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A calculation has been done on the one and two dimension Heisenberg anti- 
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I. INTRODUCTION - 

The Heisenberg antiferromagnet has been studied extensively as a model for 

magnetism in the past several decades. Apart from the thermodynamics of the 

model, the energy spectrum of the Heisenberg antiferromagnet at zero tempera- 

ture has also been investigated. The eigenvalue problem at zero field in 1 dimen- 

sion has been solved by Bethel and the eigenvalues of the ground and low-lying 

excited states were also obtained in closed form 2. In higher dimensions and for a 

general spin s no exact solutions have been obtained, so various approximations 

have to be made. 

In one approach, the spin operators of the antiferromagnet are mapped onto 

bosonic spin wave variables and there exists a direct relationship between the 

matrix elements of the spin Hamiltonian and its bosonic counterpart, provided 

that the bosonic operator is projected onto an appropriate subspace. An ap- 

proximation scheme, henceforth referred to as the spin wave approximation3, is 

to neglect terms higher than quadratic in the boson operator and work in the 

full boson space. The resulting approximate boson Hamiltonian, Htrun, indeed 

reproduces certain qualitative features of the original spin Hamiltonian, Hspin, 

such as the existence of massless spin waves which become massive when an ex- 

ternal field is turned on. Anderson3 also has shown that the lowest eigenvalues of 

Htrun and H *pin for the spin t case agree to within a few percent in both one and 

two dimensions. However, the spin wave approximation is justified only when 

the spin operators are in an infinite dimensional representation, and should fail 

in one dimension due to infrared divergences. Moreover, for spin f , Htrun cannot 

be viewed as a lowest order approximation to Hspin in which terms left out are 

manifestly small so that they can be treated as a negligible perturbation. In view 

2 



--- -._ 

of these facts, the good agreement in the ground state energy values is probably 

accidental. 

To investigate whether Htrun is actually a good approximation to Hspin for 

the spin i case, we have to compare quantities which are more sensitive to approx- 

imations than the ground state energy. In the presence of an external alternating 

field E, the spin wave approximation predicts a mass gap proportional to ~a. In 

this paper we treat Hspin as an eigenvalue problem and calculate numerically 

the mass of the spin wave state as a function of E for finite systems. Then we 

use finite size scaling6 to extract the exponent v, where mspin wave oc E”, which 

will be compared with the value predicted by the spin wave approximation. In 

section II the boson mapping is reviewed and we attempt to explain the good 

agreement between the ground state energies of Hspin and Htrun. The computa- 

tional method5, the projector Monte Carlo, is presented in section III. We will 

employ finite size scaling technique, which is described in section IV, to extract 

information about the infinite volume limit and we discuss our results in section 

V. 

2. THE SPIN WAVE APPROXIMATION 

2.1 THE BOSON MAPPINGS 

We will describe the boson mapping for an arbitrary spin s and then restrict 

to the spin f case. In a spin s SU(2) antiferromagnet the spin variables satisfy 

the commutation relations 

[sz,s*] = fs* , [s+,s-] = 2s, . 
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Let us define the following- operators 

X=&ii 
c 

l-J-a+, a 
2s > (2.2) 

& = -s + a+a 

where the a’s and at’s are the boson annihilation and creation operators satisfying 

[a,a+] = 1 , [a, a] = [a+,,+] = 0 . P-3) 

It is straightforward to show that the F’s satisfy the same commutation relations 

as in (2.1). The eigenvalues of Fz are -s, -s + 1.. . and have no upper bound 

while those of s, are -s, -s+ 1.. . s - 1, s, hence the two kinds of operators act on 

different Hilbert spaces and are not equivalent. Nevertheless, we can still relate 

the matrix elements of sz to those of Fz. Let us begin by building up the Hilbert 

space, HI, of the Z’s in the occupation number representation. We start with the 

base state 40 with the property 

a&=0 

and the rest of the states are defined as 

so that 
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and the inner product is defined as - 

We will denote the states with n 5 2s physical and states with n > 2s un- 

physical. With the above metric for the inner product g+ is not the Hermitian 

conjugate of E. Requiring that F+ be the Hermitian conjugate of F- and that FZ 

be self-adjoint uniquely define an indefinite metric, F, which is diagonal in the 

occupation number representation and has the property 

Fn = (drd%) ; Fn=l.(l-$.(1-G) . P-8) 

With this metric for the inner product, 

the unphysical states have zero norms. 

The Hilbert space, Hz, of the s’s are built starting with the state IO) defined 

by 

s-lo) = 0 ) s*lo) = -slo) (2.10) 

and the rest are obtained by raising on IO) 

In> = (& $ (s+)nlO) 

so that 

s,ln) = (n-s) In) . 
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These states are orthogonal but not normalized - 

(nln’) = F,~,,I (2.13) 

where Fn is given by (2.8). 

We now quote the main result that relates the matrix elements of s to those 

of E if G(s) is an arbitrary function of spin operators s, then 

(nlG(s)ln’> = (bd’G(P~~)dw) (2.14) 

where Pj is the projection operator onto the subspace of physical states of HI: 

PA={? n<2s; 
n>2s. 

(2.15) 

2.2 THE TRUNCATED HAMILTONIAN 

We proceed to apply the boson mapping to the spin Hamiltonian 

Hspin = c f ($?+s;- +sj?-slB+) +gsf=sf?= - E (csfz - &lB') (2.16) 
(Al ) j 1 

where (j,!) denotes the sum over nearest neighbors, A and B refer to two in- 

terlocking d-dimensional hypercubical sublattices, with lV sites in each, and the 

s’s are in the spin s representation of SU(2). The quantization axes of the two 

sublattices are rotated 180 degrees with respect to each other so that 

SjA+lOj) = 0 3 sf- lot) = 0 , 
(2.17) 

SfzlOj) = SlOj) 3 sploe) = -slo,) . 

With this rotation, the Dyson-Maleev4 transformation on this two-sublattice 
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model is 

si”- + aa; 

AZ S. t 
3 -+-j-s--.a. 3 J 

sf- + &ii (1 - g) be (2.18) 

sBz + -s + bjbL . 

The bosonized operator derived from Hepin is 

ii = -gNs2z - ONES + c ciljs ((I-g)ai(l--g)bl+a:bf) 
, 

(2.19) 

+ (Wz + E) (1 a$j + c blbl) - g c ai,jblbl 
i .e (id ) 

where z = 2d. 

The spin wave approximation consists of approximating Hspin by 

&run = -gs2Nz - ~NCS + C s(ajbj + aibi) 
(it ) 

(2.20) 
+ (gsz + E) [C a& + C bjbl] . 

i e 

This approximation for the low-lying spectrum is justified for s + oo for the 

following reasons. The spin space and the boson space will be matched up so the 

entire boson space is physical. Furthermore, the dominant configurations in the 

low-lying states do not deviate substantially from the mean-field configurations 

so that the terms omitted from E are suppressed by i. 
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The advantage of working with Htrun is that-it can be solvedexactly by first 

Fourier-transforming to momentum space: 

.-- a3 - j!& k c . . erkJak 
bL = j& k e-ikebk . c 

We obtain the following Hamiltonian 

Htrun = -gs2Nz - 2Ncs 

+ c {SW&# + &) + (W + E) [&, + b:bk]} 
k 

where 

This Hamiltonian can be diagonalized by the Bogoliubov transformation 

ak = ukak + vkpl 

bk = t@k + vka! 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

where the Uk ‘s and Vk ‘s are real and 

u; - v; = 1 for all k (2.25) 

to preserve the canonical commutation relations. Written in terms of the Q’S and 
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P’S 
@run _ - c (at,ak + &?k) wk - g(s + 1)sNz - 2Nes - EN 

k 

where 

(2.26) 

(2.27) 

provided that 

uk = (2.28) 

The ground state, In,), is the one annihilated by all the (Yk’s and Pk’s. From the 

dispersion relation we conclude that the mass of excitations created by the at’s 

and @‘s from the ground state is proportional to E;. 

In what follows we deal exclusively with the spin i case, where there is maxi- 

mal mismatch between the physical subspace and the full boson space. Moreover, 
1 - 
S 

is of order one so the terms omitted are not suppressed. Despite these facts, 

there have been arguments which suggest that the spin wave approximation may 

be better than it seems. The fact that (S&l aiaj IQ) diverges in 1 dimension but 

is 0.078 in 2 dimensions has been used to indicate that the spin wave approxi- 

mation may be reasonable in dimensions higher than twog. We will show that 

(Rtl a;aj IRt) < 1 d oes not necessarily require I&) to have a negligible unphysical 

component. As an example, let us consider the state 

I4 = & c (~;)2(bj)2Jo 
(it ) 

where 

90 = njwo(i> 40(l) 
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We see that (41 aiaj 14) is infinitesimal although- 14) has no physical component. 

It is states such as these which will mix with the physical states to lowest order 

in Htrun. 

Another argument in support of the spin wave approximation is that the 

ground state energy densities of Htrun in one and two dimensions are -0.433 

and -0.658 respectively, agreeing very well with the exact result of -0.443 in 

1 dimension2 and the numerical estimate of -0.655 in 2 dimensions12. We can 

understand the good agreement between the ground state energies of Htrun and 

Hspin in the following way. We note that for spin i the states In) are normalized, 

therefore identifying In) at each site with & at the same site, we conclude from 

(2.14) that H ‘Pin and F;1gi)l have the same matrix elements, where I f 

Htrun can be written as c 

Ht=un = if M 1 1 M X 

(2.30) 

(2.31) 

where 

(2.32) 

M is an operator which connects unphysical states to physical states and X is 

an operator in the unphysical sector. If we denote the ground state energies of 

Hapin, pun, and fi by spin, pun, and k respectively, then Eq. (2.32) implies 

that 

g = EsPin + Al A1 >0 (2.33) 

because the a;ajb!bl terms are diagonal and manifestly positive. From (2.31), it 

10 



-- .- ._ 

is clear that mixing between physical and unphysical states-lowers the ground 

state energy of fi so that 

pun = & - A2 A2>0. (2.34) 

Combining Eqs. (2.33) and (2.34) we obtain 

@run = E8pin + AI - A2 (2.35) 

so that the close agreement of the ground state energies arises from a fortuitous 

cancellation of errors originating from two unrelated sources. 

This good agreement can well be accidental since it is not uncommon for a 

poor trial state to yield a good ground state energy estimate. In one dimension, 

Ai = 0.058 and Ar - A2 = 0.007, so both A’s are sizable relative to Espin. This 

suggests that 10,) d’ff 1 ers significantly from the ground state of HEpin unless there 

is yet another miraculous cancellation. To pursue these matters quantitatively, we 

numerically calculate the exponent u for Hspin and compare it with the predicted 

value of Htrun. If the two values of v differ substantially, then it is unlikely that 

Htrun is a good approximation to H ‘pin In the following section we will present . 

the numerical technique required for such a calculation. 
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3. Numerical Method - 

The quantity we are interested in computing is the difference between the 

ground state of Hspin and the zero momentum spin wave state, for a given external 

field strength E. The operator QZ = xi sf commutes with Hspin, so we can 

classify states according to the quantum number QZ. The ground state is lowest- 

lying in the QZ = 0 sector and the spin wave approximation suggests that the 

zero-momentum spin wave states are lowest-lying in the degenerate QZ = fl 

sector. 

With a conserved quantum number at our disposal, we can choose a specific 

14) in the QZ = 0,l sector and use the projection operator limp,, e-PHspin 

to project onto the lowest energy eigenstate in the respective QZ = 0,l sector. 

Following Blankenbecler et a1.5, we consider the equation 

E=-i$m &.h 
(Xle-(P+AP)H’Pi’~~) 

(p-PH”P’” 14) ’ (3.1) -. 

in which E is the lowest energy eigenvalue of Hspin in the QZ = 0 ( QZ = 1) sector 

if both 14) and Ix) belong to the QZ = 0 (QZ = 1) sector. The problem now 

reduces to the evaluation of the matrix element (xl e-flHspin 14). 

To evaluate (xl e-pHBpip I$), we first define 

(3-2) 

where 

P AT = N 
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so that 

Then we decompose Hspin into 

&3Hspin = UN . 

Hapin = HI -I- H2 

such that the matrix elements of the operators 

U(k) = e-ATHk k=1,2 

are easy to evaluate. In this way, 

U = U(2) U(1) + O(Ar2) . 

For our one dimensional problem, the decomposition is 

Hl = c -; (+i+1+ sp:,,) + sfs;+l + f (-g + sf+l) 
i odd 

H2 = c -; (&+1 + srs:,,) + sfsf+l - f (+ + sf+l) 
i even 

P-3) 

(3.4 

P-5) 

(3.6) 

Periodic boundary condition is imposed on the finite systems and the generaliza- 

tion to two dimensions is obvious. Hence 

Y(P) E (xle-PHsPinIqb) 

= klrw volN14) (3.8) 

= c (I X &+I) (i2N+l Iu(2) li2N)--*(i21U(1) Iid (ilI& - 

iZN+l,.-il 
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The sum over intermediate states is performed by Monte Carlo with impor- 

tance sampling. We write 

(ilu(k) 1.i) = pii &j(k) k=1,2 (3-g) 

with the condition that the P(k) ‘s are positive semi-definite and xi Pij (k) = 1 

for all j’s and k = 1,2. The procedure for evaluating Y(p) is as follows. We 

choose a specific state [;I) with probability proportional to I(4 I ;I) 1. Then we 

choose a state lir) with probability Pizil (1) and a state [is) with probability 

P+,(2) and so on. Having thus generated a 2N + 1-tuple 

l(p) = (il, i2, -i2N+l), (3.10) 

we assign to it a weight 

w(&% 4, x) = (x 1 i2N+l)Si~~+~,i~~(2)......Si~,i~ (I)<, (3.11) 

where c = sgn((ir lb)). E ac such configuration of intermediate states za(/?) is h 

referred to as a random walk. This procedure is repeated M times and we obtain 

y(p’)= Y(P) 
lim cz, w(L(P’), 4, x) 

M+oo cz, W(L(P)> 4, x) ’ 
P’ P where AT-= - = -. 
N’ N 

(3.12) 

The systematic errors due to the finiteness of Ar and p, and various tech- 

niques to improve convergence of the Projector Monte Carlo are discussed exten- 

sively in a forthcoming paper.7 
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4. Finite Size Scaling 

To extract information about the infinite volume limit, we favor using finite 

size scaling6 on small lattices over direct calculation on a large lattice because 

fluctuations increase while the mass gap decreases for increasing lattice size. 

In the vicinity of the critical point of an infinite system, the system loses 

its fine-grained structure so that the correlation length sets the scale for all the 

dimensionful physical variables. This is the basis for the derivation of the scaling 

relations. Consider the corresponding situation of a finite system with a large 

enough linear dimension L so that it exhibits pseudo-critical behavior. We assume 

that there are two dominant scales in this case, namely L and &,, the infinite 

volume correlation length. To be more precise, finite size scaling states that the 

mass gap, rn~(~), in this finite system satisfies 

where IC = g - gc, gc is the critical coupling and F is an analytic function of K. 

Applying the above analysis to our Hamiltonian Hspin on a finite lattice, 

the mass gap attains a minimum at c =0 because “L(E) is an even function of 

c. Hence, the critical coupling is at E = 0, in which case K coincides with c. 

Assuming a power law singularity for the infinite volume correlation length, 

&xl(~) 01: E- (4.2) 

we obtain 

“L(E) = ; FL(LC) ; for c + 0 . (4.3) 

The analyticity of FL as a function of E requires it to be a function of y = Lie. 
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For E < 1 so that y << 1 we taylor expand F to get 

FL(E) = a + bL2/“c2 + 0(c4) 

leading to 

where 

F’(0) = $#. 

From the relationship between mass gap and correlation length 

mgap 05 too-l , 

we arrive at 

(4.4 

(4.5) 

P-6) 

(4.7) 
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5. Results 

The results are obtained by applying the finite size scaling method to 4, 6 

and 8 site nearest neighbor models in 1 dimension, and to 2x2, 4x4 and 6x6 

site nearest neighbor models in 2 dimensions. The data for 4 and 6 sites in 1 

dimension and those for 2x2 sites in 2 dimensions are obtained from computer 

diagonalization of the Hamiltonian and the rest are obtained by the Projector 

Monte Carlo method. 

The results are tabulated in Tables I-II. The statistical fluctuation for the 

ground and spin wave state energies is about a few parts in a thousand, and that 

magnifies to about a few percents in the mass gap. In figs. 1 and 2, the curves 

fitting the data points, FL(E) vs. E cross very close to c = 0. Hence, we expect 

finite size corrections to be small and we fit the various FL(E)‘s with 

bL + bLc2 + bLe4 -I- bLc6 0 1 2 3 - (5.1) -: 

The final results are 
u = 0.62 l-dimension 

(5.2) 
Y = 0.69 2-dimension . 

It is difficult to put an error bar on v from fitting such few data points but 

the chi-square analysis yields a confidence level of over 99% for all the fits. If we 

force the fit to produce a u of 0.5, the confidence level drops to 44% for the 1 

dimensional case and 0.1 % for the 2 dimensional case. From this, we conclude 

that u is unlikely to be 0.5, especially in the 2 dimensional case. 
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6. Conclusions 

The above calculation shows that the value of u for both the one and two 

dimensional models are bigger than 0.5, the value predicted by the spin-wave ap- 

proximation. The increasing trend of u as a function of dimension suggests that 

it is unlikely for u to drop to 0.5 in three dimensions. Our calculation thus shows 

certain deficiencies of the spin-wave approximation, although it is not the view- 

point of the author that the spin-wave picture is entirely wrong. The fact that the 

mass gap does not show any essential singular behavior (e.g. Kosterlitz-Thouless 

type) as a function of E indicates that interacting spin waves is a reasonable quali- 

tative description for the low energy dynamics of the Heisenberg antiferromagnet, 

modulo non-linear effects which alter the exponent u from the predicted value of 

0.5. However, we would like to emphasize that the common belief claiming that 

the spin wave scenario is adequate for spin i in two spatial dimensions and above 

should be challenged. As a bonus, we also obtain information about the behavior 

of u as a function of g for the one dimensional case. The model in one dimension 

is exactly solvable13 at g=O and it can be shown that u=l. From our calculation 

u=O.62 at g=l; hence by continuity, u must vary with g for g in the interval 

[O,l]. Thus, violation of universality occurs in u as well as in the exponent for 

the power-law fall-off” for the correlation functions. 
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TABLE 1 - 

FL vs. c2 and the slope at c2 = 0 for 4, 6 
and 8 sites in one dimension. 

4 sites 
2 L x gap 
0 4.0000 

0.01 4.0845 
0.02 4.1648 
0.03 4.2417 
0.04 4.3153 
0.05 4.3861 

slope = 8.66 

6 sites 
E2 L x gap 
0 4.108 

0.01 4.397 
0.02 4.648 
0.03 4.872 
0.04 5.073 
0.05 5.258 

2 
0 

0.005 
0.01 
0.02 
0.03 
0.04 
0.05 

slope = 30.9 

8 sites 

L x l3ap 
4.29 f 0.16 
4.68 f 0.08 
4.91 f 0.13 
5.56 f 0.09 
5.87 f 0.04 
6.19 f 0.10 
6.44 f 0.10 

slope = 81.2 
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TABLE 2 _ - 

FL vs. c2 and the slope at c2 = 0 for 2 x 
2, 4 x 4 and 6 x 6 sites in two dimensions. 

3 
0 

0.01 

0.02 

0.03 

0.04 

0.05 

E2 

0 

0.01 

0.02 

0.03 

E2 

0 

0.01 

0.02 

0.03 

2 x 2 sites 

slope = 4.33 

L x gap 
2.000 

2.042 

2.082 

2.121 

2.158 

2.193 

4 x 4 sites 

L x f3ap 
2.51 f 0.02 

2.86 f 0.05 

3.109 f 0.05 

3.316 f 0.05 

slope = 38.1 

6 x 6 sites 

L x gap 
2.58 f 0.03 

3.74 f 0.17 

4.34 f 0.06 

4.79 f 0.13 

slope = 110.9 
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Figure Captioxis 

Figure 1 FL vs. e2 in one dimension. l , o and A refer to 4, 6 and 8 sites 

respectively. 

Figure 2 FL vs. c2 in two dimensions. 0, 0 and A refer to 2 x 2, 4 x 4 and 6 x 6 

sites respectively. 
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