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Jhtroduction 

Quantization of the gravitational field in a flat background has led to a 

systematic though non-renormalizable perturbation theory for S-matrix elements. 

For the purpose of laboratory particle physics such a description may eventually 

prove adequate. 

The a.pplication of quantum mechanics to the universe as a whole is much 

more problematic. In particular conceptual problems arise which concern the 

operational meaning of the coordinate labels of space-time points. In classical 

gravitation theory we are free to imagine physical coordinate frames composed 

of rods, clocks, dust particles or other material systems. So long as these objects 

are sufficiently light their influence on the gravitational field is negligible. In 

contrast to this, the coordinate frames used to anchor t.he space time points in 

flat space quantum theory must be infinitely heavy if they are not to fluctuate. 

No fundamental principles of special relativity or quantum mechanics forbid such 

heavy frames arbitrarily weakly coupled to the system under consideration. 

The combination of quantum mechanics and gravitation makes it impossible 

to introduce non-fluctuating material coordinates without disturbing the system 

or violating the laws of nature. The only alternative is a coordinate independent 

description. Consider then how coordinate time may be eliminated. The universe 

is described by a wave function 9 depending on spatial geometry and matter 

fields [1,2]. Some dynamical variable such as the total spatial volume may be 
chosen to replace time. Instead of asking how the probability for some field 4 

varies with time we ask for the conditional probability that 4 has a specific value 

given that the universe has volume V. This information is contained in the wave 

function +(V, 4,. . .) similarly the wave function should not refer to particular 

spatial coordinates. 

In the case of flat space asymptotic conditions the problem.of physically real- 

izable coordinates is less serious if physical questions are restricted to scattering 

amplitudes. In 3+ 1 dimensions gravitational influences die off sufficiently rapidly 

so that asymptotic material coordinates can be introduced without disturbing the 
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interactions between particles. In quantum cosmology we have no such recourse 

and must be content with a coordinate free description. Such a description can 

be based on the formulation of Wheeler and Dewitt [1,3]. This paper is primarily 

concerned with the W-D equations and their perturbative solution. 

1. Canonical Formalism 

We begin with a review of 2+1 dimensional general relativity and its canonical 

formalism [4]. Spacetime is described by the 3-bein e; where Q and JL refer to 

tangent space and coordinate space respectively. We shall choose coordinates 

X0, X1, X2 so that the “shifts” vanish [4] 

901 = 902 = 0 (14 

The time like coordinate will be denoted t and the space-like tangent and coor- 

dinate indecies a, m run from 1 to 2. In such coordinates we may choose the 

3-bein to sa.tisfy 

4 = (900); 
(1.2) 

0 
em +=:O 

The remaining components form a 2-bein e&. The matrix inverse of e& is called 

Zr and the determinant of e& is called lel. Thus 

-m e, = 
cm* cab er 

The Einstein Lagrangian with cosmological constant X is 

LE = -$I,l,g R3 (l-5) 

where g is a dimensional coupling with units of (mass)-! and R3 is the 3- 

dimensional curvature scaler. 
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The Lagrangian (1.5) contains second time derivatives of e&. These may be 

eliminated by adding a total time derivative to L. The result is given by 

(1.6) 

where 1 c 1 is the determinant of the time derivative of eO, and R2 is the intrinsic 

2-space curvature given by 

IeIRz=-& [$.~]P*P 

From (1.6) we may derive a Hamiltonian density given by 

eg H (z) = e8 -$ 1’71.1 - !f!-$ + -$ Iel} 

Here nr is the canonical conjugate to eO,. 

The classical field equations are: 

1) Euler Lagrange equations of motion for e&. 

d if,, x Ob 
& -g = 2 eO em 

(1.7) 

(l-8) 

(1-Q) 

These are the space-space components of Einstein’s equations. 

If we further restrict the choice of coordinates so that ez = 1 (synchronous 

gauge) then e satisfies linear equations of motion 

(1.10) 

and the general solution is 

eA(x, t) = &(z)e G- A’ + bh(z)e- ?F ’ (1.11) 

2) Vanishing of the generators of local 2-space coordinate transformations. 

Under an infinitesimal 2-space coordinate transformation 

X” + xm + f”(z) (1.12) 

4 



the 2-bein transforms as 

The generator is given by 

Pj = 
/ 

(be$Jnz d2z 

/( 
aefi m n a 8ea 1~~ 

= 
ax* Ta - axrn 1 f” 

(1.13) 

(1.14) 

= I P*(z) f”(4 
The time-space components of the classical field equations are equivalent to 

(1.15) 

3) Vanishin g of generators of local tangent space rotations. Under a local 

2-space rotation of the tangent space e& transforms as 

The local generator J is given by 

(1.16) 

The vanishing of J is automatic in the usual formulation in terms of the 

metric CJmn. 

4) Vanishing of H(z). This is the equation obtained by variation with respect 

to e!(z). From (1.8) we get 

H(4 = 4 g -p -g& qR2 + ‘lel = 0 (1.17) 

The vanishing of the Hamiltonian is peculiar to theories which are invariant 

with respect to time reparametrization [1,2]. Equation (1.17) is the time-time 

component of Einstein’s equations. 
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The simplest classical solution is open-infinite exponentially expanding space. 

e&(x, t) = bia(t) 

ei = 1 

. 

(1.18) 

where u(t) is given by 

fit a(t) = c exp 2 (1.19) 

The same solution can also be interpreted as a closed universe with the topol- 

ogy of a torus. In this case the system is assumed periodic in zr and x2. 

Another class of solutions is given by [5] 

e&(x, t) = 
6: 6: 

eTi$., -I- Me-2 (1.20) 

where M is a traceless symmetric matrix satisfying 

TrM2 = 2 

These solutions have the peculiar property that lel = 0 at t = 0. This implies a 

collapsed configuration of zero 2-volume. 

Finally we can consider closed spherical space solutions. Let S&(Z) be a 2- 

bein describing a unit 2-sphere. Then solutions of the form 

a 
em =Ae ‘S&+Be +- 4 A?; (1.21) 

exist. A and B must be chosen so that (1.17) is satisfied. Thus we require 

-41 i: 1 + AleI - lel R2 = 0 (1.22) 

For a sphere of radius Ae q+Be* the curvature R2 is given by 

Aeq + Be-S? 
> 

-2 
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Thus 

- Bfie-q)2lS, + X(A 
2 

e*Be-q)‘jSj - ISI = 0 (1.23) 

This is solved by A = B=& 

42, t% (1.24) 

Equation (1.24) describes a cosmological “bounce” solution in which the universe 

initially collapses to a radius of order X-4 and subsequently expands. 

In 3 + 1 and higher dimensions solutions of the above type can be modified 

by adding gravitational waves. In 2 + 1 dimensions the constraints are strong 

enough to prevent the propagation of real perturbations. 

2. The Space Of States 

According to Wheeler and Dewitt [l] the quantum wave function of the 

universe is a functional of intrinsic a-geometries. A vector in the state space 

is a function of the infinite collection of geometric invariants needed to specify 

a $geometry. Alternately we may consider vectors to be functionals of the 2- 

bein e&(z) taking care to make sure that @(e&(s)) is invariant under coordinate 

transformations and tangent space rotations of 2-space. Accordingly the physical 

subspace is defined by 

if e(z) and e’(z) describe the same intrinsic 2-geometry. Eq. (2.1) can be written 

in infinitesemal form 

J $(e) = 0 

where Pm and J are given by (1.15) and (1.16) with 

(2.2) 

m . 6 7ra =--1 - 
&e& (2.3) 
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In order to ensure the coordinate independence of the state space we must 

also require the inner product to be invariant. This is a subtle and difficult 

problem which is closely connected to the way the theory is regulated. Most 

of this paper does not depend on these subtleties but for definiteness we shall 

assume a particular inner product [l]. Thus let us define 

where p(e) is to be determined. Consider a coordinate transformation which 

leaves the point x fixed. The 2-bein at point x transforms as 

e&(x)’ = -jt& 4x4 

The Jacobian of this transformation is 

det ” -$f = det(l$ $) = det(g) (2.6) 

(2.5) 

To compensate this Jacobian we choose 

P(e) = EI l4-2 (2.7 
z 

Thus 

(%w = / II le(x)12 
wx4 $84 P-8) 

With respect to this measure some of the usual operators are not hermitian. 

Any real valued functional of e(x) is hermitian but the conjugate momenta 

nF(x) = -8-b 
k 

are not. A particularly simple set of operators given by 

(2.9) 

D;(x)= 
6 

ek(x)lrr(x) = -ieh(x) - 
Gilt4 

(2.10) 
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Dnm = ei 7rr (2.11) 

which is also hermitian. The 0: and Dz are related by 

DC = e: il;” 0: 
(2.12) 

0: = ek i$ 0,” 
The Dr (Di) are generators of the group of general linear transformations on 

the indecies m (a). The canonical commutation relations between e and w are 

replaced by 

are hermitian. Alternatively we can define 

[Db”, D,m] = 0 

I%wI %Y)l = t-6(x - y) (bjDb”(x) - biDi( 

IDnm(wxb)l = t-6(x - y)(S;Ds” - SB”D;) - (2.13) 

kFfd4~ ml = i6(x - y)t$ e;(x) 

k&(4m?dl = i6(x - y)Shei(x) 

The antisymmetric part of Di is the tangent space rotation generator 

J = cab D; (2.14) 

and annihilates all physical states. 

The field variables can be divided into two mutually commuting sets. The 

first set eonsists of the trace of D and the determinant of lel. 

D Da& = DE = (2.15) 

The second set contains the traceless part of D called D and the part of e which 

has det = 1. Thus define 

(2.16) 
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Everything in set 1 commutes with everything in set 2. The D operator generates 

local Weyl dilatations which rescale lel while 0; and 0: generate the special 

linear transformations on tangent space and coordinate space. 

3. The Wheeler Dewitt Equation 

All that is needed now to write down the W-D equation is to expression H(x) 

in terms of the D’s and order it so that it is hermitian. According to (1.17) the 

classical density H(x) consists of 3 terms 

H(x) = Hl+H2+H3 (3-l) 

H = ff ‘mnEab 
l -42 

I4 
H2’7 R2 

(3.2) 

P-3) 

Hz and H3 are manifestly hermitian and may be taken over into the quantum 

theory without modification. H1 however is not hermitian as written in (3.2). 

Using ~2 = ZT 0: and reordering the operators, HI can be made manifestly 

hermitian 

2 
H1 = -D+ 0; cbd, 

+I 
ac 

g2 g2 =-8 D(x) i D(x)+~ DfD: 

The W-D equation is obtained by using 

D;(x) = -ie&(x)L 
@7&) 

and writing 

(bd, Dba g2 DC R2 

8 I4 d 
ac + -$ I4 - -$ VW 1 = 0 

P-5) 

(3.6) 

(3.7) 

(3.8) 
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Another form for the operator HI is given by 

H1 = - 

= -g2 
{ 

I4 i W) 42 
4+8 lel 

q 
1 

In order to see how the formalism operates let us consider a simplified model 

in which the curvature term H2 is dropped from the Wheeler Dewitt equation. 

In this case there is no coupling between spatially distinct points and the W-D 

equation is statisfied by continuous product wave functions 

?J* = exp*i2$ 
9 I 

d2x lel (3.10) 

To see that (3.10) solves the W-D equation we write 

H+-g2!d $ --- 
4 

(3.11) 
g2 6 6 =--.-- 
8 be& bet 

Now note that 

and that 

(3.12) 

Substituting in (3.11) shows that HT+!J* = 0. It is interesting to see that the 

operator ordering (3.9) is required to cancel the singular term proportional to 

itq0). 

Note that the is(O) term cannot be removed by simply subtracting a constant 

from H because it has opposite sign for $J+ and $J-. Unfortunately we do not 

11 



know whether the simple prescription in (3.5) removes all such non hermitian 

singular effects when the curvature term in H is restored. * 

4. Linearized Theory 

In this section we will linearize and solve the W-D equation to leading order 

in g. For simplicity we first consider the case of spatial geometries with the 

topology of a torus, or infinite plane. Our solution corresponds to perturbing 

about the classical solution given in eqs. (1.18) and (1.19). 

We begin by Fourier decomposing e& 

k=O 
(4.1) 

where the values of k are determined by the appropriate periodicity of the toroidal 

parameter space x. In the case of infinite space the sum is replaced by an integral. 

The fourier amplitudes e(k) will be separated into a background part which 

is not assumed small and a fluctuating part proportional to g. In particular the 

fourier amplitudes e(k) for k # 0 are all assumed small. The amplitudes e(k = 0) 

are separated into a piece proportional to the unit matrix which is not assumed 

small and a traceless part which is. Thus we write 

a 
em = S& a + g h& + k c eik’“h”,(k) 

k#O 

where ilk is traceless. Similarly the canonical momenta are decomposed 

m 
=a 

6rQ 1-m 1 = 2+ ;qa + - c eik’“q,“(k) 
9 k#O 

(4.2) 

(4.3) 

The variables (&,a), (h ,g) and (h(k), q(k)) f orm conjugate pairs. We shall use a 

simplifying notation 

;6abcmn h$(k)h;(-k) = Ih( 

a cabc mn dFtk)q~t-k) f Mk)l 
(4.4) 
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Let us assume that the wave function can be written in the form 

+(h) = e2p[ *zl 8 xn(h, a)]@o(h a) 

where $0 is gaussian in h (but not a) and xn are polynomials in h. The procedure 

for finding $JO and xn is straightforward. We apply the fourier transformed 
constraint equations 

H(k) tc) = 0 

P(k) ~6 = 0 
(4.6) 

and require that they be true to order g*-‘. Surprisingly we find that this 

guarantees that the total hamiltonian 

HT= 
/ 

d2x H(x) (4.7) 

annihilates $J to order gn. This is not totally unexpected for the following reason. 

Consider the Einstein equations expanded to a given power in the fluctuations 

h. The time-time and time-space equations are just the constraints (4.6). The 

space-space equations are the hamiltonian equations of motion for e&. In order 

for these to be satisfied to order n - 1 the total hamiltonian must be correct to 

order n. 

The contribution of the curvature term - y to H(k) is an infinite series in 
g. We shall need to know the first two terms of this series. 

lelR2 
-g2=- 

k2Trh( k) - kakmh&(k) 
!la 

- cmncrs g -y [Tr h(p)hf(t) - hk(p)ht(l)] 

where Et, means a constrained sum in which e + p - k = 0. 

In analogy with (4.4) we will sometimes write 

[k2Tr h(k) - kakmh&(k)] [k2Tr h(-k) - kbknhi(-k)] G [k2Tr h - kakmhk(k)12 

(4-g) 
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In expanding H in powers of g the conjugate momentum Q should be assumed 

to be of order l/g 2. This can be seen by noting 

(4.10) 

Thus to order go, H(k) and P(k) are given by 

H(k) =b(k)[-f$$ + $1 

[ 
TM4 x 

- g&, 
- gaTr htk) - 

k2Tr h(k) - kakmhh 
!P I 

(4.11) 
- !f$ - xlhlk - c[F$(Tr h(p) h:(t) - h~(p)h~(l))}tmncfa 

ep 

-i,2a(o) Q 

4a 

knhz(k) - kmhT(k) ] - ik,gnm(k)} 

(4.12) 

We assume that $0 in eq. (4.5) is gaussian in the fluctuations h. Thus we 

write 

or 

$0 = exp [A3 + c Br(a, k)hp,(k)h;(-k)] 

Applying H and collecting terms of order gB2 gives 

Xa2 

+F=O 

A==t2ia2fi 

(4.13) 

(4.14) 

(4.15) 
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The ambiguity of sign in (4.15) is related to the possibilities of expanding or 

contracting universes. The two possibilities are related by time reversal. We 

shall choose the expanding solution which means the minus sign in (4.15). 

Any linear superposition of the expanding and contracting wave functions is 

also a solution of the W-D equation. The assumption that we can treat each 

branch separately is equivalent to saying that time reversal (TCP) is sponta- 

neously broken. 

The general solution of Pn@ = 0 to order l/g is 

-i AT - i$c Ih(k 
k 

(4.16) 
X exp C ~(a, k) (k2Tr h(k) - kakmh$)2 

k 

Next, using eq. (4.15) and applying H(k)+0 = 0 to order g-l gives ~(a, k) 

(4.17) 

Thus giving 

$0 = exp -2i Jx ($+p) 
(4.18) 

x exp j= c (k”Tr h - kakrnh&J2 
4 k&2 

The objects in the exponents of (4.18) are the leading contributions to geometric 

invariants. Consider first u2 + g2 ck I hl. 

a2 + g2c lhl = / d2x lel = V 
k 

(4.19) 

where V is the spatial volume. 

Next consider C(k2Trk - kakmh&)2/k2a2. From (4.8) we see that this is 

equivalent in leading order to 

$1 I44 dx IWI dY R2(4R2WO(~? Y) (4.20) 
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where G~(z, y) is the 2-dimensional green function given by 

(4.21) 

To make (4.20) into a geometric invariant we need only replace Gu(z, y) by the 

covariant green function G(zy) which satisfies 

-a, lel gmn &G(z, Y) = 6(2 - Y) (4.22) 

To zeroeth order in g there is no difference between Go and G. We therefore 

define the invariant 

I= WI IWI d2z d2Y &)% Y) w (4.23) 

The wave function (4.18) is then given by the leading contribution to 

- p$o=eq-j2dAV-- [ 92 fiIg* I 
The total Hamiltonian is given by 

(4.24) 

(4.25) 

Applying HT to (4.18) we find that 

HT’+& = 0 + order g (4.26) 

Let us now consider the significance of a wavefunction like (4.24). The first 

striking feature is that it is a pure phase. Therefore all configurations of 2-space 

are equally likely. In particular there is no suppression of highly irregular ge- 

ometries with large values of the local curvature. This however does not mean 

that spacetime is highly irregular. In fact it is a direct consequence of Einsteins 

equations that the space-time has uniform curvature. The point is that even in an 

absolutely flat space-time, space-like 2-dimensional surfaces can have arbitrarily 
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complex structure. Our wavefunction has contributions from all space-like sub- 

manifolds most of which are very irregular. Indeed the condition that H(z) = 0 

means that the wavefunction is unchanged by an infinitesemal local time dis- 

placement. Obviously then it can not be concentrated at smooth geometries. 

On the other hand invariant measures of the space time irregularities are 

concentrated around their classical values. For example the %space curvature 

is uniform and proportional to X as a consequence of equations of motion and 

constraints. In Section 7 we will explicitly compute the fluctuation in a variable 

4~ that was introduced [6] to study the gauge invariant fluctuation spectrum of 

inflating universes. We will find ~H$J = 0 in the matter free case. 

To the next order in g the wavefunction has the form 

(4.27) 

where p + .f + k = 0. The order g correction term has two contributions. The 

first is implicit in eq. (4.24) and comes from expanding the invariant I to order 

g. It is given by 

6h S I 
3 h=oh~(k)h:(P)h,“(e) I 

(4.28) 

The remaining contribution can be determined by applying H(k) = P(k) = 0 to 

zeroth order in g. We find 

(4.29) 

where []e]R]k means the kth mode of the linearized spatial curvature Equation 

(4.29) can be written as an integral over 2-space. Define IO by 

I’, = / d*z d*y d* z M% kl%h4~lZ 
(4.30) 
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where 

Go@, Y, 4 = / du Gob, ~Go(Y, u)Goh 21) 

Then (4.29) becomes 

(4.31) ’ 

(4.32) 

we can make r’ manifestly invariant by replacing 8 by covariant derivative V, go 

by the covariant green function and du by v. 

I’ = 1 d*x d*y d*,+l& [lelR]y[lelR]z[V~V~ - (0, - V,)*]G(x, y, 2) (4.33) 

where 

Gk, Y, 4 = i/ d24441 G(z, uK% u)G(z, 4 

Thus to order g the wave function has the form 

(4.34) 

(4.35) 

Notice that when written in terms of dimensionless invariants I, I’. . . the g* 

dependence factorizes and the dimensionless expansion parameter is (VA)-l. The 

series converges rapidly if the volume is large compared to the Hubble volume. 

Up to this point no divergences appear in the calculation of ~+4. In the next order 

infinities arise which can be countered by renormalization of g and X. Beyond 

that we do not know what happens but it is possible that an increasing number 

of counter terms is required at each order. 

It is also possible that non-hermitian counterterms will be needed to eliminate 

some infinities. These would be analogous to the i&(O) terms we encountered 

when we used the wrong ordering in the simplified model of section 3. They 

would indicate quantum corrections to the measure (2.7). 
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5. Scalar Matter Fields 

We now add a minimally coupled scalar matter field. The matter field La- 

grangian is 

which leads to the local Hamiltonian 

e!H, = ez 
P* 
A+ lelgmn 
44 F-2) 

where 

pd 
G7l di 0 

=-=2b-leo w 

Expanding (5.2) in powers of g gives 

(5.3) 

Hm(~) = pt -@P-P -‘Trh) + (0~~5)~ 

(5.4 

-I- order g* 

Similarly the matter field contributes to the generators Pn. 

Since (5.4) and (5.5) vanish in order g-* and g-l eqs. (4.14) - (4.18) are unaffected. 

Accordingly we write the leading order wave function as 

$0 = exp [4 4~” + T I+))] 

x exp Jj;;2k2 c(k*Tr h - kzk&J]~(d, a) [ k 

P-6) 
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The matter wave function z can be obtained by requiring Hto&o = 0 to zeroth 

order in g 

Htot = 2 WJb -Q + F{;+ WI} 4 

(5.7) 

+’ 4a2 
p’#‘(k)pd-k) + k*#( k)4( -k) 

where P4 is represented by 46. We find that requiring Ht,t$o = 0 implies a 

Schroedinger equation for x 

The physical meaning of eq. (5.8) can be seen by considering a quantum field 

4 in a classical background geometry given by 

e! = 1 

n 
em = a(t)b& = e e- t Sk 

The fourier modes of C$ decouple and the schroedinger equation for the mode 

d@) is 

1 & 
-4a(t)2m + k*qb(k)* I X 

Substituting 

(5.9) 

a .a l/x a 
t=aaa=2 a aa 

we see that (5.9) and (5.8) are the same. Thus we see how the W-D wave function 

contains information about the evolution of 4 in the form of correlations between 

the dynamical variables a and 4. We also see that in the linearized theory these 

correlations are obtained by solving the field dynamics in a classical background 

geometry. 
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This is the first place that the classical notion of time has entered our formal- 

ism. It is a convenient description of the correlations in the W-D wave function, 

within the semiclassical approximation. Once the geometry has large quantum 

fluctuations, time loses all meaning. Many author’s [7] have attempted to define 

time variables which make sense in the quantum region, but with no success. The 

W-D equation is second order in all of its variables and it is impossible to convert 

it exactly into a Schrodinger equation. We accept the argument of Dewitt [I] 

that time is only an approximate concept in quantum gravity. 

Gaussian solutions to (5.9) can be found which span the entire space of solu- 

tions. We therefore look for solutions of the form 

44) = exp - 2 1 IW, WW4t-k)] 
Applying (5.9) to (5.11) we get an equation for F( t, k) 

idF F* -- --k*=() 
2 dt + 4u(t)* 

The general solution to (5.12) is of the form 

F 
= 

a k w ,2ik /a4 _ e-2ik/afi 

1 w ,2ik/afi + e-2ik/afi I 
in the limit of small a. W is a complex integration constant. 

(5.11) 

(5.12) 

(5.13) 

In general (5.13) is violently oscillating as a -+ 0. There exists a particular 

solution which is well behaved, namely W = 0. This state can be thought of as 

the state of minimal excitation and we will concentrate on it for the rest of this 

paper. The choice W in (5.13) is equivalent to requiring that the energy in the 

field 4 not blow up as a --) 0. To see this we note that if the field 4 is replaced 

by the dimensionless field X 

x = qha: 
then the matter field hamiltonian is 

H m= c 
P$(k) + k*X(k)* - a ,/xX(k)* 

k a 
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When a + 0, Hm becomes 

H m = :F P%(k) + k*X(k)* 

which has the eigenvalues 

Em = $ IkIn(k) 

Thus to keep E finite as a --) 0 requires all the occupation numbers tz to vanish. 

This is equivalent to requiring W = 0. 

The solution of (5.12) with this initial condition is given by 

where H is the Hankel function. For large a, F behaves like 

4ik* -- 
6 

en2afi k* 
k +“Jj; 

(5.14) 

It is interesting that for large a the probability distribution for $(k) becomes 

a-independent. 

We have carried out the calculation of T,!J to order g when the matter field is 

included. In this order the quantum fluctuations in 4 begin to become correlated 

with the metrical perturbation h. The wave function to order g has the form 

t#~ =exp[-2~~+-$+-2i3Av’-g2] 

x “XPC 1 
-F$(k)$(-k)] 

x [ 1+ 9 c fcv, P)~W(P)Gw - P)] 

(5.15) 
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The procedure for finding K& is by now familiar. Apply H(k) and P(k) to $J 

and require the result to vanish to order go. The result is 0 

K,~(P, f) = 
cbaenmkbk, 
4i fi a3k2 

[F’Fp + 4p - [a*] 

+~{s,,(k.~F(+k.eF,)-(ka~m + kmt?a)Fp (5.16) 

+ (ka Pm + km pa)Fe 1 

where F is defined by (5.11). The first term in (5.16) can be written in the form 

1 I dx dy dz & F(u - +‘tu - y)Gotu - &W#(~)let~)IRt~) 

4i d’ 
(5.17) 

-41 dxdz y(Vt#(x))*Go(x - z)je(z)jR(z)l 

where F(x) is the Fourier transform of F(p). This is the lowest order contribution 

to a new reparametrization invariant term in the wave function. There are many 

ways to make it invariant and we would have to go to higher order to figure out 

the correct one. 

The term linear in F is a correction to the invariant whose lowest order term 

is the logarithm of (5.11). 

6. Spherical Geometries 

Thus far we have considered 2-spaces with the topology of a torus or plane. 

We now turn our attention to topologically spherical geometries. We again de- 

compose e&(x) into a dominant term describing the homogeneous isotropic com- 

ponent plus fluctuations. Let 

4%) = E$ a(t) + gh& 

where E& describes a sphere of unit surface area. Such a sphere has uniform 

Gaussian curvature given by 

R = 47r (6.1) 
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For a simple description it is convenient to map the sphere onto the plane by 

stereographic projection. Then Eh is given by 

(6.2) 

The fluctuation ghh(x) is assumed orthogonal to Ek. 

/ 
d*x E&(x) h:(x) = 0 

or 

/ 
d*x f(r) 7% h(x) = 0 (6.3) 

To find the wave function we follow the same procedure as in section 4. To 

leading order the total hamiltonian is 

H 2Q2 Xa* 4n 
=-g z+F-? (6.4 

where Q is conjugate to a and the constant 47r is obtained by integrating lelR2. 

We apply (6.4) to @(a) and require the result to vanish to order $. We write 

$(a) = e A(a)/g2 

and find 

There are two solutions 

[*I’= 4[16s-4 ha*] (6.5) 

We next apply the local hamiltonian and P(x) and require them to vanish to 

order g-r. The momentum constraint requires 11, to have the form 

ti = exp A$ + $1 Ih( d*x 

(6.7) 
X exp [ 1 / d*x d*y K,mb’k Y) ~&W:(Y)] 
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where A'=%=* 167r- 4Xa*, and the kernel K must satisfy 

(6.8) 

Equation (6.8) is the condition that the second factor be invariant with respect 

to spatial reparametrization. It can be solved by invariants constructed from the 

curvature R. Define the substracted curvature 

The density 

&R-% 
a (6.9) 

fi lel = Rlel - $\eI (6.10) 

when expanded in powers of h& has no zeroeth order term. 

The general solution to the constraint P = 0 is given by 

/ j- K(x) y)h(4hty) = / / \R lellz L&Y) @ kh & (6.11) 

where $ is any function of the invariant distance between x and y in the back- 

ground geometry. The lowest order contribution to I’L’ lej is given by 

-(R lellz = g? [&arh: + y] crnncrs 

- g%{[s amj]Trh} - g$ Trh f(x) 

(6.12) 

The next step is to solve for $ by using H(x) = 0 to order g-‘. We find 

H(x) m - qTrq(x) f(x) + + Trh(x)f(x) 

(6.13) 
+!k 

[ 
-J- arh!j + hi arf 

ag f(x) 7- I 
cmntrs 
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Applying (6.13) to (6.7) gives 

krj(+?- h(x) +p/(x)/ Kg; (x,Y) hk (Y) 

+ 3, $a,h: + ~]~mn~rd - llm{[$am j]Tr h} = 0 (6’14) 

The easiest way to solve (6.14) is to evaluate it for h of the form h(x)6&. In fact 

there is no real loss of generality because any spatial metric in 2-dimensions can 

be brought to t,his form. In this case eq. (6.14) takes the form 

o = (V* + 8~j*)(;)+~f(4 1 K;,“(x,Y)~(Y) (a) (6.15) 

Furthermore 

-file1 =i[V*+ 811j*](;) (6.16) 

Thus 5(x, y) can be identified as 

-&Sk Y) = lx IF2 + w *rv (wiK(~, Y)f(Y)l(V2 + wf *)-‘I Y) (6.17) 

Using (6.15) this implies that 

$(x, y) = (v* + 837)~‘6(x - y) (6.18) 

Thus we see that there are two differences between the toroidal and spherical 

cases. 

First, the term e is replaced by y with A given by (6.6). The second 

difference is the replatement of I = - / Rlel& Rlel by 

I=- J a I4 (v* : 8K) R I4 (6.19) 

or more generally 

I=- 
/ WI G w (6.20) 
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where G satisfies the “massive” equation 

-%Ielgmn&G(x, y) + 8wlelG(x, y) = 6(x - y) (6.21) 

In this case the wave function of the linearized theory is no longer a pure 

phase. For a >> y 

A’ = f4iJXa 

A = &2i&a* 

The large a wave function then has the form 

11, = exp - i 
[ 

2fiv I 
9* +a* I 

However for a* << F we find 

A’ =8& 

A=8&a 

and 

(6.22) 

(6.23) 

(6.24) 

The reason that $J becomes real for a* < F is that this is the classically 

forbidden region. To determine which linear combination of wave functions in 

(6.24) to use with (6.22) we must extrapolate through the region a* - y. This 

however is the region in which our approximations break down. 

In the limit X -+ 0 the wave function has the form of (6.24). In the case 

the wave function is well behaved since I > 0. However if 
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I 

it blows up for large volume and for wildly fluctuating (I >> 1) geometries of any 

volume (of course our approximation breaks down for I > 1. 

Therefore requiring the wave function to be well behaved for wildly fluctuat- 

ing geometries requires us to choose the wave function for which large volumes 

are exponentially suppressed. 

Adding matter fields can be done as in the toroidal case. In the lowest order 

the wave function factorizes 

+ = exp ‘9 + g2J$)l f/hatter 1 
(6.25) 

Applying I HW *x and requiring the result to vanish to order go we obtain a 

Schroedinger equation for $Jmatter. 

i a &latter 
a? = f&natt.er hnatter (6.26) 

where 7 is defined by 

ia ,=A'$ (6.27) 

For large a 

a -=4&x; 
69 

(6.28) 

as in the flat or toroidal case. For small a 

iar = &G g (6.29) 

Thus we see that in the classically forbidden region $m satisfies an elliptic or 

diffusion type equation with an imaginary time 

(6.30) 

7. Quantum Fluctuations In The Large Scale Structure of Space-Time 

In this section we shall study the anisotropy and inhomogeneity in the large 

scale structure of space time. Let us begin by considering a particular fourier 
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component of ]e(x)] R(x) in the case of a toroidal universe. 

[lel R]k = / le(x)IR(x) eika2 d*k (7.1) * 

The magnitude of []e] R]k is a measure of the degree of fluctuation in the spatial 

geometry. Since the wave functions that we have computed are pure phases, 

at least to order g, the fluctuations in []e] R]k are infinite. However this violent 

fluctuation is not a signal of a meaningful fluctuation of space time. It is due to 

the ambiquity of the 2-dimensional spatial surface imbedded in 2+ 1 dimensional 

space-time. Accordingly we shall modify [le] R] k so that it is independent of the 
choice of spatial surface, at least to leading order in g. 

It is convenient but not essential to work in “synchronous” coordinates de- 

fined by 

et = 1 
(7.2) 

et! =e”,=O 

Given any initial spacclike surface I synchronous coordinates can be constructed 

so that I is the origin of time. Let us consider a coordinate transformation 

which displaces the initial surface by amount gj’(x, t) and which preserves the 

conditions (7.2). 

t ---) t + gjO(t, 2) 

xm-,xm + sf"W 

Imposing (7.2) on the transformed 3-bein we find 

a, j" = 0 

aP at j" = -gam m 

To leading order in the coupling constant g eq. (7.5) becomes 

ap t 1 frn(? t) = -p/q 
0 

(7.3) 

V-6) 
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Let us now consider the variation of eh. 

ae&=g$&j”+,,e~ 
[ 

WV I 
= eO, j" + (L&e&) jn + gei 

which to leading order becomes 

1 
a*j" t 1 = gg+p-a axvxao ,2 / I 

It is straight forward to show that the quantityl’] 

zg = -lelR(x) + gaa$[$aaaIh’ -T] 

(7.8) 

(7.9) 

is unchanged by (7.8). To leading order we can replace ir by di a. Thus define 

z 
9 = I 

(7.10) 

- g: $aaa,h& - Trh I - I4 R(x) 

Using ha, = -4cabc mn@ it is easy to see that 2 is given by 

4 ai;, = s2Hg(x) + 2 g* hv (7.11) 

Equation (7.11) defines a measure of the geometric fluctuation at point x 

which does not depend on the choice of space-like surface through x. For an 

I1]Zg ia equivalent to V*@H defined in (Ref. [6]) where H,(x) and P,(x) are the 
purely gravitational hamiltonian and spacetranslation generators. 

. 
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expanding torus with metric eg = a(t)s&, 2 obviously vanishes. Furthermore 

for any geometry which uniformly expands in the sense that 

e&(x, 0 = a(t) e&(x, 0) (7.12) 

we find 

zg = -I4 R(x) (7.13) 

Classically the general solution including matter fields asymptotically satisfies 

(7.12) from which it follows that Zs asymptotically become time independent. 

Such a geometry asymptotically tends to a fixed shape which dilates with time. 

The question we shall consider is how quantum fluctuations of Zs behave 

as the volume tends to infinity. Before beginning the calculation let us discuss 

the meaning of the possible results. The simplest possibility is that Zs -+ 0 with 

volume. This would indicate that the geometry becomes homogeneous. Quantum 

fluctuations in the global structure of space die in time. 

A more interesting possibility is that Zs is not zero but has a limit as volume 

goes to 03. In this case the universe approaches a fixed shape which grows in 

time. 

Finally one may find that Zs grows with volume. In this case quantum fluctu- 

ations cause bigger and bigger inhomogeneities and anisotropies as the universe 

grows. 

We shall compute the quantity 

wdx, ?d = (~ulZ(x)Z(Y)t~~)c~nnected (7.14) 

where T/J” stands for the projection of (5.6) on the subspace with given volume 

V. This quantity measures the correlation between fluctuations at points x and 

y as a function of the the total volume. In particular we will be interested in the 

limit of large volume. Notice that if 1x - yl is kept fixed as V --) 00 the proper 

distance between the points grows like the scale factor o. Accordingly if (7.14) 
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does not vanish as V + 00 then quantum fluctuations distort the global large 

scale geometry of the universe even when it grows to arbitrarily large size. 

To begin the calculation we note that eq. (5.6) defines a product state with 

the gravitational factor being unaffected by the matter field. Thus H&x) and 

Ps(x) annihilate it. This means that (7.14) vanishes identically to order 92. The 

first non-vanishing contribution occurs at order g4. To compute it the wave 

function must be calculated to order g 2. However we can avoid this by observing 
that the constraints H = P = 0 require 

s2H&) = -g2Hm(x) 

s2ps(x) = -s2P,(x) 
(7.15) 

where Hm and P,,, refer to the matter field. Therefore we can calculate the 

quantit,y 

by using 

-$Zrn (2) = [H,(x) + 2 A&V * Pm] 

(7.16) 

Note that 

P, (X) = 

-$ Zm is the matter energy density in a “co-moving” frame where 

0. The operators Hm and ?m are explicitly order zero in g. Therefore 

to calculate (7.16) to order g4 requires only the lowest order wave function given 

in (5.6). In fact since to lowest order in g, Hm and Pm are independent of hh(x) 

we can ignore the gravitational part of $ and write 

?lm = exp (7.18) 

where a is identified with Vi. Since +!J m satisfies the Schroedinger equation in 

a classical background geometry the computation is identical to calculating the 

corresponding quantity for a quantum field in a classical exponentially inflating 

universe. 
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Let us consider a typical contribution to (7.17). The matter hamiltonian has 

a contribution (V#)2. Thus consider the expectation value 

s41mw)2 cvM)2) (7.19) 

Because (5.6) is gaussian in C#J Eq. (7.19) can be written 

(7.20) \ I 
= g4 dk km kn d(k) 4(-k) eik(z-y) 1 2 

For a gaussian wave function 

w%(-~)) - l F(& a) + F*(t, a) 

so that 

(7.21) 

Equation (7.21) is ultra violet divergent. The divergence can be handled by 

standard renormalization techniques. The subtractions are proportional to 6(x- 

y) and its derivatives. They do not affect the part of the k integral (k < a di) 

which corresponds to physical wavelengths of order the horizon size or larger. 

Thus we can estimate the fluctuations by cutting off the 4? integral at e - a \/j;. 

From eq. (5.14) we see that Re F is given by $ for !? >> a 6. Accordingly W 

behaves like 

g4 ,j”Cdgq (’ * q)2 e2q2 6( t + q + k) eik(z-Y) d2 k 

= g4 
afi d2e [e. (e + k)12 ,ik(z-y)d2k 

12(t? + k)2 

4 d2t [e ’ (e + k)] _ 1 
t2(C+ k)2 1 

eik(z-y)bLk 

(7.22) 

where 6~ is a smeared 6 - function. 
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The first term of (7.22) comes mostly from modes with C - a fi. In terms 

of proper momentum this means momentum of order 6. The second term 

is insensitive to the cutoff and arises from modes with e - k. The remaining 

terms in W give similar contributions. Thus we see that W consists of a volume 

independent contribution plus a growing term given by 

x g4 a2 6H(x - $/) (7.23) 

This term has a simple intuitive significance. The total co-moving energy in a 

coordinate volume v is 

/ 
Zm(X) 

Cl?= 92 V 

The fluctuation in tu is 

(hJ2 = (cf, - ktJ2 = / d2x d2y W(x, y,($) 
V 

(7.24) 

(7.25) 

From (7.22) we see that 

(AQJ~ - (v u2)X (7.26) 

The quanity va.2 is the total proper volume of the region v. 

If we consider v to be composed of disjoint volumes of order the horizon 

size then eq. (7.26) means that the energy fluctuations in these volumes are sta- 

tistically independent and of order d%. Evidently the rapid inflation produces 

significant large scale distortions of the background geometry which do not dis- 

appear as the volume expands. Indeed as the low k modes are inflated past the 

horizon new fluctuations keep replacing them. 

8. 3 + 1 Dimensions 

The Lagrangian for 3 + 1 dimensional gravity is (in synchronous gauge) 

L=- 
Cabc Cmnr 

g2 (84 
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and the Hamiltonian 

H = -g2cabc, mnt 

which to zeroth order in g is 

H== -$ Q2g2+b;} 

%I3 2 
+ GQTrh I w2 -=Trq+ 

Xu2Tr h + 2V2Tr h 
9 9 I 

+ 2!12 -gQ2h$hr + 2(Tr h Tr q - hzqr 
> 

Q 3 

(8.2) 

(8.3) 

2 - h&h?] -i [(Tr q)2 - qzu&] + uX’(Tr h)2 

where Tr ji E Tr h - v h? and I h I= i 6mnr6?abC h&h! 9. 

It is helpful to consider a single fourier coefficient with wave vector along an 
axis which we arbitrarily label xl. The 2-space orthogonal to k we call XM = 

(X2,X3). The independent components of h$, are 

6) h:‘,& 
c) hi+ hz=hE=Trh 

d) h; - h$ z &a 

e) hz + hi E ~pz 

f) 6 - 6 

(8.4 

The components of (8.4) labelled (a, 6, c, f) are nonpropagating degrees of and 

41, $9 are the graviton degrees of freedom. We shall see that 41,~ behave in the 

same way as minimally coupled scalar matter fields. 
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The linearized wave function is obtained in the same manner as for 2 + 1 

dimensions. In this case we find 

where ~($1, $2) satisfies the minimally coupled schroedinger equation 

.W 
7t= 

where t is defined by 

a = exp 2 
J 

ft 

(8.5) 

(8-6) 

(8.7) 
In other words the graviton fields C#J behave like a pair of minimally coupled 

scalars. 

As in the 2 + 1 dimensional case u particular gaussian solution to (8.6) exists 

which is nonsingular as a -+ 0. It is given by 

x=e -%W $&j-k 

where 

F=$ u[-1+$LJ+(&)‘] (8.8) 

As in 2 + 1 dimensions a measure of fluctuations is provided by Zs where Zs 

s2Hg 
zg=-7T- 3g$v-2v.Pg 

where Hg and Pg are the graviton energy and momentum densities, 

3 -2 Ifs(x) = !f+ + a (;+I2 
P,(x) = u3 tj 04 

(8-Q) 
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hs in the 2 + 1 dimensional case with matter fields we find that 

(Zg(4 Z,(Y)) 

consists of two contributions. The first contribution arises from graviton modes 

with coordinate momenta - &. This term is non growing. The second contri- 

bution arises from modes with physical momenta of order fi and has the form 

ug4x5/2 S3(x - y) (8.10) 

This leads to the same conclusions as in the 2+ 1 dimensional case. In particular 

inflation leads to large scale inhomogeneity and anisotropy. It is an open question 

whet,her this leads to observable effects. 
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