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ABSTRACT 

The effects of nonperturbative configurations at finite temperature are in- 

vestigated for a real scalar field theory that exhibits a spontaneous symmetry 

breaking at zero temperature. In l+l dimensions we find a zero temperature 

phase transition due to kink-antikink pairs. In 3+1 dimensions we calculate the 

contribution of bubbles that have an interior region of different vacuum in the 

equilibrium finite temperature theory. We find that the energy cost of bubble 

surfaces makes their effects negligible at temperature below the perturbatively 

calculated phase transition temperature. We discuss the interpretation of these 

results. 
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1. Introductioa - 

We have investigated the nonperturbative corrections to finite temperature 

field theory in a real scalar field theory that exhibits spontaneously broken 

symmetry at zero temperature. We calculate the effect of having regions of 

spacetime in which the scalar field expectation value has the opposite sign 

from that of the zero temperature vacuum, which is not counted in the usual 

perturbative, or self consistent treatment of the finite temperature field theories. 

In a two dimensional theory these effects come from kinks and antikinks. In 

the equilibrium, the kinks and the antikinks can exist with certain probability. If 

we start from a vacuum (4) = u at zero temperature and raise the temperature 

slowly, the kinks and antikinks are created in pairs so that they conserve the 

tot al topological number. The regions between the kink and antikink are in 

the opposite vacuum (4) = -u. By calculating the rate of these topological 

excitations, we derive the average thermal expectation value of the field operator. 

The effects are dramatic-they lower the symmetry-restoration phase transition 

to zero temperature. However this is a peculiar result which depends on the fact 

that the energy of separated kink and antikink configurations are independent of 

their separation. 

In higher dimensional theories, the regions of the oposite vacuum are typically 

bubble-like, surrounded by the domain walls. We present the method of 

calculating the effects of a dilute gas of thin-walled bubbles in the framework of 

the imaginary-time path-integral formalism of finite temperature field theories. 

We show that, if the order AT2 corrections are ignored, this calculation indicates 

that there is an Ising-like phase transition at a temperature of order p/A. However 

when the order AT2 shifts of effective mass and classical fields are self-consistently 

included they yield a phase transition at a temperature of order p/6 (which 

for weak coupling is a much lower temperature). Up to this temperature, bubble 

effects play a negligible role, because of the large surface energy cost of bubbles. 
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The outline of this paper is as follows: 
_ - 

In section 2 we present an intuitive picture of the effects included in the usual 

finite temperature field theory formalism and some comments on the region of 

validity of this formalism. 

Section 3 presents our results for a two dimensional theory, first a heuristic 

argument and then a complete path integral treatment of the effects of kinks in 

dilute gas approximation. In this section, we also investigate the case where there 

is a energy density difference between two vacua, which is a good illustration of 

the techniques necessary to investigate higher dimensional theory. (Such a theory 

of course has no symmetry, and no phase transition, but one can still investigate 

corrections to the finite temperature perturbative theory, which can be large for 

sufficiently small energy density difference.) 

In section 4 we present the dilute gas bubble calculation of bubble effects in 

4 dimension. 

Section 5 discusses the physical interpretation of our results and makes some 

comments on their implications for the more interesting case of gauge field 

theories. 



2. Review of Perturbative Analysis- - 

We will base our calculations on evaluations of non-perturbative effects in 

the Euclidean path integral calculated with periodicity /3 = l/T in the time 

direction!” However there are also real space-time techniques for calculating 

correlation functions at finite temperature which give results equivalent to the 

Euclidean met hods. Ia1 For the purpose of this section, which is to provide 

an intuitive understanding of our calculations, we find it convenient to use a 

language which corresponds more nearly to the real space calculations, namely 

the language of Hamiltonian quantum mechanics. In this language we may call a 

field configuration at fixed time a state of the system and we may choose to span 

the states of the system with any complete basis set. In this section we mainly 

discuss the four dimensional case. The l+l dimensional case is mentioned later. 

Consider the Lagrangian for a (positive mass squared) real scalar field, 

m2 
fT = f (a#)2 + 2 #2 + ; #4 . (2.1) 

The mass m and coupling constant A are defined by zero-temperature renormal- 

ization prescriptions. We chose them to be the physical mass and the on-shell 

four-point function of the theory. A convenient basis in which to discuss this 

theory, for small A, is the set of all free field momentum eigenstates of mass 

m. In terms of the fields #k and their canonically conjugate momenta AC the 

Lagrangian (2.1) leads to a Hamiltonian 

H = 

d3k4 fi3(h + k2 + b + h)#k,‘#k,4ko#kr 

(2.2) 

To zeroth order in the coupling constant A the harmonic oscillator modes have 

energies @ = (k2 + m2)lj2. 
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The finite temperature formalism corresponds to evaluating- 

C(nlO evBaln) 
m3= n 

C( 1 ne -pa In) 
n 

(2.3) 

where the states In) form a complete set of the theory. A loop expansion of 

the Schwinger-Dyson diagrams can be made at any temperature. One finds 

that at high temperature, loops with multiple propagators can contribute terms 

of order O(XT/m) per loop, while the diagram in which a single propagator 

loop closes itself (see Fig.1) contributes a mass correction, iU2. At high 

enough temperature, this quantity is not small even for weak coupling, so a 

straightforward loop expansion breaks down. However, since the graph with a 

single propagator loop appears only as a mass insertion, it can be included to all 

orders by evaluating all graphs with the mass set to 

m&(T) s m2 + aXT2 . 

Multi-propagator loops then are counted explicitly, they contribute at most 

O(AT/m,g(T)) per loop at high temperature. We will call this procedure 

the modified loop expansion. The leading high temperature correction to 

m&(T) are unchanged from the usual one-loop calculation because the 0 (T2) 

contribution of the single-propagator-loop graph is independent of the mass of 

the propagator. However now higher loop corrections are seen to be controlled, 

since 0 (AT/m&T)) is of order fi for very high T. At very low temperature, 

difference between the results of modified loop expansion and the loop expansion 

are negligible. 

Physically the difference between the loop expansion and the modified loop 

expansion can be understood in this way. In the loop expansion we begin with a 

thermal distribution of states populated with a weight exp(-/3E$ and the effect 

of interactions between the populated modes as well as between the externally 
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produced particles and these modes are calculated orderby order in perturbation 

theory. In the modified loop expansion we recognize that the interaction changes 

the energy cost of a mode and hence we populate the modes with a weight 

exp( -p$), thus including the dominant high temperature correction to all 

orders. However in both cases the treatment is based on free field theory modes 

and their interactions. 

Let us now consider a theory where spontaneous symmetry breaking occurs 

in the zero-temperature theory and see how the usual finite temperature phase 

transition arises in this language. Let 

Now in addition to the finite k quantum modes we must allow for a non-trivial 

k = 0 classical field. In the positive m2 case such a field will always be found to 

have the solution (4) = 0 even at finite temperature. With the Lagrangian (2.5), 

at zero temperature, the negative p2 term leads to 

(‘#‘)T=O = + - fv ; m2 = 2A Y2 = 2p2 , (2.6) 

as the possible consistent solutions of the Schwinger-Dyson equations. These 

solutions are usually described as the turning points of some V,ff(t#o) with 

c~~V&/&$~ > 0. (There is a problem in defining V,~(&) such that t32Vea/~q52 

is negative. This problem is irrelevant to the physical discussion here, which 

is why we prefer to use the language of solutions of the Schwinger-Dyson 

equations, which does not require a V,ff(&) to be defined.) Again we choose our 

renormalization prescriptions so that m and A are the physical zero temperature 

mass and on-shell four-point function, and we select (#)T=e = +V as the zero 

temperature vacuum. When we examine the finite temperature theory we also 

include the effect of the thermal population of the quantum modes on this 

classical field via the modified loop expansion. The effect of occupying the finite 

6 



k-modes with a thermal distribution is to shift the consistent -value of the classical 

field towards zero. Thus the usual finite temperature phase transition is seen to 

be due entirely to including the thermal fluctuations about the constant classical 

field vacuum state. The calculation predicts a second order phase transition at 

T = 2/4/d+ T,) h w ere m,B(T,) = 0. However clearly AT/m,e is not small in 

this region, so that further care is needed to treat this region reliably, the loop 

expansion (modified or not) is not sufficient very near the phase transition. 

The solutions of the Schwinger-Dyson equation for (4)~ are shown in Fig 2. 

Case (a) is the model given by the Lagrangian (2.5). When a term of the form 

e#3 is added (when there is no symmetry and no phase transition), we obtain case 

(b). The dotted lines in the figures indicate the regions where the calculation is 

unreliable because AT/m,E is not small inside these regions. 

In l+l dimensions the situation is not so simple at finite temperature. One 

finds every loop (including the single propagator loop) can give at most 0 (AT/m) 

corrections and there is no justification for summing mass insertion loops differ- 

ently from any other loop correction. The loop expansion is satisfactory only at 

low enough temperatures that T/m is small. Once again the expansion breaks 

down at temperatures below those where it predicts a phase transition. But in 

this case, it does not recover at high temperature as it does in the 3+1 dimen- 

sional case. 

As we have seen above, in models defined by the Lagrangian (2.5) the 

loop calculations give some reasonable treatment of certain thermal excitations. 

However there are other possible low-lying states which may be very poorly 

treated by this perturbative evaluation. These are states in which regions of 

space R have (4(z)) = -v(T) for x E R and (4(z)) = u(T) elsewhere. In l+l 

dimensional spacetime, the regions R are regions between kinks and antikinks. 

In the higher dimensional spacetime, these regions are bubble like. These states 

have some surface energy cost due to the interfaces between the regions with 

different signs of 4(x). Of course, since the free field momentum eigenstates form 
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a complete set of states one can in fact span the bubble- states by a complicated 

superposition of momentum eigenstates, but the perturbative calculation does 

not populate these states with the correct probability at finite temperature, and 

hence may grossly underestimate their contribution. 

This paper is devoted to a study of the effect of such configurations at finite 

temperature. We calculate how the usual perturbative picture is corrected when 

these modes, and fluctuations about them, are included explicitly in the finite 

temperature calculation. We find the effect is dramatic in 1+ 1 dimensions - the 

phase transition occurs at zero temperature. However this is truly a peculiarity 

of 1 + 1 dimensions due to the fact that there is no additional energy cost for 

configurations in which kinks and antikinks are widely separated. In higher 

dimensions bubbles have an energy proportional to their surface area (in thin- 

walled approximation). In this case we find that the corrections to the usual 

perturbative treatment are very small. 



3. l+l Dimensional Case - - 

In this section, we discuss the distribution of states reached by raising the 

temperature, starting from the vacuum state (4) = V. The system is described 

by the Lagrangian (2.6) in l+l dimensions. 

The spectrum of this theory consists of the perturbative modes (real scalar 

particles) and nonperturbative modes. The nonperturbative modes are kinks and 

antikinks that are given by the following solutions of the classical field equations, 

#6(X - X) = fv tanhP(ziX) . (3.1) 

(We call the solution with the positive sign the kink and the other the antikink.) 

These solutions have energy (mass), 

The fact that coupling constant A appears in the denominator illustrates the 

nonperturbative nature of this mode. The interaction between these kinks is 

exponentially small for distances larger than their thickness, b. For our purposes 

this interaction is negligible, the kinks are essentially free. At finite temperature, 

both the perturbative modes and the nonperturbative modes are excited. As we 

raise the temperature, the kinks and the antikinks are created in pairs with the 

kink to the left of the antikink. (The spatial boundary condition is always C$ = u 

at x --) fee in our calculation.) 

We begin with a semiclassical discussion which indicates the major features 

of the effects due to the kinks. We will then present a more complete treatment 

of the finite temperature path-integral calculation of these effects. 



--- 

3.1 QUANTUM MECHANICS OF KINKS - _ - 

Let us confine the kinks (and antikinks) in a box of length L. The normalized 

wavefunctions for a kink at X and an antikink at Y are given as follows, 

$(m,n) (X, Y) = (sWm+n X) sin(lc,Y) - sin(k,X) sin(k,+,Y))B(Y - X) , 

(3.3) 
where k, E m/L. The quantum numbers are m = 1,2,3, . . . . and n = 1,2,3, . . . . . . 

These wavefunctions are chosen to satisfy the boundary conditions, 

+l(o, Y) = $(X,X) = $(X, L) = 0 . (3.4 

In between the kink and the antikink, the scalar field 4 takes the value -u. Thus 

once the probability P(Z) of the point 2 being in between the pair is given, the 

expectation value of the field is given by (#( 2)) = u (1 - 2 P( 2)). In the (m, n) 

state given by (3.3), this probability is as follows, 

sin(h+d) 2 +(sin(y) - k2n+m ) ] . 

The average value of this probability is of physical interest. It is, 

L 

pp, = 1 

L / 
dZ P!m,R) 

0 

. 

(3.5) 

(3.6) 

One can obtain this same result for the leading term in the L --) 00 limit by 

approximating $(,,,l by $(,,,l a: 8(Y - X), that is, by neglecting to impose 

the boundary conditions (3.4) . 
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In the multi-pair secton, we can estimate the large volume Knit of P’s using 

this same constant wavefunction. The wavefunction of N-pairs is assumed to be, 

The corresponding probabilities are given by, 

PN(Z) = f [l- (y - 1),,1 , 

pN= N 
2N+l * 

Heuristically, the statistical weight of one kink is, 

(3.8) 

(3.9) 

(3.10) 

Therefore, ignoring kink interactions, we can sum the multi-pair contributions to 

obtain 
00 

c FIv (2;)! A2N 
p= “=“, 

1 AzN 
9 

c NC0 (2N)! (3.11) 

=; (1- t,,,) . 

Since A diverges like L e-BP in the infinite volume limit, we find 

- L+m 1 
P+-. 

2 
(3.12) 

Therefore, we obtain 

(4)~ E (; / dz#(z))T = u(l - 2P) L’90 o , (3.13) 

for any T f 0. Thus we see that the phase transition takes place at zero 

temperature. The crucial feature of this argument is that there is no suppression 
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of the statez where the kink and antikink are widely separated-because there is 

no attraction between them. Note that we have shown here that the disordered 

phase (3.13) is realized, but for any x (1#(~)1) is of order u (near 2’ = 0). 

3.2 QUANTUM FIELD THEORY OF KINKS 

We now derive the result in the previous subsection more precisely, treating 

the kinks and fluctuations about them according to the standard Euclidean path- 

integral formalism of finite temperature field theory.“’ The generating functional 

of the theory is given by, 

Z(T) = /[d#] exp(- 1 d7/ dd[#]) . (3.14) 
b -5 

This functional integral is restricted to the periodic functions of 4, 

We want to calculate the contribution to this path-integral from kinks, 

antikinks, and the fluctuations about them. We will uze the usual background 

field collective coordinate formalism to discuss a dilute gas of kinks and antikinks. 

For a single kink whose center follows the path X(T), we can take the background 

field to be, 

hgh 4 = 48 
x - X(T) 

( 1 da+ - 
(3.16) 

For this configuration, the boundary conditions (3.15) translates into the follow- 
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iw, 
x(A) =x(i), d(J) a(f) . 

The action corresponding to this background field is, 

(3.17) 

(3.18) 

where we have dropped terms proportional to X(r), hence assuming that accel- 

eration is small. This action is minimized by solving the classical equation of 

motion for X(r). The only solutions which satisfy the periodic boundary con- 

ditions (3.15), are the form X(r) = constant, which describes a static kink (or 

an antikink). Clearly the assumption of small acceleration is consistent with this 

solution. 

According to the standard treatment of the solitons, the one-loop expression 

of one pair sector of the generating functional Z(T) (3.14) is expressed as follows, 

A1 E 'dT) - = e-2Bp 
Zo(T) 

JxdXJydY [d#f] e 2 I -'~[4pair]4~ . (3.19) 

where X and Y denote the spatial positions of the (static) kink and the antikink. 

This expression is obtained by changing two of the path-integral variables, namely 

the (static) translation modes, into the collective coordinates, X and Y. The 

prime on d#f means that among the fluctuations around the kinks these zero 

modes are excluded from the integration. The Jacobian factors, Jx and Jy are 

given by 

Jx = -!- 
6 

(3.20) 

and similarly for Jy . (The factor l/a arises because we have one less Gaussian 

integral.[‘l ) Th e normalization factor Zo(T) is the path-integral without any 
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kinks. We evaluate (3.19) as follows, 

(3.21) 

In the approximation that kink-antikink interactions can be ignored, the ratio 

of the determinants needed for evaluating (3.21) is the square of the single kink 

contribution, which is given in appendix A. We obtain, 

L Y 

A1 = e-2PWA.P) BP L FT 
4% p2 

0 0 

(3.22) 

where FT represents the finite temperature effects that comes from the determi- 

nant. The Ap in the exponent represents the zero temperature mass correction. 

Note that the collective coordinate integral has a trivial integrand 1. This is 

because we ignored the effect of boundaries, X = 0, X = Y and Y = L (we only 

did the Gaussian integrations of the fluctuations). These boundary conditions 

are irrelevant in the large volume limit as we saw in (3.6) . The expression (3.22) 

corresponds to the constant wavefunction of the form of (3.7) . Hence we see 

that the result of the heuristic argument of the probabilities P’s are unchanged 

except that the quantity A1 replaces the naively estimated A in eq. (3.11) 

Actually, the fluctuations around the kinks have nontrivial contributions 

to the thermal expectation value (#), which was not included in the heuristic 

argument. This is the distortion of the kinks due to the presence of the 

fluctuations. fir from the kinks, these effects yield u(T), the perturbative value 

of (4). Because of this, the thermal expect at ion value of the 4 field is given by 

(4)~ = 4W - 2Fb(T))I - (3.23) 

However since the volume divergence of A1 leads to the zero temperature phase 

transition, the temperature dependence of u and p is unimportant in this case.“’ 
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The consistency of the free-kink approximation can be izonFrmed by calcu- 

lating the average distance i? between kinks. By using the expression (3.9) and 

doing the similar calculation to (3.11), we obtain the following large L limit, 

D =-&=e (3.24) 

For low temperature T < p we are interested in, the exponent gives a large 

factor. Thus n > l/p is satisfied. Hence it was consistent to assume that the 

kinks are separated by large distances and we can neglect the overlap between 

them. 

3.3 NON-DEGENERATE CASE 

We now turn to the case of the theory with a small #3 term in the potential. 

This theory has no symmetry and no phase transition at finite temperature. 

However we include here a discussion of the corrections to the finite temperature 

perturbative treatment of this theory, because it is the simplest example which 

exhibits features similar to those of the symmetric theory in higher dimension. 

This enables us to discuss in the simpler context techniques which we find 

necessary to use in the higher dimensional symmetric theory. 

Consider the Lagrangian, 

We can choose E to be positive without loss of the generality. We are interested in 

the case E < X. For this theory the effective potential at T = 0 has two minima; 

a global minimum at (4) = u + 0( ) e an a oca minimum at (4) = -u + O(E). d 1 1 

At the local minimum the energy density is higher by an amount, 

K = 2 ‘p3 - - +O(c3) ) 3 iv/2 
(3.26) 

than the energy density at the global minimum. In the case K << p the effect 

of this term can be treated as the interaction between the kinks. This is in 
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the same spirit of the Coleman’s thin-wall bubble approxim%tiG. (Its effect on 

the jacobian and the determinants are negligible since we work at the lowest 

nontrivial order of e.) 

Due to the energy density difference, a kink and an antikink have an attractive 

force between them. The analog lagrangian of this system is given by 

P 

q/G+ XX&j) , (3.27) 
P -5 

where X,(T) denotes the relative coordinate (Y(r) - X(7))/2. Because of the 

attractive force, the general solutions of this action follow trajectories that are 

closest at a certain time and go apart from each other to infinite distance 

asymptotically. (Note that we are looking at the imagjnary-time solutions.) 

Their behavior is analogous to the minimum length problem, under a constant 

force, of a string in 2 dimensional space. The only solution that satisfies the 

periodic boundary conditions is the trivial one, Xr(~) = 0. This trivial solution 

is irrelevant for our purpose, since our background field is only meaningful for 

separated kinks and antikinks, XJr) > l/p. Intuitively, however, one sees that 

although an attractive force between kinks and antikinks would reduce their 

probability of existing with large separation, it would not make the probability of 

finite separation zero. Therefore we still wish to study the effect of configurations 

in which the kinks and antikinks have finite separation. In general, in order to 

evaluate the path-integrals, what we need to do is to take the configurations that 

have relatively small action and large entropy in the given functional space. This 

can be carried out by introducing the collective coordinates and using solutions 

of the kink action, if there are any. When there is none, we can introduce some 

constraint and look for the minimum solutions under that constraint. After the 

integrations over the fluctuations within the constraint have been calculated, we 

can then integrate over the parameter(s) of the constraint to recover the larger 

functional space!’ 
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The choice of the constraint is somewhat -arbitrary. It iS guided by two 

considerations. The first is the physical picture of the kinds of the configurations 

that we wish to include explicitly in this calculation, based on our heuristic 

picture that kink-antikink effects may be important. The second consideration 

is more technical - we want to be able to perform the calculation of the 

contributions of these solutions and fluctuations about them to the path integral. 

This requires that the introduction of a collective coordinate corresponding to 

the constrained parameter yields a Jacobian which can be calculated in a similar 

fashion to that for the collective-coordinate which replaced the zero mode in the 

previous calculation. The remaining fluctuations must be expanded in a basis 

where the modes are orthogonal to the change in background field corresponding 

to a change in the collective coordinate. As we saw above this is trivially true 

when the background field corresponds to a static kink. Fortunately there is a 

constraint for which this solution is the only periodic solution - we find that is 

the constraint where the average distance between the kink and antikink is given 

by x,. Appendix B discusses zome of the technical details of the imposition of 

constraints and shows why this choice has the desired features. 

The imposition of the constraint is done by the usual Lagrange multiplier 

method. We require a periodic solution for Xr(~) which is an extremum of the 

quantity, 

d? (X&) - Zt) . 
b -3 

(3.28) 

This is given by static solution Xr(7) = xr. For this solution the fluctuation 

modes and the Jacobian for the collective coordinate xr are exactly as discussed 

previously for the case E = 0, which is technically convenient.Iq 

Then by analogy to the calculation that led to (3.22) , we find 
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L Y - 

Zl,,(T) =FT(E) e-2S(ptAp) gk / dY 1 dXe-flK(Y-X) , 
0 0 (3.29) 

=FT (c) e--2Bb+AP) ’ s+ (l-&(l-e-gxL)) . 

The mean probability P of being in the unstable phase is given by the following, 

P1-hme(q T) = - .!w L&Z’“(T) 9 

=FT( ,)e--2P(tiAP) ’ -1(1-&) (1-esgKL) . 
W WI2 

(3.30) 
Note that in the limit E + 0, the above result reproduces the previously known 

result, which contain a factor l/3. 

First, we sum the contributions of the multi-pairs in the most naive method, 

the dilute gas approximation treating each pair as one object. This is reasonable 

when the temperature is low enough compared to K, so that the attractive force 

between kink and antikink keeps them close together. This leads to the following, 

co 
c 

P&T) = N=l = P1-bMe(~, T) . (3.31) 

In the limit L + a>, the above result leads to, 

FL(E,T) -+ F-d+ -WWW p ' --(=Pm) . 
W WHO2 - 

(3.32) 

This result, however, is not valid for Kp + 0. Not only that the above 

result does not reproduce the result derived in the previous subsection, l/2, 

it exceeds the physically acceptable limit, l/2, for high enough temperature, 
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T > O(p/ln K). Th is is because in evaluating (3131), we have‘a&imed the tightly 

bound pairs. When temperature is high enough compared to the attractive force 

K, to overcome the attractive force, the pair spends most of time with large 

separation. In such a case, the calculation (3.31) overcount a the overlapping tails 

of the neighboring pairs. In the appendix C, we derive the better expression for 

P, doing exactly the summations of the nested integrals of the type (3.29) for 

finite L. In the L + 00 limit, the result is the following, 

(3.33) 

This result is always between 0 and l/2 and is applicable in all regions of T < T,. 

This also reproduces (3.31) in the strong binding limit, where P, < 1. The 

behavior of (3.31) and (3.33) (for FT(E) = 1) are illustrated in Fig.3. We see 

that P approaches its asymptotic value of l/2 rather quickly as the temperature 

becomes high. This behavior is in agreement with the result in the previous 

subsection. The thermal expectation value (4)~ is given by (3.23) and (3.33). 

Its behavior is roughly sketched in Fig. 4. 

It should be noted that in (3.29) the integration region included the region 

X Z Y. This is not exactly correct, because the kink-antikink solution is 

meaningful only when the kink and antikink are separated by more than their 

thickness, l/p. Thus exactly speaking, the integration region for X should be 

from 0 to Y - C/p, where C is an appropriate numerical cutoff parameter of 

order 1. If we do this, ZI,~(T) is multiplied by a factor eSsKz. Our previous 

result is justified because the effect of this factor is small as long as K is small. 

Clearly for large K such a term reduces the finite temperature effects of kinks 

significantly. 
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4.3+1 DIMENSIONAL CASE - 

In this section we deal with the case of 3+1 dimensional spacetime. We first 

investigate the case with the symmetric potential and then briefly mention the 

case with a energy density difference. 

As explained in the section 2, the nonperturbative modes which we wish to 

include are the bubble-like modes, the excitations of the spherical regions of the 

other (symmetry-related) vacuum which is surrounded by the domain wall. In 

order to examine their behavior, we assume the field configuration (background 

field) to be the following form, 

bddde(~, 4 = #a ( 
12 - 21 - R(7,8, $2) 

1 diT-3 ’ (4.1) 

where (8, ‘p) is polar coordinate with the origin !i! = 2. This corresponds to a 

bubble with a fixed center 2 and a time-dependent radius R(r,o,(~). 

For this configuration, the periodic boundary condition is 

R y4~ -R Zd4p ( ’ ) - (” ) , -$+;A~) = -$-+4rp) - (4.2) 

Similarly to (3.18) , the reduced action is, 

where i denotes the angular momentum operator. In deriving (4.3) , we have 

neglected corrections due to the curvature and acceleration of the bubble. These 
. . 

are negligible provided that PR is not small and R is small. As can be seen 

in (4.3), p gives the tension of the boundary wall in this 3+1 dimensional case. 

The bubble tends to shrink because of this surface tension. This effect leads to 
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a result similar to that of the previous case where the kink and antikink were 

attracted to each other due to the energy density difference e. The solutions 

of the action (4.3) do not obey the periodic boundary condition (except for the 

trivial and irrelevant solution, R(T) = 0). Therefore we again need to introduce 

a constraint. The linear constraint, 

1 
- 
w / 

drdflR=R , 

is the most convenient. The constant solution, R( 7, 8,~) = 2, for a given value 

of R is the unique solution for this choice of constraint that satisfies the periodic 

boundary conditions. (Some of the technical points are given in the second 

subsection of the Appendix B.) The constant solution allows us to evaluate the 

relevant quantities as in section 3.3. 

The probability of having a single bubble is given by, 

Alb = 
/ 

Jidz JRdzem4’@PR’ 
detD(&, = u) 

det’DkhHe) * 

The Jacobiana Jx and JR are, 

(4.5) 

J,=~\lldrPdrdO(~)2=~; , (4.6) 

JR=~\lldrr2drd*(~)‘=~~ . (4.7) 

The ratio of the determinants is evaluated in the appendix A. The result is, 

detDhg = u) = FTbam 84 
det ‘D(&,,me) ’ e ti ’ W-9 

where the factor FT,~H~ represents the corrections due to the finite population 
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of the fluctuation modes around the bubble, _ - 

‘E(zl+ 1) ln( 1 - e -BP 
> I=0 

+‘5(2l+ l)ln(l -e 
-q/w 

> 1=0 
(4.9) 

Cl@ 
+ c (21+ 1) 

I=0 0 

The cutoff c& on the sum over angular momenta I occurz because for very 

high I the approximation of small centrifugal term, which we used to derive the 

above eigenvaluez, breaks down. For high 1 the eigenvaluez in the presence of the 

bubble and in the absence of the bubble cancel one another. This cancellation 

is not correctly obtained in our approximation and hence the sum over I in (4.9) 

must be cut off. A more careful investigation of the comparison of modes with 

and without the bubble surface shows that our approximation breaks down for 1 

of order J.JR and that the contribution of higher modes is negligible on FT,~M~. 

Hence we choose cl of order 1 in what follows. In the dilute-gas approximation, 

as used in (3.31), we find, 

where the lower cutoff C/c( on the bubble radius is introduced because our 

approximations on the curvature of the bubble and the thin-walled bubble 

approximatisn are invalid when the bubble size becomes of order of the thickness 

of the bubble wall in (4.1). 
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For low temperature,. FT,~M~ E 1. Therefore in the V Z 00 limit (4.10) 

leads to, 

where 

8hrlTc2 
c2 E 3 ’ 

G(x) s (1 + z) em2 . 

(4.11) 

(4.12) 

In the region AT/p < 1 where our treatment is valid, the argument of the 

function G is large and hence we get a exponentially small P. Thus the thermal 

expectation value of the field 4, (3.23), is given as follows, 

. (4.13) 

Therefore, in this temperature range, the effect of the nonperturbative bubbles is 

exponentially small. This is essentially because the surface tension of the bubbles 

of the reasonable size R > C/c( costs so much energy that these bubbles are rare 

in the thermal average at low temperature. Since for small temperature the 

perturbative correction is of order Ae -“(“lTl, the nonperturbative correction of 
order e-0 (P/AT) is really negligible in this region. 

For higher temperature, however, Fr,hme is significantly different from zero. 

Its asymptotic expression is derived in the appendix A. The result is, 

(4.14) 

where the function A(cl) is positive definite, and monotonically increasing with 

cl. For cl - 1, A(Q) - 4. Since FT,~M~ corrects the integrand in (4.10) by the 

factor (4.14), it reduces the effective tension for a large bubble. Physically this 

reduction is actually an entropy effect. The factor FT,hbUe grows because of the 

contribution of low-lying fluctuations in the bubble surface. The number of such 
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fluctuations which contribute significantly incresses with the-area of the surface. 

The effect replaces p in (4.10) by 

(4.15) 

Naively interpreted, the expression (4.15) tells us that when the temperature 

is satisfies 

8&n I( T>T;=-- 3A(cl) A ’ (4.16) 

the tension becomes negative. The FW in (4.10) then diverges. As in section 3.3, 

this divergence signals a breakdown of the dilute-gas approximation. Actually 

this situation is the same as in the case of (3.32). Once the correlation between 

the bubbles are taken into account, we would obtain H = l/2. In fact at such 

a temperature, the regions of #(z E &) = fv would be randomly distributed 

over space. This is quite similar to the order-disorder phase transition in the 

Ising model. In that model, when the temperature is high enough to overcome 

the interactions between the adjacent spins, each spin randomly takes either the 

up or down value. This is understood as the condensate of the domain walls that 

have become tensionless. The expression (4.15) suggests this picture. 

However up till now we have neglected to include in this calculation the 

effects of order XT2, which we saw in section 2 invalidate the straightforward 

loop-expansion approach. These effects alone predict a phase transition at a 

temperature Z’, = 2~/6, which, for weak coupling, is well below the temperature 

of order p/A where bubble effects become large. For all 2’ < T,, the bubble 

effects are negligible. A self-consistent treatment, corresponding to the modified 

loop-expansion discussed in section 2, would replace the quantities p and u (and 

hence p) in the above equations with their temperature dependent values, ~(~ft(T), 



(4.17) 

This means that the background field at any temperature is chosen as the self- 

consistent kink solution for the effective action at that temperature, in which the 

only correction we have is leading term, 6s = fAT2qb2. The above procedure 

is consistent even for the space-dependent configuration. This is true since the 

single-propagator loop is independent of the external momentum and thus does 

not give any AT2 correction to the coefficient of the (a~$/az)~ in the expansion 

of the generating functional. Other graphs can give the finite momentum finite 

temperature corrections of the form, AT/m,f(l + 0(k2/m&)), where k in an 

external momentum. Since the kink solution has Fourier components at most of 

order k N m,E, these are controlled corrections, which will be included in the 

determinant of the fluctuations about the kinks. Thus the correction of order 

XT2 is included in the choice of the background field configuration.‘“] The kink 

solution and kink mass given by p + p(T) and u + u(T) as in (4.17) is a 

consistent starting point for an estimate of kink effects at finite temperature! 

When this replacement is made, the kink effects given by (4.10) are tiny at all 

temperatures below the phase transition temperature at which j?(T) -+ 0. Right 

near p2(T) = 0, both the modified loop expansion and our nonperturbative thin- 

walled bubble approximation are unreliable, so we cannot study details of the 

theory right at the phase transition. In section 5 we will present a physical 

interpretation of these results. 

We have also investigated the case of the Lagrangian (3.25), when there is a 

energy density difference between two vacua. We find that the constraint on the 

average radius, (4.4), again allows only one periodic solution for a given value 

of ??. It is the constant solution. (This nontrivial result is obtained by using 

the technique explained in the Appendix B, by drawing the Upotential” -U2 for 



various values of the parameters A and E. We have exhausted the A - E plane.) 

Therefore the calculation for this case is very similar to that presented here. 

Although we have not fully investigated such theories, one can, for an estimate 

for small c case, take the Jacobian and the determinant as the e = 0 value and 

take into account the E correction only in the bubble action, as 

(4.18) 

Then one gets a correction of a factor 1 - O(E) on the rate P, and the bubble 

corrections are even less significant in this case, as might be expected. Here we 

should remark that we are always studying the equilibrium thermodynamics of 

the system obtained from the true zero temperature vacuum. The case where 

one assumes that the system is in the false vacuum at some time zero has been 

studied elsewhere.[‘“’ 
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5. Discussioti ~. - - 

We have studied the effects of certain non-perturbative corrections to weak- 

coupling scalar field theory. In order to intuitively understand the implications 

of these results we return to the language of Minkowski-space and Hamiltonians 

used in Section II. For the sake of definiteness let us discuss a lattice version of the 

theory. The extension of this discussion to a continuum picture is straightforward. 

On a lattice we have a scalar field variable #j at each site and a local potential 

v* - -cc #? + A($? 
J- 2 3 3 (54 

The (V.#J)~ terms of the Hamiltonian provide couplings between r# at neighboring 

sites. 

Now consider as a choice of basis states the set of all eigenstates of the 

potential Vi. For states with energies below the barrier (E < 0) these will be 

nearly degenerate pairs of parity even and parity odd In)+, In)- states. These 

states are not eigenstates of the full Hamiltonian; in fact we know that at zero 

temperature and infinite volume we have a ground state that has (4) = +u. 

Hence it is convenient to think in terms of the local superpositions 

Ini)R = I%)+ + In;)- 
-&* <o. 

Inj)L = Inj>+ - Ini)- 
(5.2) 

(Even though the local states Inj)L or 1 n.r), are not orthogonal, the infinite 

volume states nj Ini)L and nj Inj)R are.) For states Ini), with E,, > 0 we 

have states which lie above the barrier in the local well. The wavefunctions 

corresponding to these higher states are centered about $j = 0. There is no 

approximation in which it makes sense to think of quasi-stable left and right 

combinations for these states. 
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Now the physics of our results can be discussed in the language of these local 

states. For zero temperature the ground state of the infinite volume system is 

the state ni lOi>, and the low lying excitations are created by the action on this 

state of some operators 

where a,+l lOj)R = Inj)R. In this language it is clear that the bubble states which 

we have included in our calculation correspond to the excitations roughly of the 

form 

II loi>, ’ n lOi>, . (5.4) 
jER SR 

These states are obviously very different from the perturbatively defined low-lying 

states (5.3). 

The calculation of bubble effects with fixed /.J and u takes into account the 

excitation of regions R which correspond to a dilute gas of spherical bubbles. 

The low lying excitations about them are treated in harmonic oscillator approx- 

imation. This calculation shows an Ising-like order-disorder phase transition at 

a temperature of order p/A. The perturbative corrections due to the average 

interactions between thermally excited modes - the AT2 corrections discussed in 

Section 2 - become significant at temperatures of order p/6. The calculation 

which ignores these effects is not valid above this temperature. Hence we move 

to the modified loop expansion, which gives p(T) and o(T) in the bubble pa- 

rameters of Section 4. Then we see that the bubble effects are quite small at all 

temperatures below the perturbatively calculated phase transition temperature, 

except in the region m,ft + 0 where both the modified loop-expansion and our 

thin-walled bubble approximation break down,- so we have nothing to say about 

this region. 

In the language of the local states, the phase transition is seen to be due to 

the increasing probability of exciting finite regions of space into local states which 
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lie above the barrier and .are symmetric about -#j = 0 rat her to the increasing, 

but still very small, probability of bubble regions of low lying states n Inj)L- 

The reason for this is, we believe, an entropy effect. The number of states Ini)* 

with En < 0 is small compared to the number of higher energy states, above the 

barrier, which are accesible at temperatures of order p/a, over finite regions of 

space. 

The conclusions drawn here may be generalized to apply to the potential 

for the more physically interesting case of a Grand Unified Theory such as 

SU(5). In general the potential in such a theory has a complicated shape in 

the space of the various possible vacuum expectation values, with multiple local 

minima. In the case where there is a cTra3 term in l (with the @  the adjoint 

represent ation) there are typically no degenerate gauge distinct minima. Bubbles 

therefore have volume suppression factors as well as the surface suppression taken 

into account in our calculation. Hence their contribution at temperatures below 

the perturbatively calculated critical temperature is even smaller. Thus the 

argument that the phase transition seen in perturbation theory is driven by the 

excitation of large regions into states in the part of the well above all structure is 

therefore stronger here. In fact the entropy factor works further to favor states 

where the scalar field is symmetric because of the gauge field excitations. These 

are integrated over to obtain the temperature dependent Vef. They tend to 

favor states with small scalar field expectation values because all gauge fields are 

massless for zero scalar field expectation values, but some become very massive 

when there is a symmetry breaking expectation value for any scalar field.“” This 

effect is particularly extreme in the case of a Coleman- Weinberg model, where 

the scalar potential is tuned to be flat at (a) = 0 at T = 0. The local minimum 

at (!I!) = 0 at any finite temperature comes from just such an entropy effect in 

the gauge field sector.[“’ 

Unfortunately, this calculation sheds little light on the validity, or otherwise, 

of the usual approach to early universe cosmology which is based on the study of 



--__ 

the classical evolution of .the classical field Qo. -The probability of supercooling 

into a metastable state (a) = 0 for low temperature in a Coleman-Weinberg 

model is not addressed by this type of calculation. Furthermore the effects of 

an expanding universe on the nature of the field configurations have not been 

included here. Mazenko, Unruh and Wald”“’ have argued in favor of a bubble- 

dominated transition because the relative importance of the (V@)2 term in l is 

reduced by inflation. It is not within the scope of this calculation to tackle this 

question. 

To summarize our results once again, we have shown that in 1+ 1 dimensions, 

a real scalar field theory undergoes an Ising-like phase transition at zero temper- 

ature. For a higher dimensional theory bubble effects are unimportant and the 

phase transition seen in the modified loop expansion is due to the existance of 

many local states which are symmetric in 4 rather than to the existance of the 

degenerate local states in which (4(z)) = fu. 
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APPENDIX A - - 

A. 1 l+l DIMENSION 

In this appendix, we evaluate the ratio of determinants for a single kink. For 

fluctuations around a static kink that satisfies the periodic boundary conditions 

in 7, the modes are separable in x and r. The eigenmodes of the z-equation 

consists of the translation zero mode, a bound mode with eigenvalue ip2, and 

continuous modes with eigenvalue k: + 2~~. The continuous modes are specified 

by their phase shift 6(kl), 

6(kl) = -2arctan 3b 
fi(p2 - k2) ’ 

(A4 

where branches of the arctan are chosen such that the phase shift is continuous. 

The boundary values are chosen to be 

6(0)=2a, 6(00)=0. (A4 

When restricted to be periodic in a box of length L, the eigenvalues of these 

modes are given by the solutions of the following equation, 

k 
1 

+ ‘(‘1) - = $1 
L ! 

where k?) = Frn , (m = int egers) . For large L, this equation can be approxi- 

mated by, 

,,=$)-9+0(;) . (A.4 

The r direction gives the discreet eigenvalues, ki, where, 

(n = integers). (A-5) 

The ratio of determinants for this one kink configuration can be calculated as 
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follows, 

21 =c’ ln(ki) - c ln($ + 2~~) 
n n 

+ c 32 ln(k; + p ) - h(k,2 + 2P2) 
n 

(A-6) 

(A-7) 

+ c ln( ki + kf + 2p2) - ln( ki + kf)‘2 + 2p2) . 
n,m > 

In the above, the prime on the first c again means that k~ = 0 mode, which is the 

constant translation zero mode, should be dropped from the sum. The terms with 

a minus sign in (A.7) come from the fluctuations about the constant background 

field. For convenience these subtraction terms have been divided to three parts, 

the states kl = 0, the state with kr) = F (actually equivalent to kf)) = 0 in 

L + oo), and the rest. This expression shows then the one-to-one correspondence 

between the modes with and without the kink. The ko-summation is done using 

the following a c-function regularization formula, 

Eln(a2n2+bZ)=-ln~+~+ln(l-ec-~) . 
n=l 

(A-f9 

Using (A.l) for the ki-terms and doing the partial integral once, we arrive at the 

following result, 

I=lnp+PAp+ln(l-e -h&) + (A.9) 
0 

(The first two subtraction terms are cancelled by the boundary value contribution 

of (A.2).) The first term gives (A.6) the correct dimension, length-’ (due to the 
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absence of one mode that has been replaced by the collective coordinate). The 

second term correctly reproduces the zero temperature correction to the soliton 

mass which has been given in literature, 

(A.lO) 

(the divergence in (A.7) is already absorbed by the zero temperature renormal- 

ization of p and not explicitly given here.) The rest of the terms are the usual 

finite temperature terms due to nonzero population of of the fluctuation modes. 

(dS/dkl is essentially the difference between the densities of continuous modes 

with and without the kink.) 

A.2 3+1 DIMENSION 

In this appendix we calculate the determinant for a static bubble in 4 

dimension using the phase shift given in the 2 dimensional case. One complication 

in the higher dimensional theory is that the determinant usually contains the 

Casimir energy term, the energy that depends on the shape and size of the 

bubble. It, however, is irrelevant in the regions of the parameter space we are 

interested in, because the surface energy term dominates. Hence we drop their 

contribution to the determinant. 

The eigenvalues of the lower-lying fluctuations are obtained by separating the 

angular variable, the radius r, and the 7. The angular part is given by the usual 

spherical harmonic functions, Y,,,(6, cp). W e can take the radial function as in the 

l-dimensional problem as long as the bubble radius is large and the centrifugal 

term is small. This is because the centrifugal force term Z(Z + 1)/r2 has a larger 

contribution at r = i? than the bubble background field when Z(Z+ l)/z2 > 1/p2. 

In other words, for I > ZLR, the centrifugal force dominates over the effect of 

bubble background field. Once the centrifugal term is dominant, the eigenvalues 

of the fluctuations with and without the bubble are the same. Therefore in the 

ratio of the determinants, we only need to count Z < cl@, with cl of order 1. 
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For these I, the eigenvalues are given as follows. First- the trapped modes, the 

modes with the radial part that has the zero radial eigenvalue are obtained by 

expanding the bubble action (4.3) for R(r, 6, p) = R + 6R, 

A = 4zppi?2+(z* wzeartermin6R)+p/tfrdfl (6R’ + ~(7izsd2 + (iaR)2)) . 

(A.ll) 

Therefore we obtain the eigenvalues of the trapped mode to be 

AkoJ = k; + $2 + Z(l+ 1)) . (A.12) 

Among these modes, the ko = 0, Z = 0 mode corresponds to the uniform change of 

bubble radius, thus the change of the constraint parameter i?. The three ke = 0, 

Z = 1 modes correspond to the uniform spatial translation of the bubble, the 

change in 2. These modes are dropped from the calculation of the determinants. 

Note that from the expression (A.12) , none of these modes have zero’eigenvalue 

in contrast to the one-dimensional case. This is because the 1 = 1 mode is 

the translation mode only infinitesimally. If we have taken a trajectory in the 

functional space that corresponds to change of the center of the bubble, it has a 

nonzero (but second order) component to the Z = 0 direction. Since the action is 

not extremized in this direction, it is possible not to change the value of the action 

along this trajectory. In the actual one-loop calculation, however, we simply need 

to drop these four modes from the determinant. 

The other eigenvalues are given by adding the angular term I( Z + 1)/z2 to the 

one-dimensional values. This is because since within the thin wall approximation 

we can essentially take a thick spherical shell region B - L < Y < ?? + L and 

compare the modes that are confined in that region with and without the bubble. 

As a result, carrying out the similar calculation to the one in the previous 

subsection, we obtain the following, 

detD(q& = u) 84 
= -F~,tmwe , 

det ‘W#h~e) ti 
(A.13) 



where the l/p term corresponds to the missing eigenvalues,-,/zlx and three of 

2/z. The factor FT,~M~ is a dimensionless quantity, which is the full ratio of 

the determinants, 

F T,hbtde = exp - 
[( 

552Z+ 1) ln( 1 - e-‘JT) 
I=0 

- 

+-5(2Z+ l)ln(l -e 
+y/?G&+ 

> 
I=0 

(A.14) 

-#a 

+ X(21+ 1) 
wdkl dS( kl) 

/ 
-- . 

I=0 A dkl 
In 1 -,-BJR 

( 
0 

(Here we have already dropped the Casimir energy term as was mentioned at the 

begining of this appendix.) 

Let us derive its asymptotic expression for high temperature. First, we 

expand the exponent in the In’s and take the first two terms. 

In l-e ( +dY+*) = ln($) + fln(Z(Z+ I) +x2*) + . . . . (A.15) 

The term proportional to lnp/R cancels between the three terms of (A.14). 

Hence the dominant contribution of the Z-summation for small p and large pa 

can be approximated using the following formula, 

e(2Z + 1) ln(Z(Z + 1) + a2X2 + a~) =2X2 In X 
I=0 

+((a2 + 1) h( a2+l)-a2lna2 - 1 > x2+ O(XlnX), 
(A.16) 

where X 3 crpx. This can be obtained by bounding the upper and lower limits 

of the sum by continuous integrals and expanding the integrals with respect to 
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X. The first term in the right side of (A.16) agaih cancels between the three sums 

of (A.14). Collecting all the coefficients, and carrying out the kl-integration, we 

find 

F T,bubble = e 
A(e&~‘~‘+O(p&pfl) 

1 (A.17) 

where the function A(cl) is, 

A(q) = (3 + 24) In 
(A.18) 

+3\/4+zc:-6- iln3. 

This is a positive, monotonically increasing function. For large cl, A(cl) - 64~1, 

and A(1) = 4.16051928... . 
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APPENDIXB -. - 

In this appendix, we explain some technical details of the analysis of the 

constraints. The first subsection gives the discussion on the l+l dimensional 

case. The second subsection gives the discussion on the differences of the 3+1 

dimensional case from the l+l case. 

B. 1 1+ 1 DIMENSION 

Let us take a following type of constraint, 

P ? 

/ 
dTF(X(r)) = 0 , W) 

P -5 

where F is a ordinary function. In order to minimize the action (3.27) under this 

constraint, we introduce the Lagrange multiplyer A and extremize the following 

integral, 
P 

A, -A ’ dTF(X(7)) . 
/ P -a 

(B-2) 

The solution of the above has a constant of “motion”, E, 

E= &,+XX.-AtF(Xr) , (B.3) 

where A’ E A/41rp. Such a solution is required for a system with the equation of 

motion, 

Jt; - u(xr)2 = -1 , 

U(K) = 1 
E - KX, + A’F(X,) 

P.4 

. 

Thus the problem is equivalent to the real-time motion of a particle with energy 

-1 in the potential -U2. Note that (B.3) restricts X, to be in the region U > 0. 
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For a given F(X,), the behavior of the solutions are easily pictured by drawing 

U for various values of E and A’. It is straightforward to show that among the 

constraints of the type F(X,) = XT - r, only n = 1 allows periodic solutions. 

It can also be seen that the only periodic solution with this constraint is the 

constant solution, X(r) = 53. (Th’ IS is possible by having the flat “potential”, 

-U2 = -1 by the choice E = 1, A’ = 1. Since the potential is flat, it is trivial 

that for these values of the parameters the only periodic solution is the constant 

one.) In general it is possible to construct more general F(Xr)‘s that also give a 

unique periodic solution. However, they would in general require complicated sets 

of orthonormal modes. Therefore we would not investigate them here. Another 

possible type of constraint is on the boundary values of X(r)‘s. For example, a 

possibility is 

x(J) =xp> =COtZSt., A(-;) =qg =o a (B.5) 

and similarly for Y. Although this set of constraints always generates periodic 

solutions, these solutions are time-dependent and lead to much more complicated 

calculations, for the Jacobians and the determinant of the fluctuations than the 

case of a constant solution. Hence we find it convenient to use a constraint of 

the form (B.l) with F(X) = X - x. 

B.2 3+1 DIMENSION 

As in the previous subsection, we examine the following type of constraints, 

P 1 

/ 
&F(R(T)) = 0 . (B.6) 

b -1 

The solutions of this constrained problem satisfy the following equations, 

Ii2 - U(R)2 = -1 , (B-7) 
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R2 -- 
U(R) = E +A’F(R) ’ (B-8) 

where A’ E A/(47rp). In contrast to the previous case, (B.8) allows various simple 

constraints that yield periodic solutions. Let us look at the linear constraint, 

F = R - R first. It is straightforward to see that for 

E=x2, A’=2R , P-9) 

the function a(r,e,cp) = 2 solves (B.7). As shown in the Figure 5, this static 

solution corresponds to the unstable solution of the analog particle problem. It is 

also easy to see from this figure that for the values of the parameters (B.9) , only 

the static solution can satisfy the periodic boundary condition, (4.2). Actually for 

any E > 0 and A’ > 0, the main features of this “potential” is the same; namely, 

it has only one extremum, which is a maximum, in the valid region U > 0. Thus 

it is impossible to have a solution that satisfy the periodic boundary condition 

in this range. By studying other ranges of E and A’, it is also straightforward to 

see that there is no other periodic solution exists than that given by (B.9). 

For some of other types of constraints, the constant solution is no longer 

unique. For example, let us take a constraint on the average volume of the 

bubble, F = R3 - @. It is straightforward to see that for negative A, singular or 

oscillating solutions are possible due to the existance of singularity or minima of 

the potential. This is essentially because for negative A the Lagrange-multiplyer 

term acts as the positive volume energy term. Therefore among the constrained 

solutions are the bounce solutions used by Linde”‘l for discussion of the decay 

rate of the false vacuum at finite temperature. This type of constraint might still 

be useful if the constant solution still has the minimum action among the periodic 

solutions. However we have looked at some of these solutions and have found that 

this is not the case for our problem. In general, for a given function of F (and 

a given value of the parameter), there may be many time-dependent solutions 

that satisfy the periodic boundary condition. These nontrivial time-dependent 
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solutions usually require evaluations of complic&xl Jacobian&, determinants and 

the collective coordinate integration. Therefore we conclude that the linear 

constraint is the most convenient way to characterize bubble configurations. 
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APPENDIXC ~. - 

In this appendix, we give the derivation of (3.33) . In order to do this, we 

need to deal with the following integrals. 

IN(L) - dYN ] ~dxNmss. i'd& ,-A~yl-x~~-...-A~y~-xN) . (C-1) 
0 0 0 

In the actual calculation of P, A corresponds to pp. For convenience, we can 

define 10 (L) to be 1. The IN’S then satisfy a reduction formula, 

Now we define 

f~(Ai5) E A2N~fALI~(L) . 

Then (C.2) leads to, 

If we define the generating functional W (z, y) as follows, 

w(&Y) - c YNfNtZ) > 
N=O 

then W(z, y) satisfies the simple differential equation, 

The init ial conditions necessary to solve this equation are, 

W(Q) = 1, -&WC% Y) I 1 =-- . 
z=o 2 
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F-3) 

VW 

(C-6) 

(C-7) 



. _ - I -  

T h e  s o l u ti o n  i s  
_  - 

w , Y )  = c o s h  (+ i y x )  -  s i n h  $ z x J  

T h u s  th e  d e n o m i n a to r o f (3 .3 1 ) c a n  b e  re p l a c e d  b y  

Z (T ) =  2  a N IN  
N = O  

= e  + W  ( A L , 5 ) 

1  -+ - 
2  ( l -~ z & G  ) 

e i (w w A J L  (x  +  0 3 ) , 

w h e re  

T h e re fo re  H  i s  o b ta i n e d  a s  fo l l o w s , 

p =  - ;$ n Z (T ) 
4 ; l -  (  J A  ) P -4  . 

(C -8 ) 

(C -9 ) 

(C .1 0 ) 

(C .1 1 ) 

S i n c e  th e  n a i v e  c a l c u l a ti o n  i n  (3 .3 1 ) c o rre s p o n d s  to  P , =  a /A 2  i n  o u r n o ta ti o n , 

w e  o b ta i n  (3 .3 3 ) , 
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FIGURE CAPTIONS -- - - 

1. The mass insertion diagram described in the text as the single-propagator 

loop graph. 

2. Behaviors of the thermal expectation value of the field operator (4)~. The 

physical solution is indicated by a dashed line, and the unphysical solution 

which corresponds to a negative value for the square of the physical mass 

is indicated by a dash-and-dot line. 

3. The fraction of space P in which the expectation value of (p(x) is in the 

unstable minimum is shown as a function of temperature. The physical 

quantity P given by (3.33) is shown by the solid lines. The unphysical naive 

estimate P, is shown by the dashed lines. The parameter 7 is defined by 
K 4~6 

7-P=3c13. 
For the ease of calculation, we took here FT(c) = 1. 

4. The nonperturbative effects on the thermal expectation value (4)~ for the 

l+l dimensional symmetric case is illustrated for (a) the symmetric case 

and (b) the nonsymmetric case (E # 0) for very small E. The dashed 

lines represent the perturbative value u(T). The solid lines give the value 

including the nonperturbative effect. Since the high temperature behavior 

of this theory is not known, only the low temperature part is illustrated. 

5. The Upotential” -U2 is illustrated for the values of the parameters (B.9). 

The fat arrow shows the allowed region U > 0. 
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