
SLAC -PUB - 3363 
June 1924 
(T/E) 

A Fast Monte Carlo Generator for 
ee + eeX Untagged Experiments* 

A. COURAU 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94805 

and 

Laboratoire de l’accelerateur lineaire 

Orsay 91405 (France) 

ABSTRACT c 

We describe for untagged 77 experiments a specific and very fast Monte Carlo 

based on the Double-Equivalent-Photon Approximation. This generator takes 

into account the experimental constraints in order to perform approximations 

involving experimentally unobservable effects and to generate events only within 

the experimental acceptance. It allows a very fast simulation of the events of any 

cross section in any invariant-mass range and, in particular, a simultaneous fit 

to the data of the parameters in any model of the 77 hadronic cross section. 
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We have previously shown ‘s2 that for high energy machines-untagged exper- 

iments of the two-photon process can be accurately studied using the Double- 

Equivalent-Photon Approximation of the Williams-Weiszgcker spectrum. For ul- 

trarelativistic two-body production we derived analytic expressions of the differ- 

ential cross section for various parameters (invariant mass, transverse momentum, 

visible energy), taking into account the experimental constraints.2 The expres- 

sions are simple and very fast to compute. Most of them are expressed in a beam- 

energy invariant manner so that data taken at different energies can be combined 

and simultaneously analyzed using parameters and cuts which are invariant with 

respect to energy.Results were checked with measurements of lepton pair (e+e- 

or p+p-) production with the highest statistics currently available.3y4The agree- 

ment with the data is as good as that obtained from a simulation based on the 

QED Vermaseren program5 (see figures 1, 2, and 3). 

However, Monte-Carlo simulation is needed when one wants to take into ac- 

count specific inefficiencies and resolution effects inherent in the apparatus. It 

is also needed for the study of multibody and nonrelativistic two-body produc- 

tion. The goal of this paper is to describe a very fast generator based on the 

Double-Equivalent-Photon Approximation. This program takes into account the 

experimental constraints in order to perform approximations involving unobserv- 

able effects and to avoid the generation of large numbers of events outside the 

detector acceptance. It is suitable for all experiments which require that only the 

prongs produced in the 77 interaction be observed in the central detector, with 

the following constraints: 

W min. 5 W I Wmax. e 2E, 

where E is the beam energy, 8 and pt are the polar angle and transverse momen- 

tum of the prongs with respect to the beam axis, and W is the invariant mass 

observed. 
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These constraints are generally imposed in-untagged experiments either by 

the apparatus itself or in order to avoid backgrounds. Notice that actually such 

experiments are “anti-tagged” because events are rejected if a scattered electron 

is detected and, more importantly, because the cuts on ICp’tI limits the scattering 

angles of the electrons and hence also the masses of the virtual photons. Such 

a cut allows only the study of exclusive 77 + X channels, with all particles 

detected within the central detector. 

We shall use the following notation. E = G/2 is the energy of each inci- 

dent electron, m is the mass of the electron, and E’, p”, $, 8’, and 4’ are the 

energy, momentum, transverse momentum, and polar and azimuthal angles of 

the scattered electrons with respect to the incident ones. E, and -q2 are the 

energy and mass of the corresponding virtual photons. W, p’, p’t, and fi are the 

invariant mass, momentum, transverse momentum, and velocity of the 77 system 

with respect to the beam axis. p”‘, $‘, 8”, and 4” are the momentum, transverse 

momentum, and polar and azimuthal angles of the prongs produced from the 77 

interaction with respect to the beam axis. All of these quantities are defined in 

the laboratory frame, while the polar and azimuthal angles of the prongs in the 

center of mass of the 77 system are represented by 8* and 4*. Indices i = 1,2 or 

j = 1, n will be added for the scattered electrons and interacting photons or the 

produced particles when needed for clarity, but they are usually omitted. 

Actually, it is most convenient to use the dimensionless quantities 

Uj = case;, Uj = cm87 

to = Elm, u, = coseo, 

v, = 1+uo _ 
d- 

- = tan(&/2), 
1 - u, 

where 00 is the limit of the detector’s polar acceptance with respect to the beam 
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axis. Also, we define - 

p’ = p’E, fi = Ft’tlE, 

x = ET/E, z = W/2E, and t2 = q2/q~in , 

where q~in . = x2m2/(1 - x) is the lower limit on q2 due to the finite mass of the 

electron. 

Neglecting the electron mass gives q2 = 2(1- x)E2 sin2 #/2. Since x is strictly 

limited within the range 0 < x < 1, then 

2 

2sin(8’/2) = e--t and q2 = q E .t2. [ 1 
The errors introduced in these relations by the zero mass approximation al- 

ways remain experimentally insignificant. They are maximum as 8’ tends to zero 

(Sr2 + &in., ’ + 1), where Api = (1 - x) E sin 8, M xmt, so that the error in 

the transverse momentum, which is actually the parameter measured, always re- 

mains smaller than the experimental resolution by orders of magnitude. Then 

the kinematic parameters of the interacting photons and scattered electrons can 

be defined by the relations 

-: 

E, = xE, 
l-x t 2 

q2=7 - [ 1 to 
E’ = (1 - x)E, sin(e’/2) = i&tot. 

Now, if we define 6i to be the unit vector corresponding to the angles (ei,di), 

where 0: and 0; are defined with respect to axes in opposite directions, then the 

kinematic parameters of the 77 system are given by the relations 

3 =g; - 3; 

z2 =x1x2 - f(1 - x1)(1 - x2)(1 - 61 * 62) 

22 
p2 =l- (x1 +x2)2’ 

Recall that the limitations of phase space require that 0 < 2, x, ,8 < 1 and t 2 1, 
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- - - I . _  

w h i l e  th e  e x p e ri m e n ta l  c o n s tra i n ts  i m p l y  th a t - 

I I U j  < U O < l , IC j F /l /Z  5  E  <  1 , a n d  

O  <  Z m i n . I 2  5  z m a x . a  1 , 

w h e re  Z m ,. =  W m ,./2 E  a n d  & i n . =  W m i n ./2 E . W e  s h a l l  n o w  s h o w  th a t th e  

e x p e ri m e n ta l  c o n s tra i n ts  a l s o  l e a d  to  s tri c t l i m i ta ti o n s  o n  x , ,0 , t, a n d  U * . 

T h e  7 7  p ro c e s s e s , a s  i s  w e l l  k n o w n  a n d  w i l l  b e  s h o w n  b e l o w , a re  s tro n g l y  

d o m i n a te d  b y  th e  i n te ra c ti o n  o f q u a s i -re a l  p h o to n s , w h i c h  i m p l i e s  th a t th e  e l e c - 

tro n s  a re  s c a tte re d  th ro u g h  a  v e ry  s m a l l  a n g l e . A s  l o n g  a s  b o th  0 : a re  c l o s e  to  

z e ro  d e g re e s , th e  v e l o c i ty  o f th e  7 7  s y s te m  re m a i n s  a l o n g  th e  b e a m  a n d  o n e  h a s  

z 2  =  x 1 x 2 , a n d  P I =  1 x 2  -  5 1 1  

x 2  +  X l  -  

M o re o v e r, th e  d e te c ti o n  o f a l l  th e  p ro n g s  p ro d u c e d  i n  th e  7 7  i n te ra c ti o n  re q u i re s  

fo r a l l  o f th e m  th a t U T  5  U o  a n d  Ip I <  U o . T h e  l i m i ta ti o n s  fo r th e  p ro d u c ti o n  I I 
o f m u l ti b o d y  s ta te s  o r n o n -re l a ti v i s ti c  tw o -b o d y  s ta te s  a re  e v e n  m o re  re s tri c ti v e  

th a t th e s e  re l a ti o n s  d e ri v e d  fo r u l tra re l a ti v i s ti c  tw o -b o d y  s ta te s . T h e re fo re , fo r 

a l l  c a s e s  th e  fo l l o w i n g  c o n s e q u e n c e s  m u s t re s u l t: 

;) T h e  p o l a r a c c e p ta n c e  o f a l l  th e  p ro n g s  p ro d u c e d  i n  th e  c e n te r o f m a s s  o f 

th e  7 7  i n te ra c ti o n  i s  a l w a y s  a t l e a s t l i m i te d  b y  th e  p o l a r a c c e p ta n c e  o f th e  

d e te c to r i n  th e  l a b o ra to ry . 

z Y ) F ro m  th e  re l a ti o n s  1 x 2  - x 1  I /(x 2  +  x l ) 5  U O  w i th  Z 2  =  x 1 x 2 , i t fo l l o w s  

th a t, fo r a  g i v e n  v a l u e  o f 2 , V 0 .Z  5  x i  5  Z /V i . T h u s  th e  e x p e ri m e n ta l  c u ts  

z  m i n  <  2  5  z m a x . . -  re q u i re  th e  e n e rg y  o f b o th  p h o to n s  to  b e  w i th i n  th e  

ra n g e  V O z m i n . I X i  L  z m a x ./v O * 6  

O n  th e  o th e r h a n d , a s s u m i n g  l ? tl  =  Ix F i l  to  b e  e s s e n ti a l l y  d u e  to  o n e  

s c a tte re d  e l e c tro n , w h e re  th e  o th e r i s  s c a tte re d  c l o s e  to  z e ro  d e g re e s , o n e  d e ri v e s  
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from the constraint iit /Z = lcP,“l/Z 5 E << 1 that sine’ M&/(1 - x) < 1 I I 
I  I  

and also that t  M ci < to and q2/W2 M c2 < 1. Appendix 1 shows in some 

detail that these limitations remain justified, independent of the assumptions 

used, over the whole experimental range. 

Now, when q2/W2 < 1 one can neglect the longitudinal component of the 

quasi-real photon. Since the scattered electrons, and in particular their CJ~ dis- 

tributions, are not observed, one can also ignore the transverse-transverse in- 

terference between the photons. Then the whole process can be factorized as a 

product of a differential 77 luminosity of transverse photons (from ee7 vertices) 

and a 77 + x cross section of quasi-real photons. The 77 luminosity itself can be 

factorized as the product of that of two equivalent transverse photons integrated 

over the azimuthal angle, which in the following is simply considered to have an 

isotropic distribution. The E.P.S. formula to be used is somewhat controversial. 

There are various expressions7 which differ only in the way the approximation 

of quasi-real photons is made and how it may be extrapolated to account for 

more-or-less virtual photons. The differences are in practice purely academic for 

untagged experiments in which q2 is limited. We shall use the William-Weiszgcker 

formula as proposed by Budnev and Kessler, substituting the parameters t2 and 

x for Q2 and Er . 

The distributions to be considered are 

d2iV(x,t2) =; [(l - x+ z2/2) - (1 - x)/t21 $$. 

In general, the 77 cross section includes a unitarity factor l/W2 M 4E2/(xlx2). 

Such a sharp dependence on W would lead to a very large fraction of the 77 

systems generated according to the previous distributions to be rejected when 

including the cross section for 77 --) X. The solution is to account for the 

l/W2 factor when generating the 77 system by including an additional factor of 
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2E/xi in the equivalent spectra of both photons. Then the scattered electrons 

are generated according to 

dN(4e) =&We 
d2N(x, t2) =y [(l - x + x2/2) - (1 - x)/t21 $$, 

within the limits 0 I 4e 5 27r, 1 5 t 5 E/m, and Zmin.Vo < x < Zm,./Vo. 

Note that the limitation on x avoids the generation of a very large fraction of 

photons, mainly at low energy, which would not produce detectable events.8 On 

the other hand, the experimental constraints give only an upper limit on t which 

is not so sensitive. We have chosen the very conservative and constant limit of 

E/m, which leads later to a rejection of only a small number of events. However, 

this upper limit can be sometimes too large, corresponding to unphysical values 

of 8’. Therefore, values of t leading to a determination of sine’/2 larger than 

sin&/2 will be rejected in the generation not only because they would anyway 

be eliminated in the analysis, but also to avoid highly improbable and unphysical 

values which can cause numerical problems in the program. 

Integrating dN(x,t2) over 1 5 t 5 to gives 

dN(x,to) = y [2(1- x + x2/2) Into - (1 - x)(1 - l/t;)] $, 

so the x spectrum integrated over the whole range of t with to = E/m >> 1 is 

given by 

dN(x) = y [2(1- x + x2/2) ln(E/m) - (1 - x)] $. 

This expression is strongly dominated and slightly overestimated by dN’(x) = 

(2aE/ 7r n 0 x ) 1 t d / x2 which, when integrated over xmin. 5 x 5 x’, gives N’(x’) = 

l/Xmin. - l/x’. By choosing a random number, RI, between 0 and 1 the x values 

can be analytically generated according to l/xmin. - l/x = RI* (l/x,;,. - lIzmax.) 
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and then corrected for the true probability by rejecting the few-events for which 

dN’(x) . R2 > dN(x). 

Once x is given, and with the definition q = f(1 - x)/(1 - x + x2/2) (where 

7 always remains less than l/2), the t distribution, integrated over 1 5 t 5 t’, 

gives N(t’) = In t’ - 7 (1 - l/t42), which tends toward simply In t’ - r] as t’ becomes 

much larger than 1. Thus t values may be analytically generated according to 

In t - 7 = R3 * (In to - 17). No corrections of these values are needed because 

the approximation only causes an error in the determination of t which has no 

significance on the scale of the experimental resolution. Then, with t given, one 

can derive sin8’/2, reject the few events for which sin@‘/2 > sin&/2, and simply 

generate 4’ uniformly between 0 and 27r. 

Once both sets of (x,e’,#)i h ave been accepted, one derives the values z 

and P’ of the 77 system in the laboratory frame. In theory a weight of xrx2/Z2 

should be given to each event in order to correct for the Z2 = ~1x2 approximation 

which was made when introducing the unitarity factor into the photon spectra, 

but in practice that is unnecessary. We have checked that such corrections are 

completely negligible compared with the statistical errors inherent in an analysis 

of a data sample of a realistic size. 

In surmnary, with a set of random numbers & (0 5 Ri < l), both scattered 

electrons are generated in a loop with i = 1,2 as follows: 

1. Select x = Emin./ [l - RI (l/zmin. - l/zmz.)]. 

2. Compute s = 1 - x + x2/2 and q = (1 - x)/2s. 

3. Reject events for which R2 In to > s(ln to - 7). 

4. Select t = exp [q + Rs(lnto - q)]. 

5. Compute sin(#/2) = [(l - x)/s] . tat/2. 

6. Reject events for which sin@/2 > sin00/2. 

7. Select q5’ = (27r) . Rd. 



Once both electrons have been accepted with a direction ci, defined by (0:, di), 

where the two 0: are defined with respect to axes in opposite directions, we then 

proceed as follows: 

8. Compute Z2 = x1x2 - f(1 - x1)(1 - x2)(1 - $1 -62). 

9. Compute P’ = (1 - xi)61 - (1 - x2)62. 

Although the generation of either one of the two electrons is independent of 

the other, rejecting one value of x or 0’ corresponds to rejecting the entire 77 

event. It is more efficient to increment the count, N, of the number of iterations 

by one each time one generates a new electron with a change in the loop index 

and by two each time an electron is rejected and a new one is tried within the 

same loop on i. Then to generate the proper number of events corresponding to 

a given luminosity, Lc,,, the number of iterations which must be made is 

N= ~(lnto)2(l/Z,in. - 1/xmax.)2 * NC * lee, 

where Na is the normalization of the 77 cross section as used later in the gen- 

eration of the events from the 77 interaction. One could at this point, before 

generating the 77 cross section, reject events for which the values of 2 or ?t 
I I 

still remain outside the experimental constraints, because of the choice of inde- 

pendent x and t limits in the generation of the 77 system. However, any such 

rejection must take into account the experimental resolution.’ 

A 77 generator as described can be used for simulating within a detector 

apparatus any exclusive channel of 77 + X for which the 77 cross section is 

known or may be assumed. The steps to follow are 

1. Generate the 77 system as above. 

2. Generate in the center of mass of the 77 system the prongs produced in 

the 77 interaction, according to their 77 cross section and within the same 

polar acceptance as defined by the detector in the laboratory frame (for 

examples, see Appendix 2). 
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3. Boost all prongs into the laboratory frame according to the velocity of the 

77 system generated in that frame. 

4. Account for the experimental efficiencies and resolutions. Because a full 

simulation of the apparatus for each prong requires a much greater amount 

of computer time than the event generation itself, it is most efficient to 

perform the detector simulation only once for an isotropic distribution of 

prongs. The results may be stored in a matrix and later used in the Monte 

Carlo by smearing the kinematic parameters appropriately to simulate the 

resolution and by rejecting the appropriate proportion of events in each 

region to account for inefficiencies. The result is a very fast program which 

may be economically iterated many times, as required when making a fit 

to data. 

5. Analyze the simulated events and compare with data which has been ana- 

lyzed by the same analysis program. 

In practice, when one wants to check some model and fit various parameters, 

it is often most efficient to generate events from the largest of the cross sections, 

within the acceptance, which result from the set of values of the parameters 

desired to be tried in the fit. After making the analysis cuts, the 77 cross section 

for each set of values of the parameters is calculated and the event is accepted or 

rejected in each case as is appropriate to give the correct cross section. Then the 

distributions for all sets of parameters may be compared with the experimental 

data, allowing the simultaneous determination of the x2 for all cases. 

The results of such a program are fully normalized, so one can derive from 

the number of events the ee luminosity when one know the 77 cross section or 

vice-versa. In particular, when lepton pairs can be selected, they give a very 

convenient normalization of the ee luminosity, which may be used for the study 

and determination of the 77 cross section of any other process. We would also 

like to point out that such a program allows the generation of equal numbers 

of events with equal amounts of computing time, independent of what invariant 
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mass range is considered or how small the cross section is. - - 
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develop and check this program with a very large sample of data. 
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APPENDIX 1 - 

The xmin. and xrnax. values have been determined by considering the cases 

where W = Wmin. and W = Wm,. with Z2 = ~1x2 and p = UO, p being directed 

along the beam. This range of x is generally overestimated for a given value 

of W within the allowed range and becomes more and more so, over the whole 

W range, as ,f3 approaches zero (see figure 4). For the case where both p and W 

are near the limits of acceptance and at the same time fi is not exactly along the 

beam axis, due to the small but nonzero electron scattering angles allowed by 

the cut on l&l, the x limits are still valid. That is because, first, the acceptance 

in the case where ,8 approaches UO is drastically decreasing, and, second, Z2 

becomes more and more less than ~1x2 as the angle of p with respect to the 

beam axis increases. In any case, the values of Uo, Wmin., and Wm,. used in the 

generation will always be set a little less drastic than the experimental cuts used 

in the analysis in order to allow room for some experimental smearing. 

Actually, the W limits in the generation can often be very close to the ex- 

perimental limits because the corresponding x limits are strongly overestimated 

for the very dominant configurations. However, the smearing must carefully be 

taken into account if one rejects generated 77 systems before generating the 77 

interaction. Then any cuts on W must be made conservatively outside the limits 

used in generation. In the same way, rejection according to IFtI must be conserva- 

tive if done immediately after the 77 system generation. However, it is generally 

convenient and most efficient to make such cuts at that stage. 

A way to generate the 77 system even more closely within the acceptance 

is to choose limits fixed not in xi but in 2’ = ~1x2 and y = tanh-‘(P’) = 

tanh-’ (1x2 - xrl /(x2 + xi)). Th en one generates 2 and y according to the 

probabilities dZ’/Z’3 and dy and derives the x values from xi = Ze*y. Both 

distributions of xi must be corrected according to the true probabilities, and val- 

ues of 0: and q$ must be selected in the same way as in the previous procedure. 

However, limits on 2’ and ,O’ must be chosen outside the 2 and ,f3 5 Uo limits, 
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e s p e c i a l l y  w h e n  e x p e ri m e n ta l  s m e a ri n g  m u s t b e  a l l o w  fo r. S u c h  a  m e th o d  d o e s  

n o t p ro d u c e  a  v e ry  s i g n i fi c a n t g a i n  i n  ti m e  o v e r th e  p re v i o u s  o n e . 
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APPENDIX 2 - - 

Examples of 77 Cross Sections 

1. For a relativistic pair of fermions with an invariant mass W and produced 

within a polar acceptance ]cosO*] = ]tl] 5 Uo < 1, the cross section is 

da a2 1+ u2 
xi=-- 

cY2 1+u,a 
w21-u2 ~~l~u,~. 

Therefore, with Lo = In [ (1 + Uo)/(l - Uo)] and the normalization factor 

No = 47rra2(1 + U;)L 0 a ready 1 calculated at the beginning of the program, 

the relativistic fermion pairs are generated from uniform random numbers, 

0 5 A!+ 5 1, as follows: 

(a) Select u = tanh(RsL,-,/2). 

(b) Reject events for which (1 + I$)& > 1 + u2. 

(c) Select q5* = (27r) . R7. 

2. For nonrelativistic fermions of mass m, produced within a polar acceptance 

u 5 UO < 1 and with an invariant mass W, we have 

do o2 
- zi = w2 

with p2 = 1 - 4mz/W2 and N(p,u) = 2(2 - p”) - (1 - p2u2). With Lo 

and NC = 47ra2Lo determined at the beginning of the program, such that 

Lo 2 N(/3, Uo) In [(l + pUo)/(l - /3Uo)] within the entire experimental W 

acceptance, a nonrelativistic fermion pair for a given value of W is generated 

as follows: 

(a) Reject events for which R5Lo > N(/3,Uo). 

(b) Select u according to u = (l/p) tanh(RsLo/e). 

(c) Reject events for which N(P,Uo) > N(P,u) - (1 - /3”)/(1- p2u2). 

14 
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(d) Select q5* = (27rr). R8. - 

3. Finally, consider the case of hadron pairs produced within the polar accep- 

tance (u] 5 Uo < 1 with an invariant mass W. 

(a) If we assume the Born approximation, then 

da 
- 3 [l - 2N(P,u)] 5 $, 

xi - 2w2 

with p2 = 1 - 4mi/W2 and N(P,u) ? p”(l - /3”)(1- u2)/(1 - /32~2)2. 

With the normalization Ng = 27ra2Uz determined at the beginning of 

the program, the hadron pair of invariant mass W will be generated as 

follows: 

(i) Select u = R5Uo. 

(ii) Reject events for which & > p * [l - 2N(P, u)]. 

(iii) Select b* = (27r) . R7. 

(b) For a more general model where the hadronic cross section is defined 

by 

where the Xi are parameters to be determined from the data, we cal- 

culate at the beginning of the program LO and N, = 2CL0, such that 

LO 2 F(W, Xi, u) over the whole W, u, Xi acceptance, and then generate 

events as follows: 

(i) Select u = R5Uo. 

(ii) Select q5* = (27r) . &, 

(iii) The event is then boosted into the laboratory frame, corrected for 

inefficiency and resolution, and analyzed as is the data. The results 

are stored in arrays according to the various values of the param- 

eters Xi which we are interested in only if R7Lo < F(W, Xi, u). 
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Thus at the end of the program, comparing the experimental distributions 

with the ones generated for all values of the Xi allows the computation of a x2 

for the fit as a function of the Xi. 
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FIGURE CAPTIONS - - 

1. A comparison of three calculations of the invariant-mass spectrum of elec- 

tron pairs from 77 interactions. The acceptance of the Delco detector is 

used in the calculations. 

2. A comparison of the DEPA calculations of the electron-pair invariant-mass 

spectrum with data from the Delco experiment. 

3. A comparison of the DEPA calculations of the electron-pair transverse- 

momentum spectrum with data from the MARK J experiment. 

4. A comparison of the acceptance used for generation with the acceptance 

allowed by the experiment. a.) The acceptance for the photon energies. 

b.) The acceptance used in the center-of-mass frame for generation of the 

angular distribution from the 77 
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