 
4B(z, Q$ at a given point Qi and the normalization of Ta. Asymptotically, the dominant 
term has the minimum anomalous dimension. The dominant part of the form factor comes 
from the region of the z integration where each quark has a finite fraction of the light cone 
momentum; the end point region where the struck quark has z H 1 and spectator quarks have 
z N 0 is asymptotically suppressed by quark (Sudakov) form factor gluon radiative corrections. 

As shown in Fig. 2 the power laws predicted by perturbative QCD are consistent with 
experiment. u25 The behavior Q4G~(Q2) N const at large Q2 [see Fig. 31 provides a di- 
rect check that the minimal Fock state in the nucleon contains three quarks and that the 
quark propagator and the qq + qq scattering amplitudes are approximately scale-free. More -: 
generally, the nominal power law predicted for large momentum transfer exclusive reactions 
is given by the dimensional counting rulep’s M - Q4-nrorF(&,,,) where n~m is the to- 
tal number of elementary fields which scatter in the reaction. The predictions are apparently 
compatible with experiment. In addition, for some scattering reactions there are contributions 
from multiple scattering diagrams (Landshoff contributions) which together with Sudakov ef- 
fects can lead to small power-law corrections, as well as a complicated spin, and amplitude 
phase phenomenology. Recent measurements of 77 + t+r-, K+K- at large invariant pair 
mass are also consistent with the QCD predictions. UW $27 In principle it should be possible 
to use measurements of the scaling and angular dependence of the 77 ---) M&f reactions to 
measure the shape of the distribution amplitude ~M(z,Q).‘~~ 

$25 M. D. Mestayer, SLAC-Report 214 (1978) F. Martin, et al., Phys. Rev. Lett. 38, 1320 (1977); W. P. 
Schultz, et al., Phys. Rev. Lett. 38, 259 (1977); R. G. Arnold, et al., Phys. Rev. Lett. 40, 1429 (1978); 
SLAC-PUB-2373 (1979); B. T. Chertok, Phys. Lett. 4l, 1155 (1978); D. Day, et al., Phys. Rev. Lett. 43, 
1143 (1979). s ummaries of the data for nucleon and nuclear form factors at large Q’ are given in B. T. 
Chertok, in Progress in Particle and Nuclear Physics, Proceeding of the International School of Nuclear 
Physics, 5th Course, Erice (1978) and Proceedings of the XVI Rencontre de Moriond, Les Arcs, Savoie, 
Ihuce, 1981. 

)I26 S. J. Brodsky and G. P. Lepage, Phys. Rev. Da, 1808 (1981). 
f27 The calculation of 77 + BB is given by G. R. Farrar, E. Maina, and F. Neri, Ref. 13. 
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Fig. 2. Comparison of experiment with 
the QCD dimensional counting rule 
(Q2)+‘F(Q2) - const for form factors. 
The proton data extends beyond 30 GeV2. 
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Fig. 3. Prediction for Q4GL(Q2) for var- 
ious QCD scale parameters A2 (in GeV2). 
The data are from Ref. 25. The ini- 
tial wave function is taken aa #(z,X) a 
6(q - :)6(z2 - :) at A2 = 2 Gev. The 

factor (1 + $)-” is included in the pre- 
diction as a representative of mass effects, 
and the overall normalization is unknown. 
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An actual calculation of #(z, Q) f rom QCD requires non-perturbative methods such az lattice 
gauge theory, or more directly, the solution of the light-cone equation of motiontl”d12 
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The explicit form for the matrix representation of VQCD and a discussion of the infrared and 
ultraviolet regulation required to interpret this result is given in Ref. 12. Thus far experiment 
has not been sufficiently precise to measure the logarithmic modification of dimensional count- 
ing rules predicted by QCD. Checks of the normalization of (Q2)“-‘F(Q2) require independent 

__-.Jeterminations of the valence wavefunction. The relatively large normalization of Q4GL(Q2) 
at large Q2 can be understood if the valence three-quark state has-small transverse size, i.e., 
is large at the origin. The physical radius of the proton measured from Fl(Q2) at low momen- 
tum transfer then reflects the contributions of the higher Fock states qqqg, qqqqq (or meson 
cloud), etc. A small size for the proton valence wavefunction (e.g., R& N 0.2 to 0.3 fm) can 
also explain flll,t112, U28 the large magnitude of (k:) of the intrinsic quark moment urn distribu- 
tion needed to understand hard-scattering inclusive reactions. The necessity for small valence 
state Fock components can be demonstrated explicitly for the pion wavefunction, since tirr/* 

is constrained by sum rules derived from z+ + C+V, and z” + 77. One finds 02 a valence 
state radius Riq H 0.4 fm, corresponding to a probability P:g N l/4. 

THE DEUTERON IN QCD 

Of the five color-singlet representations of six quarks, only one corresponds to the usual system 
of two color singlet baryonic clusters. ul5,129, t130 Notice that the exchange of a virtual gluon 
in the deuteron at short distance inevitably produces Fock state components where the three- 
quark clusters correspond to color octet nucleons or isobars. Thus, in general, the deuteron 
wavefunction will have a complete spectrum of hidden-color wavefunction components, al- 
though it is likely that these states are important only at small intemucleon separation. 

Despite the complexity of the multi-color representations of nuclear wavefunctions, the analysistl15 
of the deuteron form factor at large momentum transfer can be carried out in parallel with 
the nucleon case. Only the minimal six-quark Fock state needs to be considered to leading - 
order in 1/Q2. The deuteron form factor can then be written as a convolution [see Fig. 41, 

1 

FdQ2) = /PI WY] &Y, 8) T~+7*-aq(~, Y, 8) hb, 8) 9 (13) 
0 

where the hard scattering amplitude scales as 

@+7*+6q = a$2) ' [ 1 G, Y) [l + QAQ2))] (14 
The anomalous dimensions r,d are calculated from the evolution equations for 4d(zi, Q) derived 
to leading order in QED from pairwise gluon-exchange interactions: (GF = 4/3, G,j = -GF/~) 

1128 S. J. Brodsky, T. Huang, G. P. Lepage, in Particles and Fields 2, Edited by A. Z. Cspri, A. N. Kamal, Plenan 
(1983), and T. Huang, SLAC-PUB-2580 (1980), published in the Proceedings of the XXth International 
Conference on High Energy Physics, Madison, Wisconsin (1980). 

1129 See, e.g., V. Matveev and P. Sorba, Nuovo Cimento Lett. 20, 435 (1977). 
d30 S. J. Brodsky, C.-R. Ji, and G. P. Lepage (to be published). 
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4 e 

Fig. 4. Factorization of the deuteron form factor at large Q2. 

0 

Here we have defined 

k=l 

and the evolution is in the variable 

07) 

The kernel V is computed to leading order in ad(Q2) from the sum of gluon interactions 

between quark pairs. The general matrix representations of 7,, with bases @=, zri > will I 
be given in Ref. 30. The effective leading anomalous dimension 70, corresponding to the 
eigenfunction &(zi) = 1, is 70 = (6/5)(C~/p) (see the next section). 

In order to make more detailed and experimentally accessible predictions, we will define the 
Veduced” nuclear form factor in order to remove the effects of nucleon compositeness: !l8 

ti(Q2) f4Q2) = J’$(Q2/4) - (18) 

The arguments for each of the nucleon form factors (FN) is Q2/4 since in the limit of zero 
binding energy each nucleon must change its momentum from - p/2 to (p + q)/2. Since 
the leading anomalous dimensions of the nucleon distribution amplitude is C~/2p, the QCD 
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prediction for the asymptotic Q2-behavior of fd(Q2) is 

fd(Q2) H dQ2) 
Q2 Y ---- (19) 

_ - 
where -(2/5)(C~/p) = d/145 for nf = 2. 

Although this QCD prediction is for asymptotic momentum transfer, it is interesting to com- 
pare it directly with the available high Q2 datatl25 [see Fig. 51. In general one would expect 
corrections from higher twist effects (e.g., mass and kl smearing), higher particle number Fock 
states, higher order contributions in cr,(Q2), as well as non-leading anomalous dimensions. 
However, the agreement of the data with simple Q2f,(Q2) N const behavior for Q2 > l/2 
Gev implies that, unless there is a fortuitous cancellation, all of the scale-breaking effects are 
small, and the present QCD perturbative calculations are viable and applicable even in the 
nuclear physics domain. The lack of deviation from the QCD parameterization also suggests 
that the parameter A is small. A comparison with a standard definition such az Am would 
require a calculation of next to leading effects. A more definitive check of QCD can be made 
by calculating the normalization of fd(Q2) f rom TH and the evolution of the deuteron wave 
function to short distances. It is also important to confirm experimentally that the helicity 
A = A’ = 0 form factor is indeed dominant. 

Fig. 5. (a) Comparison of the asymptotic QCD 
prediction (18) and (19) with experiment using 
FN(Q~) = [l + (Q2/0.71 GeV2)lS2. The nor- 
malization is fit at Q2 = 4 Gev. (b) Com- 
parison of the prediction [l + (Q2/rr$)]fd(Q2) 

a (~nQ2)-1-(2/51(cF/~l with data. The value 
mX = 0.28 GeV2 is used. 

6.0 
F-T-- 
b 
x 4.0 

2 2.0 
2 

0 

0 I 1 I I I 

0 I 2 3 4 5 6 
2-m Q2 (GeV2) l IUZ 

The calculation of the normalization Tz+7*d8q to leading order in a,( Q2) will require the 
evaluation of over 300,000 Feynman diagrams involving five exchanged gluons. Fortunately 
this appears possible using the algebraic computer methods introduced by Fa.rrar and Neri.” 

The method of setting the appropriate scale Q of az(Q2) in TH is given in Ref. 10. 

We note that the deuteron wave functionP2 which contributes to the asymptotic limit of the 
form factor is the totally antisymmetric wave function corresponding to the orbital Young 

1131 G. R. Farrar and F. Neri, Phys. Lett. m, 109 (1983). 
d32 For a recent attempt at a phenomenological determination of the deuteron six-quark component, see V. G. 

Ableev, A. P. Kobushkin, L. N. Strunov, et al., Dubna preprint El-B-487 (1983), and references therein. 
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symmetry given by [6] and isospin (T)+ spin (S) Young symmetry given by (33). The 
deuteron state with this symmetry is related to the NN, AA, and hidden color (CC) physical 
bases, for both the (TS) = (01) and (10) cases, by the formulaP3 

(20) 

Thus the physical deuteron state, which is mostly $NN at large distance, must evolve to the 
$16]{33) state when the six quark transverse separations bi 5 0(1/Q) + 0. Since this state 
is 80% hidden color, the deuteron wave function cannot be described by the meson-nucleon 
isobar degrees of freedom in this domain. The fact that the six-quark color singlet state 
inevitably evolves in QCD to a dominantly hidden-color configuration at small transverse 
separation also has implications for the form of the nucleon-nucleon (& = 0) potential, which 
can be considered as one interaction component in a coupled scattering channel system. As 
the two nucleons approach each other, the system must do work in order to change the six- 
quark state to a dominantly hidden color configuration; i.e., QCD requires that the nucleon- 
nucleon potential must be repulsive at short distances [see Fig. 6].u119n34 The evolution 
equation for the six-quark system suggests that the distance where this change occurs is in 
the domain where a1(Q2) most strongly varies. The general solutions of the evolution equation 
for multiquark systems is discussed below. Some of the solutions are orthogonal to the usual 
nuclear configurations which correspond to separated nucleons or isobars at large distances. 
Such solutions could be connected with the anomalous phenomena observed in heavy ion 
collisions. 

r(fm) 
10-83 168L.48 

Fig. 6. Schematic representation of the 
deuteron wave function in QCD indicating 
the presence of hidden color six-quark com- 
ponents at short distances. 

REDUCED NUCLEAR AMPLITUDES 

One of the basic problems in the analysis of nuclear scattering amplitudes is how to consistently 
account for the effects of the underlying quark/gluon component structure of nucleons. Tra- 
ditional met hods based on the use of an effective nucleon/meson local Lagrangian field theory 

1133 M. Harvey, Ref. 2. 
fi34 Similar considerations for nonrelativistic system are given in A Faessler et al., Nucl. Phys. A-, 555 

(1983); S. Furui and A. Faessler Nucl. Phys. m, 413 (1983). 
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are not really applicable, giving the wrong dynamical dependence in virtually every kinematic 
variable for composite hadrons. The inclusion of od hoc vertex form factors is unsatisfactory 
since one must understand the off-shell dependence in each leg while retaining gauge invari- 
ance; such methods have little predictive power. On the other hand, the explicit evaluation of 
the multiquark hard-scattering amplitudes needed to predict the normalization and angular ---- 
dependence for a nuclear process, even at leading order in Q, requires the consideration of - 
millions of Feynman diagrams. Beyond leading order one must include contributions of non- 
valence Fock states wavefunctions, and a rapidly expanding number of radiative corrections 
and loop diagrams. 

The reduced amplitude method, although not an exact replacement for a full QCD calculation, 
provides a simple method for identifying the dynamical effects of nuclear substructure, con- 
sistent with covariance, QCD scaling laws and gauge invariance. The basic idea has already 
been introduced for the reduced deuteron form factor. More generally if we neglect nuclear 
binding, then the light-cone nuclear wavefunction can be written as a cluster decomposition of 
collinear nucleons: (Ig/~ = $N/A UN qg/~ where each nucleon has l/A of the nuclear momen- 
tum. A large momentum transfer nucleon amplitude then contains as a factor the probability 
amplitude for each nucleon to remain intact after absorbing l/A of the respective nuclear 
momentum transfer. We can identify each probability amplitude with the respective nucleon 
form factor F (ii = fi TV). Thus for any exclusive nuclear scattering process, we define the 
reduced nuclear amplitude 

M 

m = II;“=, J”N(&) 
(21) 

The QCD scaling law for the reduced nuclear amplitude m is then identical to that of nuclei 
with point-like nuclear components: e.g., the reduced nuclear form factors obey 

Li(Q2) = 
FdQ2) 1 A-l [ 1 

[FN(~2/~2)lA N 82 ’ 
(22) -. 

Comparisons with experiment and predictions for leading logarithmic corrections to this result 
are given in Ref. 8. In the case of photo- (or electro-) disintegration of the deuteron one has 

M 
m++np = J-#:;;;t,) - pT l f&m) 

i.e., the same elementary scaling behavior as for Mr~+qq. Comparison with experiment is 
encouraging [see Fig. 71, showing that as was the case for Q2fd(Q2), the perturbative QCD 
scaling regime begins at Q2 2 1 GeV 2. Detailed comparisons and a model for the angular 
dependence and the virtual photon-mass dependence of deuteron electrodisintegration are 
discussed in Ref. 8. Other potentially useful checks of QCD scaling of reduced amplitudes are 

mxd-+nd - PT’ fW4 l 

It is also possible to use these QCD scaling laws for the reduced amplitude as a parametrization 
for the background for detecting possible new dibaryon resonance states. 
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Fig. 7. Comparison of deuteron photo-disintegration data with 
the scaling prediction which requires j2(ec.,.) to be indepen- 
dent of energy at large momentum transfer. The data are from 
H. Myers et al., Phys. Rev. 121, 630 (1961); R. Ching and C. 
Schaerf, Phys. Rev. l&l, 1320 (1966); P. Dougan et al., Z. 
Phys. A 276, 55 (1976). 

QUANTUM CHROMODYNAMIC EVOLUTION OF MULTIQUARK SYSTEMS 

As we have discussed, exclusive processes involving the transfer of large momenta can be 
systematically analyzed in QCD. A large number of experimentally accessible phenomena 
including the elastic and inelastic electromagnetic and weak form factors and large-angle 
elastic scattering processes of hadrons and nuclei can be represented in terms of a simple 
picture for exclusive processes based on light-cone perturbation theory. For example, as we 
discussed above, the baryon form factor at large Q2 is represented by the factorized form (see 
Fig. 1) W,UWW24,135 

$I!5 The leading form factor corresponds to helicity conservation h = h’ = 4 or h = h’ = 0. For nonleading 
form factors, see C. E. Carlson and F. Gross, preprint of College of William and Mary (1984). 
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-+ C (a6$2’)2 (h$)-2’o (as Q2 + large) , (25) 

where zi is the light-cone longitudinal momentum fraction of s’h quark Zi = ($’ + kiJ)/(p’ + 
p3), [do] z d~r d~2 dZ3 6 (1 - Ci Zi) and Qz G mini(ziQ). 

The dominant Q2 dependence (0, ( Q2) /Q2)2 is derived from the hard scattering amplitude 
T&i, yi, 9) (7* + 3q + 3q) with only weak (logarithmic) Q2 dependence coming from quark 
distribution amplitude #(Zi, Q) (70 is the leading anomalous dimension). The essential feature 
of this result is that a very complicated process can be simply represented by the factorisation 
into product of three amplitudes, and, thus, the main calculation for this process turns out to 
be the calculation of TH. The distribution amplitude #(zi,Q) is in principle determined by 
nonperturbative bound state physics, and it is independent of the process. 

The quark distribution amplitude #(Zi, Q) is the amplitude for converting the baryon into 
three valence quarks at impact separation bl H 0(1/Q). It is related to the equal r = t + z 
hadronic wave function $(zi, Lli): 

Q3 
d(zi,Q) a /n d2ili62 

i=l 
(26) 

and contains the essential physics of that part of the hadronic wave function which affects ex- 
elusive processes with large momentum transfer. In this section, we present a new technique $3’3 

for constructing +(%;I Q) in order to predict the short distance behavior of multiquark systems. 

The distribution amplitude for a baryon is determined by an evolution equation which can 
be derived from the Bethe-Salpeter equation at large transverse momentum projected on the 
light-cone: ‘12 

a 
- 2 Q2 aQ2 + 2p d(zi, Q) = F /[dY] V(zi, Yi) #(Yip 8) 9 (27) 

where CF = (n: - 1)/2& = 4/3, CB = (& + 1)/2n, = 2/3, /3 = 11 - (2/3)nf, and V(Zi, yi) is 
computed to leading order in a# from the single-gluon-exchange kernel. The evolution equation 
automatically sums to leading order in a6(Q2) all of the contributions from multiple gluon 
exchange which determine the tail of the valence wavefunction and thus the Q2-dependence 

836 Details will be given in a separate paper. 
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of the distribution amplitude. The general solution of this equation is 

#(zi, Q) = 212223 
__-- 

(28) 

where the anomalous dimensions 7n and the eigenfunctions Jn(zi) satisfy the characteristic 
equation: 

(29) 

In the large Q2 limit, only the leading anomalous dimension 70 contributes. 

In the three quark case, the color singlet property of the baryon system guarantees all three 
quarks have different quantum numbers. Thus, we do not necessarily have to antisymmetrise 
the system according to Pauli’s principle, and Jn( 2;) may be derived by expanding V(zi, yi) 
on a polynomial basis {zT z~}&,=~. However, if we consider multibaryon (nuclear) systems 
of 3n quarks, then the color singlet requirement does not guarantee that all the quarks of 
the system have different quantum numbers and antisymmetric representations in the total 
quantum space are needed. This is the essential point of the new technique. 

The antisymmetrization technique will be presented in detail below. If we apply this method to 
three quark system, then we have consistency with preceding results but additionally we obtain 
a distinctive classification of nucleon (N) and delta (A) wave functions and the corresponding 
Q2 dependence which discriminates N and A form factors. We derive QCD predictions for 
the reduced form factor of the deuteron and compare them with the available experiment al 
results. Furthermore, we can combine these results with the fractional parantage technique of 
Harvey, g33 and we can derive constraints on the effective force between two baryons at short 
distances. This will be explained below. 

The Antisymmetrisation Technique for Solving Multiquark Evolution Equations 

In order to solve the evolution equations, we use the following procedure: 

1. Construct the representat ions in each of the quantum spaces color (C) , isospin (T), spin 
(S), and orbital (0) using Young diagrammatic techniques. t137 Each quantum state is 
constructed by filling up the Young tableaus with corresponding specific quantum num- 
bers. UOrbital” states are classified by polynomials ni z:‘, with the minimal powers 
dominant in the high Q2 region. We use the symmetry of the Zi dependence of Jn(Zi) in 
analogy with the permutation symmetry of orbital dependence of nonrelativistic wave 
functions. After an orthonormalieation procedure, the orbital functions satisfy the con- 
dition: 

/ 
[dz] ~(2) dr&<zi> dn(zi) = bnn 9 (30) 

where W(Z) = fli 2;. 

j37 M. Hamermesh, Group Tkory (Addison-Wesley, Reading, Massachusetts, 1962). 
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2. Construct the inner-product of Young diagrams in order to produce completely antisym- 
metric representations in the CTSO total space. The Clebsch-Gordan coeflicients of the 
permutation group are used. A convenient algebraic method will be given in a separate 

~---__ paper. 

3. Calculate the QCD kernel-matrix in the basis of completely antisymmetric representa- 
tions. For example, the one gluon exchange kernel for the three quark system is given 
by (i,j,k = 1,2,3)“12 

‘hihi A 
2i + Zj 

+- Yi - 2; ) 
9 k#i,j 

where the Aa are SU(3), Gell-mann matrices, A#(yi) = #(yi) - 4(Zi), and 6,,l;, = O(1) 
when the helicities of constituents are antiparallel (parallel). From this kernel, we find 
the following QCD evolution properties: 

(a) Color singlet states are preserved by the action of V. 

(b) Isospin cannot be changed, i.e. N and A cannot mix with each other. 

(c) Spin states can mix by the spin annihilation term (6,,hj). 

(d) Orbital states can also mix, with total n = Ci ni preserved. 
As an example, let’s consider the leading n = 1 amplitude of the s2p excited nucleon 
state of +I, and I);;,;, (the z dependence of # is given by the orbital Young diagram). 

. 

If we split the kernel V in terms of a spin annihilation term Vb and the remainder VA, 
we find 

4. Diagonalize the kernel matrix (V = V. + VA) to determine the eigenvalues and eigenso- 
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lutions. From the above example, we find the following results: 

b= t for f$ = 

- 

where 7 = (2bCB + (3/2)&)/p. 

W) 

Following the above procedures (1 through 4)) we can find the anomalous dimensions and 
construct the corresponding eigenfunctions for arbitrary multiquark systems. In the three 
quark case, we find that the results coincide with preceding calculations, but here we can 
unambiguously resolve the N and A state wave functions and discriminate their form factors. 

We emphasize that the methods used here systematically determine all of the relativistic (L, = 
0) bound states which can be constructed from the multiquark degrees of freedom. Although 
the evolution equation is not an eigenvalue equation for the mass spectrum its eigenstates form 
a relativistic wavefunction basis which is diagonalized by the one-gluon exchange kernel. The 
diagonalieation of the kernel on the polynomial basis gives a construction of eigensolutions of 
the generaliBation of angular momenta to states on the light-cone. 

The Effective Force Between Baryons: SU(2) Color Examples 

In the preceeding section, we have discussed how we can solve QCD evolution equations in 
order to predict the short distance behavior of multiquark systems using Young diagrammatic 
methods. Since the eigensolutions obtained in this way have definite permutation symmetry, 
we can apply the fractional parantage technique for the multibaryon system in order to relate 
the eigensolutions to cluster representations which have physical baryon, or alternatively, 
“hidden-color,, degrees of freedom. 

For example, if we apply this technique”’ to the simple case of the four quark system under 
SU(2), then we find the transition matrix given by Table 1 (T = S = 0 case) which relates the 
symmetry basis represented by four-quark eigensolutions and the physical basis represented 
by ‘%oy,‘-dibaryon and hidden-color degrees of freedom. From this table we can expand the 
distribution amplitudes of the physical basis in terms of eigensolutions: 

-0.02&f@ 

#NN(zi, 9) = O-O74l(zi) + . . . 

#aA(Zi,Q) = -O.O’7#1(zi) (l~~)“‘13cF’p - O.S9#2(zi) (tn~)-“*02cF” + . . . (35) 

0.13cF/B -0.02c,/@ 

dcc(zi, 9) = + . . . 

where CF = 3/4 in this case. 

1138 The generalization to W(3) color will be presented in a later paper. 
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TABLE 1. The relationship between four-quark antisymmetric 
SU(2) color representations and effective two-cluster representa- 
tions (T = S = 0 case). Isospin singlet and triplet states both 
with color singlet are denoted N and A, while color triplet state 
is represented by C. The square and curly brackets represent 
orbital (0) and spin-isospin (TS) symmetries separately, 

Thus, we find that the NN, AA and CC states have completely different Q2 evolution. As Q2 
goes to infinity, the NN and AA components are negligible but the CC components are large. 
In other words, the dominant degrees of freedom at the origin of the dibaryon system at eero 
impact separation are hidden-color states rather than physical baryon states. This indicates 
that the physical dibaryons have a repulsive core at the origin w while the colorful hidden- 
color clusters behave as in an attractive well [see Fig. 61. In this way, we derive constraints 
on the effective force between two baxyons. Analogous results hold for the six-quark states in 
SU(3)P 

In summary, using the above techniques based on completely antisymmetrieed representations, 
we can analyze multi-quark distribution amplitudes #(Zi,Q) in QCD in order to predict the 
short distance behavior of multiquark systems. Since the new technique is based on permu- 
tation symmetry, we can readily classify the multiquark systems. In the 3-quark case, we can 
resolve the N and A form factors. In the multibaryon system, this technique is essential since 
it cannot be guaranteed that all quarks have different quantum numbers. 

As we have discussed in the previous section, the QCD predictions for the Q2 dependence of 
the deuteron reduced form factor in the high Q2 regime above 1 GeV2 agree well with the 
available experimental data. We have also decomposed the multiquark systems into multi- 
baryon physical components and hidden color components, and expanded each component in 
terms of the QCD eigensolutions. Through the evolution of each component we can derive 
constraints on the effective force between the clusters. Using the toySU(2),-dibaryon analy- 
sis, we find that colorless clusters tend to be repulsive but colorful clusters are attractive at 
short distances. 

LIMITATIONS OF TRADITIONAL NUCLEAR PHYSICS”O 

The fact that the QCD prediction for the reduced form factor Q2fd(Q2) H const appears to 
be an excellent agreement with experiment for Q2 > 1 GeV2 provides an excellent check on 

$39 See Ref. 2. 
t]40 A more detailed discussion of the material of this section is given in S. J. Brodsky, to be published in the 

proceedings of the NATO Paciffc Summer Institute “Progress in Nuclear Dynamics”, Vancouver Island 
(1982). 
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the six-quark description of the deuteron at short-distance as well as the scale-invariance of 
the qq + qq scattering amplitude. On the other hand, the impulse approximation form I!41 

used in standard nuclear physics calculations 

--- Fd(Q2) = 4v(Q2) x-J”IB+~(Q~) (36) _ - 
is invalid in QCD at large Q2 since off-shell nucleon form factors enter [see Fig. 8(a)]. The 
usual treatment of nuclear form factors also overestimates the contribution of meson exchange 
currents [Fig. 8(b)] and Nfi contributions [Fig. 8(c)] since they are strongly suppressed by 
vertex form factors as we shall show in this section. 

+?-(-j-jyg++~ 
n 

3-83 (b) (cl 4507A18 

Fig. 8. Critique of the standard nuclear physics approach 
to the deuteron form factor at large Q2. (a) The effec- 
tive nucleon form factor has one or both legs off-shell: 
]pi - pz] N q2/2. (b) Meson exchange currents are sup- 
pressed in QCD because of off-shell form factors. (c) The 
nucleon pair contribution is suppressed because of nucleon 
compositeness. Contact terms appear only at the quark 
level. 

At long distances and small, non-relativistic momenta, the traditional description of nuclear 
forces and nuclear dynamics based on nucleon, isobar, and meson degrees of freedom appears 
to give a viable phenomenology of nuclear reactions and spectroscopy. It is natural to try to 
extend the predictions of these models to the relativistic domain, e.g., by utilizing local meson- 
nucleon field theories to represent the basic nuclear dynamics, and to use an effective Dirac 
equation to describe the propagation of nucleons in nuclear matter. An interesting question is 
whether such approaches can be derived as a ‘correspondence” limit of QCD, at least in the 
low momentum transfer (Q2Ri < 1) and low excitation energy domain (Mv < M’2 - w). 

The existence of hidden-color Fock state components in the nuclear state in principle precludes 
an exact treatment of nuclear properties based on meson-nucleon-isobar degrees of freedom 
since these hadronic degrees of freedom do not form a complete basis on QCD. Since the 
deuteron form factor is dominated by hidden color states at large momentum transfer, it 
cannot be described by np, AA wavefunction components on meson exchange currents alone. 

d41 See, e.g., S. A. Gurvitz, Phys. Rev. m, 1650 (1980). The derivations iu this paper require that hadronic 
interactions have Gaussian fall off. 
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It is likely that the hidden color states give less than a few percent correction to the global 
properties of nuclei; nevertheless, since extra degrees of freedom lower the energy of a system 
it is even conceivable that the deuteron would be unbound were it not for its hidden color 

---components! 

Independent of hidden color effects, we can still ask whether-it is possible--in principle-to 
represent composite systems such as mesons and baryons as local fields in a Lagrangian field 
theory, at least for sufficiently long wavelengths such that internal structure of the hadrons 
cannot be discerned. Here we will outline a method to construct an effective Lagrangian of 
this sort. First, consider the ultraviolet-regulated QCD Lagrangian density LG,, defined 
such that all internal loops in the perturbative expansion are cut off below a given momentum 
scale K. Normally tc is chosen to be much larger than all relevant physical scale. Because 
QCD is renormalizable, Ztcr, is form-invariant under changes of n provided that the coupling 
constant a,(~~) and quark mass parameter m(/c2) are appropriately defined. However, if we 
insist on choosing the cutoff n to be as small as hadronic scales then extra (“higher twist”) 
contributions will be generated in the effective Lagrangian density: 

where tt is the standard Lagrangian and the “higher twist” terms of order nB2, n-‘, . . . 
are schematic represent ations of the quark Pauli form factor, the pion and nucleon Dirac 
form factors, and the pion nucleon-antinucleon coupling. The pion and nucleon fields 4% 
and $N represent composite operators constructed and normalized from the valence Fock 
amplitudes and the leading interpolating quark operators. One can use the above equation 
to estimate the effective asymptotic power law behaviors of the couplings, e.g., 8’JI,$ H 
l/Q? Fx - f:/Q”, GM - f;/Q’ and the effective 1rfly5NF,,~ coupling: F,Nm(Q2) - 
MNfi fir/Q6. The net pion exchange amplitude for NN - NN scatterings thus falls off very 
rapidly at large momentum transfer MsN+NN N (Q2)-’ much faster than the leading quark 
interchange amplitude MNiN+NN H (Q2)-‘. Similarly, th e vector exchange contributions 
give contributions M$N+NN N (Q2)-6. Thus meson exchange amplitudes and currents, even 
summed over their excited spectra, do not contribute to the leading asymptotic behavior of 
the nucleon-nucleon scattering amplitudes or deuteron form factors once proper account is 
taken of the off-shell form factors which control the meson-nucleon-nucleon vertices. 

Aside from such estimates, an effective Lagrangian only has utility as a rough tree graph 
approximation; in higher order the hadronic field terms give loop integrals highly sensitive 
to the ultraviolet cutoff because of their non-renormalizable character. Thus an effective 
meson-nucleon Lagrangian serves to organize and catalog low energy constraints and effective 
couplings, but it is not very predictive for obtaining the actual dynamical and off-shell behavior 
of hadronic amplitudes due to the internal quark and gluon structure. 

Local Lagrangian field theories for systems which are intrinsically composite are however 
misleading in anot her respect. Consider the low-energy theorem for the forward Compton 
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amplitude on a (spin-average) nucleon target t1a 

e2 
&p& Mrp.+yp(V,f = 0) = -2; * 2 M . 

P 
(38) 

_ - 

One can directly derive this result from the underlying quark currents as indicated in Fig. 
9(b). However, if one assumes the nucleon is a local field, then the entire contribution to 
the Compton amplitude at Y = 0 would arise from the nucleon pair z-graph amplitude, as 
indicated in Fig. 9(a). Since each calculation is Lorentz and gauge invariant, both give the 
desired result. However, in actuality, the nucleon is composite and the NN pair term is 
strongly suppressed: each 7pp vertex is proportional to 

(01 Jp(0) bir) a Fp(Q2 = 4Ib$) ; (39) 

i.e., the timelike form factor as determined from e+e- + pp near threshold. Thus, as would 
be expected physically, the NN pair contribution is highly suppressed for a composite system 
(even for real photons). Clearly a Lagrangian based on local nucleon fields gives an inaccurate 
description of the actual dynamics and cannot be trusted away from the forward scattering, 
low energy limit. 

3-83 + (crossed) 4507/.20 

(b) 
Fig. 9. Time-ordered contributions to (a) The Compton am- 
plitudes in a local Lagrangian theory such as QED. Only the 
Z-graphs contribute in the forward low energy limit. (b) Cal- 
culation of the Compton amplitude for composite systems. 

We can see from the above discussion that a necessary condition for utilizing a local Lagrangian 
field theory as a dynamical approximation to a given composite system H is that its timelike 

$42 A general analysis of Compton scattering on composite systems, including the essential effects of Lorentz 
boosts, is given by S. J. Brodsky and J. R. Prixnack, Ann. Phys. 52,315 (1969). See also D. Drechsel, this 
volume. 
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form factor at the Compton scale must be close to 1: 

FH(Q2 N 4M2) ~1! 1 . (40) 

For example, even if it turns out that the electron is‘a composite‘system at very short dis- 
tances, the QED Lagrangian will still be a highly accurate tool. The above condition on the 
timelike form factor of threshold fails for all hadrons, save the pion. This result does suggest 
that effective chiral field theories which couple point-like pions to quarks could be a viable 
approximation to QCD. 

More generally, one should be critical of any use of point-like couplings for nucleon-antinucleon 
pair production, e.g., in calculations of deuteron form factors, photo- and electro-disintegration 
since such contributions are always suppressed by the timelike nucleon form factor. Notice 
that 7NR point-like couplings are & needed for gauge invariance, once all quark current 
contributions including pointlike QQ pair terms are taken into account. 

We also note that a relativistic composite fermionic system, whether it is a nucleon or nucleus, 
does not obey the usual Dirac equation- with 
first Born approximation. t143 

a momentum-independent potential-beyond 
Again, the difficulty concerns intermediate states containing NN 

pair terms: the validity of the Dirac equation requires that (~1 Ved 1~‘) and (01 Ved Ip’p’) be 
related by simple crossing, as for leptons in QED. For composite systems the pair production 
terms are again suppressed by the timelike form factor. It is however possible that one can 
write an effective, approximate relativistic equation for a nucleon in an external potential of 
the form 

(a - p’+ j%nN + A+V&b+)ll!~ = EON (41) 

where the projection operator A+ removes the NR pair terms, and Veff includes the local 
(seagull) contributions from qq-pair intermediate states, as well as contributions from nu- 
cleon excitation. 

An essential property of a predictive theory is its renormalizability, the fact that physics at 
a very high momentum scale k2 > n2 has no effect on the dynamics other than to define 
the effective coupling constant a( n2) and mass terms m(K2). Renormalizability also implies 
that fixed angle unitarity is satisfied at the tree-graph (no-loop) level. In addition, it has 
recently been shown that the tree graph amplitude for photon emission for any renormalizable 
gauge theory has the same amplitude zero structure as classical electrodynamics. Specifically, 
the tree graph amplitude for photon emission caused by the scattering of charged particles 
vanishes (independent of spin) in the kinematic region where the ratios Q;/pi . k for all the 
external charged lines are identical. This ‘5ml.l zone” II’4 of zero radiation is not restricted 
to soft photon momentum, although it is identical to the kinematic domain for the complete 
destructive interference of the radiation associated with classical electromagnetic currents of 
the external charged particles. Thus the tree graph structure of gauge theories, in which each 

t]43 S. J. Brodsky, in New Horizons in Electromagnetic Physics, Charlottesville, Virginia (1982). Related dif- 
ficulties with Dirac-equation applications have also been noted by D. A. Adams and M. Bleszynski, Los 
Alamos preprint LA-UR-83-2749 (1983). 

$44 S. J. Brodsky, R. W. Brown and K. L. Kowalski, Phys. Rev. m, 624 (1983), and references therein. 
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elementary charged field has zero anomalous moment (g = 2) is properly consistent with the 
classical (li = 0) limit. On the other hand, local field theories which couple particles with non- 
zero anomalous moments violate fixed angle unitarity and the above classical correspondence 
limit at the tree graph level. The anomalous moment of the nucleon is clearly a property of 
its internal quantum structure; by itself, this precludes the representation of the nucleon as a 
local field. 

- 

The essential conflict between quark and meson-nucleon field theory is thus at a very basic 
level: because of Lorentz invariance a conserved charge must be carried by a local (point-like) 
current; there is no consistent relativistic theory where fundamental constituent nucleon fields 
have an extended charge structure. 

WHEN IS PERTURBATIVE QCD APPLICABLE? 

An important phenomenological question for the application of QCD to nuclear physics is 
the momentum transfer scale p where perturbative predictions become reliable. Ignoring 
heavy quark thresholds, the natural scale parameters of QCD are Am (N 100 f 50 MeV), 
the mass scale of the light hadrons (5 1 GeV), and the constituent transveree momenta 
(k:)‘/2 H 300 MeV. Thus a priori we expect the nominal power-law behavior predicted by 
QCD hard subprocesses to be reliable for Q2 > p2; i.e., Q2 beyond a few GeV2. 

In the case of deep inelastic lepton-nucleon scattering, Bjorken scaling, which reflects the scale- 
invariant behavior of incoherent lepton quark scattering becomes evident for Q2 > 1 GeV2, 
W > 1.8 GeV. Coherent contributions, which occur when, e.g., two different struck quarks 
interfere become relevant for Q2 6 O(k:) such that there is significant overlap in the final 
state. In the case of exclusive processes, the leading QCD power law dominates when the 
nucleon valence Iqqq) or meson valence lqq) Fock state contributions overtake the faster falling 

-’ contributions from higher Fock states. Phenomenologically, the onset of the leading power 
law occurs at Q2 H few GeV’. In the case of the deuteron form factor, (Q2)5Fa(Q2) cannot 
be expected to approach constant behavior until considerably larger Q2 since the virtual 
photon’s momentum in the underlying hard subprocess is divided six ways: i.e. one requires 
(Q/6)2 > (kt). (Detailed numerical estimates are given in Ref. 8.) On the other hand, 
reduced nuclear amplitudes such as the reduced deuteron form factor can be expected to 
approach scaling law Q2fd(Q2) --) const quickly since the relevant hard propagators route to 
large momentum transfer H S/6 Q. All other sources of scale breaking by definition divide out 
via the nucleon form factors. 

The scaling behavior of the form factors shown in Fig. 2 bear out these expectations. Other 
QCD predictions for the leading power behavior, including pp + pp, ~rp + up, 7p + r+n, etc. 
are consistent with the predicted nominal scaling law at momentum transfer p$ i5 3 GeV’. 
Recent measurements of the basic QCD process 77 + z+z- at large angles agree with the 
QCD predicted scaling behavior for invariant mass W > 1.8 GeV. 

An essential question is whether QCD also correctly accounts for the normalization as well as 
the scaling behavior of high momentum transfer form factors and other exclusive process data. 

The 77 4 r+r-, K+K-g45 agree very well with the absolutely normalized QCD predictions. 

j45 J. R. Smith et al., SLAC-PUB-3205 (1983). 

26 



Meson form factor predictions for Q2F~(Q2) are within a factor or two of the QCD prediction 
using the most naive form of the meson distribution amplitude, i.e.: 4(z) = Cz(1 - 2). Since 
this distribution is relevant only at asymptotic momentum scales (where the leading anomalous 
dimension dominates), there is no conflict with existing data. 

---.-__ 
In the case of the nucleon form factor, the normalization of the.QCD prediction Q4G&Q2) N 
const is sensitive to three effects. 

1. The average interquark separation d, of the valence wavefunction: it should be empha- 
sized that GM(Q~) is proportional to the fourth inverse power of d,. 

2. The shape of the nucleon distribution amplitude #N(z;) especially near z; H 1. 
3. The use of the running coupling constant a,(Q’) at the correct scale in the 3q + 7+ + 3q 

hard scattering amplitudes. This removes an aaccidental” cancellation in G$Q2) when 
the asymptotic distribution amplitude #N(Z) = CZ~Z~Z~ is assumed. 

If one uses fixed coupling constant, together with a naive non-relativistic wavefunction with 
symmetric quark distributions and the standard rms radius N 0.8 fm, then the predicted 
normalization of Q4GG(Q2) is two orders of magnitude below experiment. tl& However, 
by taking into account the above three effects it is straightforward to fit the experimental 
normalization of GM as well as vW: at z --) 1 and the decay rate for $ -W pp. 

In our work we have noted that the valance wavefunction of the nucleon is likely to be much 
more compact than indicated by the physical proton radius as derived from an average over 
all Fock states. More precisely, we define the QCD Fock state expansion for the proton 
wavefunction at equal 7 = t+z on the light-cone and A+ = 0 gauge, at a given renormalization 
scale K. 

IP) = 

At small Q2 where the proton rms radius is determined (from 6 & F~(Q2)l~~=o) all Fock states 
contribute. At large Q2 where Q4pM(Q2) b ecomes nearly constant, the valence Fock state 
q,,,(z;, kli) is dominant. Since the higher Fock states are analogous to states containing 
a meson cloud, it is reasonable that the valence state radius (k:)&“’ is smaller than the 
total radius. In fact in the case of the pion, this statement can be demonstrated explicitly. 
Using normalization constraints from the decay amplitudes A- + p-u and z” + 77 we can 
determine the valence state probability and radius (PgqlI N i, (r2):~~Z H 0.42 fm).‘l’ This 
suggests that the nucleon form factors be parametrized with at least two components, one 
soft, falling at least as fast as (Q2)-3 and the other with a large > 1 GeV2 mass scale falling 
as (Q’)-’ asymptotically. It is in fact easy to find parametrizations of this type which fit the 
standard dipole form. 

d46 This problem with the normalization was discussed in Ref. 11, 28, and in a diflerent context by B. L. Ioffe 
and A. V. Smilga, Phys. Lett. u, 353 (1982). 
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More recently, the possibility of significant asymmetry in the z-distribution of the valence 
wavefunction of the nucleon has been investigated by Chernyak and Zhitnitsky’14 using the 
constraints of the ITEP sum rules. The result is the prediction that the u-quark with spin 
parallel to the proton carries H 2/3 of the nucleon momentum, leaving l/6 each for the other 

---two quarks. The predicted normalization for Q’GL and $4 pff is again in good agreement 
with the data, even using normal a valence state radius. The--actual solution for the nucleon 
form factor will presumably involve a combination of effects. A final resolution to the problem 
will require more phenomenological input, and actual solutions to the nucleon bound state 
wavefunction in QCD. Certainly at this point there is no evidence of any difficulty or conflict t117 

with the predictions of perturbative QCD for either the scaling behavior or the normalization 
of exclusive processes in the few GeV’ momentum transfer region. 

FUTURE DIRECTIONS 

QCD can be regarded as the underlying theory of nuclear phenomena in the same sense 
that QED is the basis for atomic and molecular physics. At this point we are only at the 
beginning of quantitative calculations, and further progress will require the development of 
new theoretical techniques for solving strong coupling theories, boundary condition models, 
etc. We will also need new experimental input, especially in the transition region between 
coherent and incoherent quark processes. At this point, theoretical progress is being made in 
the following areas: 

1. One can now find approximate analytic solutions to the light-cone equation of motion 
in the valence quark sector, thus allowing model computations of hadronic and nuclear 
wavefunctions, distribution amplitudes, and structure functions. Recently, together with 
M. Sawicki, we have developed fixed particle number equations analogous to the non- 
retardation approximation in atomic physics. Because this approach consistently re- 
stricts the equation to fixed particle number, non-analytic a~~spsA of the type derived 
by Karmonovti4s are avoided. 

2. The normalization of the deuteron form factor at large Q2 is a formidable though feasible 
task. The calculation of Ta(6q + 7’ + 6q) should be feasible using the methods of 
Farrar, Maina, and Neri.‘r3 The normalization of #d(zi,Q) requires a careful study of 
the six-quark evolution equation and matching to the non-relativistic regime. 

3. The above study also allows estimates of corrections to the reduced amplitude formalism 
and the effects of hidden color states. Recently we have examined the transition from 
reduced form factors to the low momentum transfer regime (Q2 5 ~M~BE) where the 
impulse approximation form becomes valid. More generally the reduced amplitude for- 
malism can be used to redefine the nuclear potential in such a way that nucleon structure 
is consistently removed. 

4. A systematic analysis of all sources of non-additivity in inelastic lepton-nucleus scat- 
tering, lepton pair production, and their effects on specific final states is needed before 
we have a clear understanding of the EMC effect. For example, one possible origin of 

j47 We thus differ with the conclusions of N. Isgur and C. H. Llewellyn Smith, Phys. Rev. Lett. 52, 1080 
(1984). See also N. Isgur, this volume. 

1148 V. A. Karmonov, Nucl. Phys. m, 331 (1981), BB, 378 (1980). 
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anomalous A-dependence is non-additivity of strange and other sea quarks in the nu- 
cleus, which will be apparent in the A-dependence of K- electroproduction. ‘lg The 
decrease of the mean value of x with increasing nucleon number impliesn4g by rotational 
symmetry a corresponding decrease of (ki)‘/‘. The decrease of the intrinsic transverse 

--I momentum should then lead to a contribution to the~average transverse momentum of 
lepton pairs produced in hadron-nucleus collisions decreasing-with A. 
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