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1 Introduction 

One of the main parameters that determines the next generation of high 

energy accelerators is the acceleration gradient. Recently there has been interest 

in the use of plasma density waves for obtaining high acceleration gradients. The 

Plasma Beat-Wave scheme due to Tajima and Dawson uses two beating lasers 

to excite the plasma at its resonant frequency.l The driven plasma provides an 

accelerating field that in principle can be of the order of several GeV/m.2-5 This 

scheme has also been modified in the Surfatron, 6-8 although the basic principle 

is similar. 

One of the complications of the Plasma Beat-Wave scheme is the need for 

high power, high quality lasers. Recently it has been suggested that the driving 

lasers could be replaced by a driving electron beam.g-10 In the simplest case a 

single driving electron bunch enters a plasma and excites a plasma density wave; 

a second beam trailing the driving beam is then accelerated provided that it 

is at the correct phase on the plasma wave. It is also possible to have several 

appropriately spaced bunches in the driving beam. 

This idea is similar to various wake field accelerator schemesll with the 

plasma playing the role of the cavity or accelerator structure. In this paper 

we analyze the idea suggested in Refs. 9 and 10 in more detail and point out 

the similarities with wake field schemes suggested in Refs. 11-15. After we re- 

view some basic results of wake fields, we calculate the wake field in a plasma 

and show that the plasma wake obeys the general rules of all wake fields. We 

then address various other accelerator physics issues associated acceleration in a 

plasma density wave. Lastly we give some numerical design examples. 

2 



2 Energy Transfer in Co-Linear Wake Field Accelerators 

In this section, we discuss a general property of energy transfer in wake field 

accelerators, which is valid whether the source of the wake field is a metallic 

cavity or a plasma. The definition of wake field accelerators used in this paper 

includes only those accelerators in which the stored energy is zero before the 

driving beam arrives. Although the analysis below can be extended to a more 

general case, we will specialize to the co-linear case: the driving beam and the 

trailing beam take the same straight line path through the wake field medium. 

We will then show that one basic limitation of co-linear wake field schemes is 

that the energy gained by a particle in the accelerated beam is severely limited 

by the energy per particle of the driving bunch. 

Consider first a relativistic bunch of electrons entering a structure with a 

wake field function W(y). W(y) is a characteristic function of the structure 

independent of the beam and is defined as the longitudinal decelerating field 

induced by a unit charge at a distance y behind it. The energy change of the 

bunch per unit length due to its own wake is given by 

d(NP%) 
dz 

= -Nf e2 W(0) , 

where Nr is the number of particles in the bunch and Er is the energy per particle. 

Here we have regarded the bunch as a rigid collection of particles which has zero 

length. As we will see later in this section and in Section 4G, these restrictions 

can be removed. 

If a second bunch is injected at a distance y behind the first bunch, it will 

experience the wake field left by the first bunch as well as its own wake field. 

Using linear superposition the energy change of the trailing bunch is given by 

d( WG) 
dz 

= -Nz e2 W(0) - NlN2 e2 W(y) , (2) 

where Nz and E2 refer to the number of particles and energy per particle of the 

trailing bunch. The second term is the contribution from the wake field of the 
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first bunch. Due to energy conservation the total energy of the system of two 

beams must not increase, i.e. 

(Nf + N;)W(O) + NlN2 W(Y) 2 0 (3) 

Since this must hold for all Nr and N2, the accelerating wake field due to the 

first bunch at the second bunch [-W(y)] must satisfy 

W(Y)] I 2W(O) - (4 

Therefore the acceleration gradient seen by a single particle in the trailing bunch 

must satisfy 

G = z 2 (2Nr - N2)e2 W(0) . 

To calculate the maximum total energy gain by the trailing bunch let us 

assume that the leading bunch can transfer all of its energy to the wake field. In 

this case the leading bunch stops in a distance L, 

L = Nl e2 W(0) ’ (6) 

Note that L is inversely proportional to Nr. An intense driving bunch produces 

a high accelerating gradient for the trailing bunch, but the acceleration lasts only 

for a short distance. 

Using Eqs. (5) and (6)) the energy gain for a particle in the trailing bunch 

satisfies 

AE2=GL<E1 

Thus we obtain the well known result: in a co-linear wake field accelerator 

the total energy gain per particle of the trailing bunch is less than twice the 

initial energy per particle of the driving bunch. This is a severe limit on co-linear 
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wake field accelerators. Notice that the only assumptions necessary to derive this 

result are conservation of energy, linear superposition and a rigid point bunch. 

The above results also hold for a plasma provided we are in the linear regime. 

The inequality (Eq. 7) can be made an equality for a single mode lossless 

medium in which the wake field oscillates with a single frequency behind the 

driving bunch. In this case the energy transfer efficiency from the driving bunch 

to the trailing bunch is given by 

A(N&) N2 

’ = NIEl = K 

In such a case the maximum efficiency is achieved by choosing N2 = Nr. The 

energy of the leading bunch is then completely transferred to the trailing bunch 

and no wake field is left after the trailing bunch. 

One might ask if the situation would improve if there were multiple driving 

bunches preceeding the bunch to be accelerated. Naively one might expect that if 

the bunches were spaced by the wavelength of the wake field , the field would grow 

linearly with the number of bunches. However the situation is again modified 

because a bunch sees not only is own retarding wake, but also the wake of all 

preceeding bunches. If the bunches are spaced by one wavelength of the wake 

field oscillation, the second bunch comes to a stop in l/3 the distance travelled 

by the first bunch, the third bunch stops in l/5 that distance, etc. For the case 

of M bunches spaced by one wavelength, the energy gain of the trailing bunch 

to be accelerated is limited by 

AE2<E1 F 2-3 
k=l 2k - 1 NI 1 ’ (9) 

where Nr is the number of particles per driving bunch. Thus the total energy 

gain increases logarithmically with M in spite of the fact that the longitudinal 

electric field at the very beginning of the device grows linearly with M. 
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Actually there is a better method to extract energy from the M bunches 

for a single frequency system. The object here is to prevent the deceleration of 

a driving bunch by the field left by the preceeding bunches. For example, for 

M = 2 this can be done provided the second bunch follows the first by l/4 of the 

wavelength of the wake field. In this case the fields add such that the maximum 

amplitude increases to t/z times the field induced by one bunch, and the phase of 

the field is shifted by 45 degrees. In addition both bunches lose all their energy 

in the same distance L. Generalizing this to M bunches one must inject the Mth 

driving bunch at a phase IBM relative to the first bunch given by 

&,f = 5 tal-i-1 , M>2. 
n=2 

(10) 

This yields a resultant phase of the field relative to the field of the first bunch 

M 

9 field = c tan-r 
n=2 

(11) 

After M bunches of energy El have filled the device, the maximum energy gain 

for a trailing bunch is 

a&=m(2&4-2). (12) 

The energy gain in Eq. (12) is much more favorable than Eq. (9), but it is far 

from being linear in M. 

So far we have assumed rigid driving bunches of zero length. For the case of 

finite length bunches, we must consider the fact that particles at different longi- 

tudinal positions within a given driving bunch experience different decelerating 

fields. Some of the previous equations must be modified to take this fact into 

account. To do so, we will divide a bunch into series of slices representing dif- 

ferent longitudinal positions. The leading slice sees no induced wake field and 
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hence never comes to a stop. The middle slice comes to a stop in the distance L 

given by Eq. (6). Th e s 1 ice at the tail of the driving bunch sees twice the average 

induced wake field and stops in a distance L/2. In this distance the maximum 

energy gain for a particle in the middle of the trailing bunch is one-half that 

given by Eq. (7)) and the efficiency is one-half that given by Eq. (8). 

If we assume that by some means the particles in the driving bunch are 

removed from the plasma just as they come to a halt, then the maximum energy 

per particle that can be gained by a trailing test particle in distance z, > L/2 is 

AE,=E++ln~) . (13) 

Thus, for non-rigid bunches, the factor of 2 is replaced by [1 + f32(22,/L)]. Al- 

though this appears to be better for large z,, in practice the logarithm increases 

too slowly to be of use. 

If the number of particles in the accelerated bunch is comparable to that in 

the driving bunch, then the induced field from the accelerated bunch must be 

subtracted from AE2 in Eq. (13) t o obtain the net acceleration. The effect of 

the finite bunch length will also lead to an energy spread within the accelerated 

bunch. In analogy to the case of a bunch being accelerated by an rf wave in a 

conventional accelerator, this beam loading energy spread can be compensated 

to some extent by adjusting the position of the bunch with respect to the crest 

of the plasma wave. 



3 The Plasma Wake Field 

To understand the basic mechanism, we analyze explicitly in this section 

the response of a cold plasma to a driving bunch by calculating the wake field 

for three cases: a one dimensional nonrelativistic plasma, a three dimensional 

nonrelativistic plasma, and a one dimensional relativistic plasma. In all 3 cases 

the plasma is a single frequency medium and Eq. (7) with an equal sign applies. 

CASE 1. ONE DIMENSIONAL NONRELATIVISTIC PLASMA 

The nonrelativistic fluid equations are 

$+v.(nq=o 
(14 

These together with Maxwell’s equations form the system of equations to be 

solved. 

Consider a plasma with density no, an injected bunch with density nb, and a 

density perturbation nl. To linearize we assume 

721 << no (15) 

and that the quantities v’, ,!?, and g are all first order perturbations. Keeping 

only linear terms in Eq. (14) we have 

(16) a?7 ef -- at-m’ 
We see that only the electric field appears in first order, and only one of Maxwell’s 

8 



equations is necessary 

v - f = 4 ?r e(nl + nb) . (17) 

Combining Eqs. (16) and (17) yields the equation for the density perturbation, 

a2nl 
dt2 + Wp” nl = -f-d: nb , (18) 

where wP, the plasma frequency, is given by 

wp~ [““i no]1’2 . 

So far we have not restricted the system to be one dimensional. 

For the one dimensional case consider an external beam given by 

nt, = u b(z - vb t) . (19) 

where o is a uniform surface number density and 6(z) is the Dirac delta function. 

The beam is moving with velocity Vb. Although the plasma has been assumed 

nonrelativistic (v < c), we have not assumed that of Vb < c. Changing variables 

to 

y=vbt-2, (20) 

a2nl 
dyz + k2 n1 = -k2 o 6(y) 

Eq. (18) becomes 

(21) 

where 

Integrating over y = 0, we find 

an1 O+ 
ay o- 

= -k2 u . (22) 

At all other values of y the density perturbation obeys the homogeneous equation 
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of motion. Thus the density perturbation induced by the injected beam is 

-ka sin ky Y>O 
721 = 

0 y<o * (23) 

There is no plasma wave ahead of the driving beam. This is due to the fact 

that the plasma wave has zero group velocity; it does not propagate in space 

and therefore does not overtake the driving beam even if the driving beam moves 

nonrelativistically. Mathematically, this is manifested by the absence of spatial 

derivatives in Eq. (18). 

From Eq. (17) the electric field is 

-47r e u cos ky Y>O 
&= -2~ e u y=o (24 

0 y<o. 

& is zero in front of the driving beam because the net charge in the plasma 

obtained by integrating nl is equal to -ea. Thus ahead of the beam the field 

from the perturbed plasma charge density exactly cancels the surface charge field 

of the driving bunch. 

Notice also that in Eq. (24) the electric field at y = 0 is l/2 of the peak 

value. This factor can be checked by energy conservation as follows. The energy 

deposited per unit length by the exciting bunch can be calculated from the peak 

electric field in the wake, 

E2(peak) 
87r 

= 2 7r e2 u2 . (25) 

On the other hand the energy lost by the driving beam is 

-AEI = & (0) ea=27re2a2 . (26) 

Thus energy conservation is satisfied. Note that this factor of l/2 is simply the 

inverse of the factor of 2 discussed in the first section. In addition note that the 
. 
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energy deposited by the driving beam in the plasma depends only on the surface 

density of the driving beam, O, and is independent of the plasma density. This 

does not mean that the plasma density is arbitrary. It must be large enough 

to satisfy the linearity condition in Equation (15). This can be conveniently 

rewritten as 
1 
z 720 m vi >> 

& 2 (peak) 
87r 

= i no m v2(peak) . (27) 

The peak plasma electron velocity produced by the field must be much smaller 

than the beam velocity. 

CASE 2. THREE DIMENSIONAL NONRELATIVISTIC PLASMA 

We now consider a cylindrically symmetric leading bunch with density given 

by 

nb = u(?-)6(z - vbt) . (28) 

Equation (18) can be solved just as in the one dimensional case; the perturbed 

density is 

w(r) = 
-ka(r) sin ky Y>O 

0 y-co. (29) 

Note that the r dependence of nl is equal to that of the driving beam. This is 

again a consequence of zero group velocity. Introducing the electrostatic potential 

4, we must solve 

;-&-$,+g$= -h e(nl + nb) . (30) 

The electric field is then given by 

E=-hp. (31) 

Effects due to the magnetic field are second order and again are ignored as in the 

one dimensional case. 
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To be specific we will use a parabolic distribution for the surface charge 

density of the beam; 

a(r) = gal - r2b2> 
{ 

r < 
0 ?-> 

It is then straightforward to show that the potential 

by 

a 

a 
(32) 

behind the bunch is given 

q5 = R(r) sin(kz - wpt) 

with 

Kz(ka) Io(kr) + ’ 2 r2 2-w-9 ’ r-ca 
(33) 

Iz(ka) Ko(kr) , r>a 

which yields the electric fields 

&z = -k R(r) cos(kz - wpt) , r < a 

-16eN 
&r = $ Kz(ka) Il(kr) - $} sin(kz - wpt) , r<a (34 

where In and Kn are modified Bessel functions. Notice that there are both 

longitudinal (accelerating or decelerating) and radial (focusing or defocusing) 

electric field components. Figure 1 shows that over l/4 of the plasma oscillation, 

the field is both accelerating and focusing. 

It is interesting and useful to calculate the fields for ka >> 1 and for r < a. 

Since the modified Bessel function K2 is exponentially small in this case, we find 

-8eN 
&z - ,2 cos(kz - wpt) 

. (35) 

In this case the longitudinal field at r = 0 is identical to the one dimensional 

calculation and the radial field is linear in r. It is important to note that if a = A,, 
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the plasma wavelength, then ka = 27r, and Eqs. (35) are a good approximation 

to Eqs. (34) for small values of r. 

I I I I I 
0 7T/2 7r 3W2 27T 

9-94 ky 4907Al 

Fig. 1. The longitudinal and radial electric fields 
in the plasma wave. The relative size of the two 
fields depends upon the radial position, r. 

CASE 3. THE NONLINEAR ONE DIMENSIONAL RELATIVISTIC PLASMA 

It has been shown in Refs. 16 and 17 that it is possible to find one dimen- 

sional analytical solutions to describe a nonlinear free plasma oscillation using 

the relativistic fluid equations and Maxwell’s equations. Since the exciting beam 

is a delta function, it is also possible to find analytical solutions for the wake func- 

tion. From Ref. 17 the equations governing a free nonlinear plasma oscillation 

in one dimension are 

n0v0 n=- 
VI-J - v 

d2 c2 - vov [ 1 w;v 
dy2 dm = ~ 210 - v 

(36) 

where 

13 



vo is the wave phase velocity 

V is the velocity of the plasma electrons 

n is the density of the plasma electrons (37) 

n0 is the ion density . 

For the case of an exciting beam the phase velocity vo is equal to the velocity of 

the driving beam Vb. Furthermore, Eq. (36) becomes 

(38) 

If we substitute Eq. (19) for the beam density and integrate over y = 0, we find 

(39) 

On the other hand for the homogeneous equation there is an invariant rrn 
which satisfies 

yrn= &p+i$ (40) 

rrn is the maximum energy of the plasma electrons in units of the rest mass. 

Initially there is no plasma wave and 7m = 1. At y = 0+ we can calculate 

the invariant using Eqs. (39) and (40); we obtain 

The electric field behind the exciting bunch written in terms of v and rrn is from 
. 
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Refs. 16 and 17 

[ d 1 112 

&(y)=fJZyf rrn- 
1 

* 1 - v(y)2/c2 

Thus the maximum electric field is given by (v = 0) 

& max = fi %[7m - l]li2 = 4iT e 0 . 
e 

(42) 

Comparing this result with that obtained for the one dimensional linear case 

we see that the peak electric field is unchanged! This is true even though the 

oscillation is nonlinear, and the plasma oscillation frequency depends on rrn. 

To understand this result, first note that both the electric field and the kinetic 

energy of the plasma electrons are zero in front of the driving bunch. As for the 

linear case, this follows from the fact that 

co 

s 
(n - no) dy = -u . 

0 

(44 

Immediately behind the driving beam the plasma kinetic energy has not changed, 

but the electric field has changed discontinuously to its maximum value, -4reu. 

The shape of the longitudinal wave and its frequency are determined by the 

plasma dynamics; however, the energy density in the plasma wave is completely 

determined by the field immediately after the exciting bunch. Since this nonlinear 

plasma wave is periodic, the electric field reaches its maximum periodically. 

The result for the maximum electric field in Eq. (43) does not mean that 

the plasma density is arbitrary. Equations (36) are for wave solutions with phase 

velocity Vb. However, there are singularities in Eqs. (36) if the plasma electron 

velocity v is equal to Vb. This indicates that the wave assumption breaks down 
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at this point. If we restrict v to be less than Vb, and write the condition in terms 

of energy density in the wave, we find that the plasma density must satisfy 

&j (peak) 
no(7b-1)> 8rmC2 =no(7m-l) - [ 1 (45) 

Note that this is just the relativistic generalization of Eq. (27) for the nonrela- 

tivistic plasma. 

4 Some Other Accelerator Physics Issues 

In this section we discuss some other accelerator physics issues which are 

relevent to the plasma wake field accelerator. 

We will assume that the accelerator is made up of many stages. The energy 

gain of each stage is assumed to be small compared with the total gain in the 

entire accelerator. Each stage is driven by one driving bunch. For simplicity 

we will assume that all the driving bunches are identical in energy, number of 

particles and transverse size. We will not consider cases in which these quantities 

vary from stage to stage, although this might be desirable for the optimization of 

some parameters. Note however that the accelerated bunch energy changes from 

stage to stage, and thus its transverse size is adiabatically damped. (See Section 

B below.) 

A. Focusing 

Due to the radial field given in Eq. (34) th ere is focusing (or defocusing) in 

the transverse dimensions. The magnitude and sign depend upon the phase at 

which the accelerated bunch resides in the plasma wave. In cases of interest, the 

accelerated bunch and the phase velocity of the plasma wave (equal to the velocity 

of the driving bunch) are so close to c that the phase slippage is acceptable (see 

Section 4D). Therefore, one can select the desired focusing by the position of the 

bunch on the wave. Of course, there is a trade off between the accelerating field 
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and the focusing field. It is useful to calculate the ‘beta-function’ of this focusing 

system, defined in this case to be the wavelength/&r of the transverse oscillation. 

The differential equation governing the transverse oscillations of a highly 

relativistic particle is 

d2x e Ez - = 
dz2 ym c2 (46) 

where &Z is the electric field in the transverse dimension x, and z is the length 

along the linac. If we consider small amplitude oscillations, then from Eq. (35) 

we find 

d2x 

4 dz2 + 
16e2Nsin 4 x = o 
ka4 7 m c2 I 

, (47) 

where 4 is the phase along the plasma wave. Identifying the coefficient of x above 

-with pm2 yields 

P =; [reN7;n +lLi2 * (48) 

The beta-function therefore scales as 7 ‘I2 if a, k, N, and C$ are held constant 

during acceleration. 

B. The Maximum Efficiency 

It is useful to neglect the effect of the finite bunch length of the trailing 

bunch and consider it rigid to calculate the maximum possible efficiency. From 

the equation for the longitudinal accelerating field (Eq. (35)) it is obvious that 

the trailing bunch should have a size somewhat smaller than the leading bunch. 

On the other hand this size does not stay constant during acceleration. If we 

assume that the initial beam size of the trailing beam is some fraction cy of the 

leading beam, then the beam size at other points along the accelerator is given 

by 

0 

114 
bxcra 2 . 

7 
(49) 

. 
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This is true because the beam size is given by d/3 . emittance, while 

and the emittance 
1 

6 cc-. 
7 

The energy gain per stage of the trailing beam is 

Integrating this over the accelerator length Lt,,t, we obtain 

L tot 
El AE2=I N2 2-- 

cU2Nl -) 
1 +gs ds 

0 

where L is the length of each stage and 

7 -=1+gs. 
7i 

Integrating the above expression yields (7f >> 7i) 

ElLtot AE2=p 
L C 2- N2 

cx2 Nl 
2 
3 

7f l/2 01 ri * 

The energy transfer efficiency which is given by 

N2 AE2 L 
q=xqEILt,t ’ 

(50) 

(51) 

(54 

(53) 

(54 

(55) 
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is maximum when 

and 

112 
(56) 

(57) 

Note that this efficiency might be improved by decreasing the transverse size of 

the leading bunch from stage to stage. This is not considered here for simplicity 

and also because it may cause other problems. 

C. Radiation 

The radiation due to linear acceleration is very small; however, since the 

focusing fields in the plasma can be large, one must also include the radiation 

%ue to the local bending of the focusing fields. The formula for the energy loss 

per unit length due to a local bending radius p is 

dE 2 e2y4 --- --3 p2 ’ dz (58) 

For motion in a focusing system this is replaced by 

(59) 

where b,,, is the rms radius of the accelerated bunch. This energy loss should 

be small compared to the acceleration gradient. It is interesting to note that 

if the integrated loss is greater than the injection energy, the beam will damp 

transversely. 

D. Phase Slippage 

Phase slippage can occur in two ways in a plasma wake field accelerator. 

1. The driving bunch and the accelerated bunch have different energies and 

hence slightly different velocities. 
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2. The transverse motion of the accelerated bunch leads to a path length 

change. This effect cannot be compensated at each stage because different 

particles in the bunch travel on different paths. 

In the first case the relative slip along the plasma wave is given by 

AL = f j [ur(s) - v~(s)] ds 
0 

(60) 

where L is the length of one acceleration stage, and subscripts 1 and 2 refer to 

the driving and accelerated bunches respectively. Integrating for velocities close 

to c yields 

1 
where subscripts f and i refer to final and initial respectively. To avoid phase 

slip over a stage of length L, we need AL much less than the plasma wavelength 

A,, i.e., 

In practice the first term in Eq. (62) dominates. This yields a restriction of the 

final energy of the driving beam given by 

L 
7lj >> 1 - 

2 71; Ap * (63) 

In the second case, the change in path length due to the transverse oscillations 

is given by 

where x’ = dz/ds is the local slope. Note that we must consider the change in 

path length over the total length since its effect can not be compensated for all 
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particles at each stage. Using Eq. (47) to find x’ and expanding the square root 

for small x’ yields a path length change 

AL Sz7i 
- = 2@7f Ltot (65) 

where /?i is the beta-function at injection and 6, is the peak transverse oscillation 

amplitude at injection. The factors of 7i and 7f come once again from the 

transverse damping of the accelerated beam. To avoid phase slip this path length 

change should also be small compared to a plasma wavelength, i.e. 

7i ii2 A, -Yj<<----- . 
27f Pi Got (66) 

If conditions (62) and (66) are satisfied, one can neglect phase slippage between 

-the accelerated beam and the plasma wave. 

E. Transverse Variation of the Accelerating Field 

From Eq. (35) ‘t 1 is evident that for a driving bunch with finite transverse size, 

the longitudinal field varies transversely. This means that particles performing 

large oscillations in the focusing field see on the average a lower accelerating 

gradient than those on axis. This leads to a decrease in the average energy gained 

by the trailing beam and to a spread in energy. If we average the acceleration 

gradient over the transverse beam distribution (assumed parabolic) and integrate 

over the accelerator length, we find a shift in average energy for a trailing beam 

of maximum initial radius bi, 

Eave=E(l-ic)‘(#“) 

and a spread in energy given by 

(Lz),,. = q (!i)’ (c)l” . 

(67) 

(68) 
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F. The Transverse Emittance 

Assuming that the injected beam is matched to the focusing properties of 

the plasma wake, the transverse emittance of the accelerated beam at injection 

is given by 

Ei=-=4cr: 2 2 [“N;; 41”’ 

while at the end of acceleration, the emittance is 

7i Ef = q - . 
7f 

(69) 

(70) 

The emittance should be kept small enough that it can be focused to a sufficiently 

small spot size by the final focus system of the high energy collider. 

=G. Beam Loading 

As we have shown previously, a plane of charge moving through a plasma 

leaves behind a wake field which varies as 4zeacos Icy, while ahead of the charge 

the field vanishes. This is similar to the case for a velocity of light point charge 

moving through an accelerating structure with metallic walls. The beam induced 

longitudinal wake field vanishes ahead of the charge because of the causality 

condition, while behind the charge the field varies as cos k,y for the nth mode. 

In this case, if a longitudinal charge distribution is considered rather than a point 

charge, a convolution of the wake field for a point bunch with the charge density 

distribution is required to obtain the wake field. For the case of an electron 

sheet with density distribution a(y) moving through a plasma, the analogous 

beam-induced field is 

Y 
&b(y) = 47re 

J 
dy’ o(y’) cos k(y - y’) . (71) 

As an example, consider the case of a rectanglar charge distribution which 

has a length which is small compared to the plasma wavelength and 00 is the 
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total number of particles per unit area in the distribution. The beam induced 

field rises linearly from zero at the head of the bunch and reaches 47r e 00 at the 

tail. The beam loading as described by Eq. (71) has two effects. First, different 

particles in the driving bunch experience different rates of energy transfer to the 

plasma and therefore travel different distances before they come to a stop. The 

tail particles are stopped earliest while the head particles do not stop at all. This 

effect was discussed in Section 2. 

Another beam loading effect occurs when the driving bunch length is compa- 

rable to or longer than the plasma wavelength. Then the convolution (71) yields 

a peak wake field that is much reduced as compared with the wake produced by 

a short bunch of equal intensity. For a rectangular distribution of total length 

24 the reduction factor for the maximum amplitude reached by the wake be- 

F hind the bunch is sin(ke)/kL However, the ratio of the maximum accelerating 

wake behind the bunch to the maximum accelerating wake within the bunch (the 

transformer ratio) is always less than or equal to 2. This limit on the transformer 

ratio is valid for any symmetric bunch distribution. 

For an asymmetric bunch distribution in which the bunch current rises grad- 

ually from the front of the bunch toward the peak and then falls off more sharply 

behind the peak, the transformer ratio as defined above can be larger than 2. 

However for a given intensity the peak wake field is again much reduced as com- 

pared to the case of a short bunch. This effect could be exploited by increasing 

the number of particles in the bunch while using longer asymmetric bunches. In 

this way it should be possible to decrease the energy of the driving bunch while 

maintaining the same energy gain for the trailing bunch. We will not, however, 

exploit this possibility in the following section. 

In addition to the longitudinal beam loading effects, there are also transverse 

effects. The head of the driving bunch experiences no transverse focusing or de- 

focusing fields while the tail of the bunch sees the transverse focusing wake fields 

left by all of the preceeding particles. The beta-function describing this focusing 
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action is given by Eq. (48), where for a rectangular bunch with a bunch length 

2e, the factor sin 4 is replaced by (sinkl)2/kL In order to have the transverse 

behavior of the head and tail of the driving bunch similar, we again need to have 

a bunch length much shorter than the plasma wave length. 

5. A Numerical Conceptual Design 

It is an interesting exercise to imagine a 1 TeV accelerator 1 kilometer long 

which uses a plasma wake field to generate the longitudinal fields for acceleration. 

In this case the acceleration gradient necessary is 

G = 1 GeV/m . (72) 

From the discussions in the previous sections, it is clear that if the driving 

bunches all go through the same plasma, the maximum energy gain of the ac- 

celerated particles increases only as the square root of the number of bunches. 

If however each driving bunch excites a separate accelerating section, then the 

energy gain for the accelerated particle is proportional to the number of driving 

bunches. With this in mind we consider an accelerator made up of sections of 

length L with one short driving bunch for each section. If we elect not to use 

the slow logarithmic increase in the energy gain shown in EJq. (13), then each 

driving bunch must have an energy 

El >GL . (73) 

To be specific we let 

L=5m. 

Thus we require 200 driving beams of energy 

El > 5 GeV . (75) 

In addition we would like the driving beam to lose 5 GeV in the 5 meters to yield 
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the required acceleration gradient. If we use bunches with 

Nl = 5 x lOlo , (76) 

then from Eq. (35) with r = 0, 

4r,N 
$e &z(O) = 27r e2 Q = - a2 mc2 . (77) 

Thus, we require a beam radius of 

a = .76 mm . (78) 

‘To obtain an approximately one dimensional plasma it is necessary to restrict 

the plasma wavelength to 

A, 2 .76 mm (79) 

which implies that 

no 2 1.9 x 1015/cm3 . (80) 

One could produce a train of driving bunches with only one linac, and then 

bend the bunches onto the straight line of the wake field accelerator with proper 

path lengths to give the correct timing. In this regard it is interesting to note 

that the necessary precision for bunch placement is much less than a plasma 

wavelength. 

To set the size of the accelerated bunch we restrict the rms spread in energy 

to 1% . This yields a bunch radius of 

2 
114 

b= .46 a = .35 mm r; 
7 0 

114 
. 

7 
(81) 
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The beta function of the transverse focusing from Eq. (48) is 

p N 1.5 m;T’7f]$ . 
sin 

The radiation from the focusing fields is then 

$ N 5.7 MeV/m [7/7f]3/2 sin2 4 . 

The phase slip in Eq. (65) can now be calculated, yielding 

AL N .03 mm [sin 41 . 

Using Eq. (69) th e normalized emittance is given by 

hormalized = 7 b2/P 

F N 8.2 x lo-* m dGG 

(82) 

(83) 

(84 

(85) 

N 1.6 x 10m2 m dw 

where we have taken 10 GeV to be the injection energy and 1 TeV to be the final 

energy. For reference, the normalized emittance for the SLAC Linear Collider is 

~SLC = 3 x 10m5 m . (86) 

Since we want the radiation and phase slip to be small and since for colliding 

beams we need to keep the beam emittance small enough for the beam to be 

focused to sub-micron size, we should restrict the phase 4 on the plasma wave; 

sin 4 < 1 . (87) 

In order to have the same emittance as the SLC, for instance, we need to choose 

sin 4 = 3.5 x 10v6 . (88) 

Such an accurate phase requirement would indeed be difficult. The bunch would 

have to have a microscopic length. However, we do not think a discussion of de- 

tailed optimization is appropriate here; the question of the transverse emittance 
. 
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should be addressed more completely when the design becomes more sophisti- 

cated. 

Finally we can calculate the maximum efficiency using Eq. (57); we find 

. 112 
7jmaz N -21 ( ) c = .021 

which is not a very high value. 

6 Conclusion 

In the previous sections we have addressed many accelerator physics issues 

-associated with the plasma wake field accelerator. There were several key points. 

The plasma wake field is subject to the same limitations as the wake field in 

a metallic structure. In all practical cases with short driving bunches this limits 

the energy gain of a trailing particle to about twice the energy of a particle in 

the leading bunch. This limitation led us to consider a multistage design with 

one driving bunch per stage. Note that in the wake field accelerator the leading 

bunch is used to obtain a high field; if there is already a field in the plasma or 

structure and the bunch is used to sustain that high field, then the results would 

be quite different. This case is treated in a future paper. 

The plasma wake field was calculated for several interesting cases. It is clear 

from these calculations that, in order to keep radial fields low and longitudinal 

fields high, it is necessary that the radius of the exciting beam be the order of or 

greater than the plasma wavelength. In addition, the bunch length of both the 

driving bunch and the trailing bunch must be much less than the plasma wave- 

length. Finally, the nonlinear relativistic plasma wake field calculation indicates 

that for a given driving bunch, the peak longitudinal electric field obtained is not 

improved by nonlinear oscillations. 
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The finite transverse size of the exciting bunch led to a transverse variation 

of the longitudinal accelerating field and, more importantly, to radial transverse 

focusing. With these transverse fields in hand, it was possible to address many 

issues: synchrotron radiation, phase slippage, energy transfer efficiency, beam 

loading and transverse emittance. 

Finally, a numerical conceptual design was given. The accelerating fields 

obtained are impressive, the order of 1 GeV/m, and the driving bunches to 

obtain these are similar to the SLC bunches in transverse size and number of 

particles although the bunch length must be a good deal less. There are also 

potential difficulties; the bunch length must be very short and the efficiency is 

rather low. However, the design given here is certainly not optimum and these 

problems might have solutions. 

The comparison of the plasma wakefield accelerator with the Plasma Beat- 

Wave scheme should now be quite straightforward. Many of the issues addressed 

here are independent of the method used to obtain the plasma density wave. 

At first glance, a comparison of the results here with those obtained in Ref. 3 

indicates that the plasma wakefield accelerator is at least as interesting as the 

Plasma Beat-Wave scheme and may have decided advantages. 
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