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1. INTRODUCTION 

Remarkable progress has recently been made in the analytic computation 

of multiloop Feynman diagrams. In particular, multiloop Feynman integrals 

have been evaluated via Gegenbauer polynomial x-space and pspace techniques 

(GPXT and GPPT respectively) [I] an via integration by parts [2]. The GPPT d 
has been used with success in computing 

- the O((r3) photon renormalization constant [3]; 

- the hyperfine splitting in positronium j4]. 

Alternatively, GPXT has found even more usefulness in computations. It’s con- 

quests include 

- the 3 loop contribution to btot(e+e- + hadrons) [5]; 

- the 4 loop /? function in $4 theory [6]. 

As a consequence of the translational invariance (in z or p space) of dimen- 

sionally regulated integrals, a straightforward recursion formula has been derived 

for multiloop massless propagator-type graphs [2]. This method is defined from 

a simple integration by parts. It has been used to reduce the complexity of many 

of the cumbersome GPXT calculations. In particular, the 5 loop contribution to 

the anomalous dimension in +4 theory has been evaluated analytically via the 

integration by parts technique [7]. 

Currently, the computation of a given multiloop massless propagator-type 

diagram involves using the integration by parts method to reduce it to a sum of 

primitive plus nonprimitive[lI * m t egrals. The remaining nonprimitive terms are 

much easier to evaluate via GPXT than was the original expression. 

The general applicability of the recursive technique has been restricted be- 

cause of the requirement that all masses in a given integral are to be ignored. 

Levine and-Roskies [l] have used GPPT alone t,o evaluate massive sixth-order 

I~]A particular integral is called nonprimitive if it cannot be evaluated via a 
repeated application of a 1 - loop formula. 
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vertex graphs in QED. However, in their calculation they set the photon mass to 

zero and as such avoid the complicated square root integrands normally associ- 

ated with massive GPPT. Recently, the author has discovered a way of extending 

the integration by parts method to include mass. The method has been used 

with considerable success in computing two loop massive gluonic corrections to 

the electromagnetic polarization tensor [8). 

Because this new technique complements the recursive method it reduces the 

role of GPPT or GPXT to integrals which are easy to evaluate. It should be 

said at the outset that one possible disadvantage of the method, as currently 

formulated, is that it only allows one to isolate particular [en(~2/m2)]“/(~2/m2)b 

behavior (a and b positive or negative constants). 

2. THE MELLIN TRANSFORM TECHNIQUE (MTT) 

Consider a given finite scalar12) multiloop Feynman integral with N massive 

and M massless propagators. The propagators all have arbitrary multiplicity. 

Following Itzykson and Zuber [9], we write in n dimensional Euclidean space 

where we assume one external momentum q2 and one mass scale m. V and I 

121The requirement that the lines be scalar is only a trivial restriction used to 
simplify the presentation. The fact that the integral be finite is a necessary 
condition for the method to work. Therefore, the MTT is to be applied only 
after appropriate renormalizations have been performed. This point will be 
elaborated on later in the present work. It is assumed I(q) does not possess an 
expansion about m = 0. 
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denote the number of vertices and internal lines respectively. 

(-)I if the vth vertex is the starting (ending) 

Eve = point of the line E 

0 if c3 is not incident on v 

tv denotes the sum of incoming momenta at the vertex v and an overall momen- 

tum conservation is assumed. Defining the dimensionless variables 

eq. (1) becomes 

I(s) = (m2)Y SF /n N dnKe m2 pc 1 --- 
e=l (2rP ( ) l+sK;) 

PL 

I C.PKp PC 
X II 

P=l+N (2n)n 
(2) 

x il WV @wJ - i %e Ke) 
e=i 

where L denotes the number of loops. 

The product of massive propagators may now be expanded in terms of partial 

fractions. 

I(s) = (m2)q 8% 
/ 

3 . . ..s (m2)-P1-...-PN 

API(Kf, . ..K.) + 
(I+ SK@ “* 

+ A1(K& . ..K$ + 
(I + SK;) 

+ Jpj(Kf, -a-K;t) 

‘.’ (I+ sKj”,” 

x ii1 PV fP (G - f: Eve Ke) 
e=i 
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where the coefficients AP1(Kz, . ..K&). . . . . are rational functions of Kf, . ..K& [lo]. 

The Mellin transform [ll] and its inverse are defined from 

i(a) = /m ds P-l I(s) 
0 

(44 

I(s) =& / da sa j(o) 
o-i00 

W) 

(a is chosen so that I is analytic along the contour). Performing the s inte- 

gration over eq. (3), 

n 1 n N &) = / g&...+$ . . . . 

x A,,(K,2...K;)r(+f - PN+~ - . . . - PI - a)r(pl + a + PN+l + . . . + PI - 9) 
(K@%V+l --...--PZ--cr I'( pl) 

+ . . . . 

+ Jl(Kf...K&)I’(~ - PN+l - . . . - PI - a)r(l+ 0 + PN+l + +.a + PI - 9) + 
(Kj@-PN+l=-PZ-a 

. . . . 

x fil W” P (G - 5 eve Ke) 
e=i 

(5) 
The massive Feynman integral has been transformed into a sum of massless Q- 

space Feynman integrals. The mass parameter (or equivalently s), has been 

converted to cr; a power of the massless propagator. The one complication which 

remains has to do with the coefficients Ap,(Kf...K&), . . . . Aside from trivial nu- 

merator factors, 

Jpi(K~*‘*K~) - (K,2 _ @)poweq . ..!(K& - Kj2)power~ 
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Therefore, for N 2 2 the given integral I(s) d oes not strictly have a massless 

equivalent in the o-plane. However, unlike I(s), a recursive formula defined via 

an integration by parts can be defined for i(o). This statement we offer without 

proof. It is certainly true for N = P and a two loop example with N = 2 will 

be outlined in the next section. 

Using the integration by parts method in conjunction with GPXT allows one 

to evaluate all Ke integrations. This part of the calculation is by no means trivial 

but the technique is well covered in the existing literature and therefore it will 

not be discussed here. 

Once all momentum space integrations have been performed the inverse 

transform can be applied to yield I(s). In general i(o) will possess poles in 

the cr plane coming from the I’ functions that arise from Ke and s integrations. 

By virtue of the identity 

a+ ice 
-/ 1 dcrsa 1 (an s)b 
2ni a-ioo (a+Q+l =r(b+ 1) 3a 

an nth order singularity at a = --a will become in the s plane 

1 (en s)n---l 

r(n) 3a 

(6) 

(7) 

The fact that I(s) is finite means the singularities in I are due solely to 

(en ~)~/a~ terms. If I(s) had l/n - 4 divergences, it wouldn’t be clear whether 

the poles in the Q plane are reflective of this singularity or (en s)‘/sa. In addition, 

if I(s) is finite, the transforms eqs. (4a) and (4b) are mathematically well defined 

functions in the n --+ 4 limit. It may be that this finiteness restriction is not 

necessary but it makes calculations simpler to interpret if the l/n-4 divergences 

are removed prior to computing I(a). 

Because of the use of dimensional regularization in handling all Ke integra- 

tions there will be poles in i(o) at Q = -[m + K(n - 4)] (m and integer and K 

a constant) and not only at cr = -m. These poles in the a-plane become in the 
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s-plane 

1 
qb + 1) 

!!!-ff [l - K(n - 4)Cn 3 + . ..I 
3773 

Therefore, in the neighborhood of cr = -m (the neighborhood of Q = -m is 

defined by LY = -[m + K(n - 4)]) th ere exist poles all contributing to the same 

l/s m behavior. However, the residue3 at each singularity must be calculated 

separately and the n + 4 limit taken at the end. The pole location and order 

determines the t’n s/s behavior, the residue at the pole determines the numerical 

coefficient of en s/s. In general, in the vicinity of Q = -m 

Ro 4 
I(@) = (a + m)b+l + (Q + m + Kl(n _ 4))b+l +...’ 

(8) 
RS 

+ ( CY + m + K,( n - 4))b+1 

with residues going like 

Re= fJ 
U$ 

j=o (92 - 4)i 

Performing the inverse transform on eq. (8) yields 

I(s)= l ~ (en ‘lb 2 & (1- Ke(n - 4)!Jn s + ) ” 
r(b+ 1) 3m e=o j=o ***- (n _ 4)j (9) 

Because & factors coming from the residue tend to cancel (n-4) factors coming 

from the svKtnm4) expansion it should be obvious why the n -+ 4 limit is to be 

taken at the finish of the calculation. In addition, because I(3) is finite as n --) 4, 

the A divergences that appear in the residues will completely cancel in eq (9). 

For an explicit example of this residue computation and cancellation see [8]. 

As mentioned in the introduction, this Mellin transform technique has been 

used in the O(as) evaluation of the massive gluonic correction to the electromag- 

netic polarization tensor. In particular, the l/s2 term ha3 been computed. The 
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(s(z) is the Riemann Zeta function). 

3. N = 2 TWO - LOOP EXAMPLE 

In this section we will briefly outline the Mellin transform technique applied 

to a two loop nonprimitive integral. The evaluation of primitive expressions 

and the computation of residues will not be given. It is felt that discussions 

of the GPXT applied to primitive integrals along with the associated residue 

computation all exist in the present literature [1],(8]. 

Define I(q) by 

I(q) = J (p2 + d)(/P + Z)pp Tq;2(k - q)2(p - IF)2 

Defining the dimensionless variables P, K, s 

I(s) = (m2y5 / dn P dn K ( 
I+ sP2)(1+ sK2)(P - 1)2(K - 1)2(P - K)2 (10) 

Expanding 1 (l+sPZ)(l+sK2 in terms of partial fractions, and performing the Mellin 
transform over s yields for eq. (lo), 

‘((Y) = b2)n-5 / (p _ 1);nKp_d1;2;p _ K)2 r(n - cr - 3)r(4 + a - n, (p2 ! K2) 

’ (p2)nl-a-4 - (K2)ltd 1 
The momentum space integrations may now be performed. Define the recursion 

formula from 

o= J 
d 

dn ’ dn K aP, 
(P - w, 

(P - 1)2(K - 1)2(P - K)2(P2 - Kz)(K2)7} (11) 
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Let 

F(7) = / (p _ 1)2(K - $;pp-d;;(f’2 - @)(K2)7 

where 

i(cv) = -2F(n - a - 4) 

Evaluating eq. (11) the recursion formula is 

(n - 4)F(7) = 1 dn P dn K { 
(P - l)*(K - I):(P2 - K2)(K2)7 

+ (P - 1)2(K - l):(P2 - K2)(K2)7 (12) 

- (P - 1)4(P - K):(P2 - K2)(K2)7} 

the remaining int$egrals in eq. (12) are primitive and can be evaluated via GPPT 

or GPXT. Once this has been performed, i(a) can be analyzed for its poles in 

the a plane. In the neighborhood of the singularity of interest, residues can be 

computed and the result inverse transformed via eq. (9). The n --) 4 limit is 

taken at the end. 

ACKNOWLEDGEMENTS 

I wish to thank Drs. D.R.T. Jones and R. Akhoury for numerous and valuable 

discussions. In addition, I wish to thank Professor R. Blankenbecler and the 

SLAC Theory Group for their hospitality. 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

M. J. Levine and R. Roskies, Phys. Rev. DQ, (1974) 421; V. K. Cung, A. 

Devoto, T. Fulton, and W. W. Repko, Phys. Rev. IX& (1978) 3893; K. 

G. Chetyrkin, A. L. Kataev, and F. V. Tkachov, Nucl. Phys. B174 (1980) 
345; A. E. Terrano, Phys. Lett. Q3B (1980) 424; 0. V. Tarasov and A. A. 

Vladimirov, JINR (Dubna) preprint # E2-89-483 (1980). 

F. V. Tkachov, Phys. Lett. 100B (1981) 65; K. G. Chetyrkin and F. V. 

Tkachov, Nucl. Phys. B192 (1981) 159; D. R. T. Jones and J. P. Leveille, 

Nucl. Phys. B206 473; D. I. Kazakov, JINR (Dubna) preprint # E2-83-323 

(1983). 

J. L. Rosner, Ann. Phys. (N.Y.),& (1967) 11. 

V. K. Cung, A. Devoto, T. Fulton, and W. Repko, Phys. Rev. DB (1978) 
3893. 

K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachov, Nucl. Phys. B174 

(1980) 345. 

A. A. Vladimirov, D. I. Kazakov, and 0. V. Tarasov, Zh. Eksp. Teor. Fiz. 

77 (1979) 1035. 

K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192 (1981) 159. 

F. R. Graziani, Univ. of Colorado, preprint # COLO-HEP-72 (1984). 

C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill Book 

Company (1980). 

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 

Academic Press ( 1965). 

J. D. Bjorken and T. T. Wu, Phys. Rev. 130 (1963) 2566; T. L. Trueman 

and T. Yao, Phys. Rev. 132 (1963) 2741; R. J. Eden, P. V. Landshoff, 

D. I. Olive and J. C. Polkinghorne, The Analytic S-Matrix, Cambridge 

University Press (1966). 

10 


