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ABSTRACT 

The existence of the solution of the symmetry- 

breaking problem 

SU(5) + SU(~)XSU(Z)XU(~)~ -t SU(3)Wl)Q 

is shown in a nonminimal model where the 75-dimensional 

Higgs field is used instead of the usual 24-dimensional 

one. The result is given in an explicit and simple form. 

The relevance of this solution to existing theories and to 

problems related to proton decav is discussed. 

PACS index categories: 11.15Ex, 11.30Qc, 12.10EN 
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I. INTRODUCTION 
. 

In the minimal SU(5) model,' the 24-dimensional ad- 

joint Higgs tensor was used to break the SU(5) symmetry 

to the SU(~)XSU(Z)XU(~)~ symmetry of the standard model. 

The fundamental representation together with its complex 

conjugate is used to perform the next stage of symmetry 

breaking to Sunup symmetry. However, recent ex- 

periments,2 combined with a theoretical analysis of im- 

plications of these experiments on the mass 3 of heavy 

vector bosons, 3 are incompatible with the calculated 

value of MX from SU(5) renormalization-group equations.4 

At this point one may be tempted to abandon the SU(5) 

model. The other possibility is to realize that, strictly 

speaking, the above argument eliminates the minimal 

version of the SU(5) model. For this reason and because of 

the simplicity of SU(S), it is worthwhile to explore other 

nonminimal versions of this model. In this paper we study 

the following symmetry-breaking pattern of the SU(5) model: 

5+: 
SU(5) 2 SU(3)xSU(2)xu(l)y __* Sunup . 

In other words, we use the 75-dimensional Higgs field in- 

stead of the adjoint 24-dimensional representation used 

in the minimal SU(5) model. As mentioned in Ref. 5, there 

are several reasons that make such a choice attractive 

and, for completeness, we repeat them here briefly. 

(1) The 75-dimensional Higgs tensor plays a crucial 

role in constructing hierarchical fermion masses in a 

model developed by Barbieri, Nanopoulos, and Wyler. 6 
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(2) It has been pointed out by several authors7 that 

the heavy Higgs field can cause significant uncertainties in 

evaluations of MX. This effect is small for the minimal 

model, but may be significant for other tensors. 

(3) This representation is also used in some SUSY 

SU(5) models. 8 The analysis of its symmetry pattern may thus 

be also useful for these theories. 

(4) Despite the fact that progress has been madeg'10'5'11 
in understanding and solving the symmetry-breaking problem 

in gauge theories, explicit solutions are known only in 

some simpler cases. This paper provides another explicit 

example to this list. 

The paper is organized as follows. In Sec. I we in- 

troduce a form of the potential. This form is considerably 

simplified in comparison with its form for the same tensor 

but for a general SU(n) group. This is due to some non- 

trivial relations between invariants which we use. In 

Sect II we present briefly the derivation of the first 

stage of symmetry breaking. This has already been shown in 

Ref. 5. However, in this analysis we also include 

cubic terms in the potential. The analysis is considerably 

simplified owing to the relations between invariants 

mentioned above. In Sec. III we present results 

obtained after the second stage of symmetry breaking. 

In the end we draw conclusions. 
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A. Higgs potential 

We introduce the following SU(5) multiplets: a funda- 

mental covariant five-dimensional field HE, E = 1,...,5, 

its complex conjugate partner 'iiF, F = 1,...,5, and a 75- 

dimensional multiplet @gi, A,B,C,D = 1,...,5. This 

tensor is antisymmetric in upper and lower indices 

separately and all traces vanish. In other words, 

AB AB BA BA 
'CD = -QDC = -QCD = QDC . (1.1) 

We have to construct the most general polynomial in these 

fields up to the fourth order. We can decompose it into 

three terms, 

V(@,H,E) = V75 + Vm + V5 , (1.2) 

where V75 depends only on Cp, V5 only on H and E, and Vm 

contains the interactions between them. 

In order to construct V75, we have to know SU(5) 

invariants up to the fourth order in this 

basis for these invariants was previously 

for the general SU(n) case and we list it 

the quadratic invariant 

I(2) = AB CD 
'CD% ' 

the cubic invariants 

I(3) = 

(3) = 
I2 

AB MN EF 
%N@EF@AB ' 

AM NB EF 
'FNQMEQAB ' 

tensor. The 

introducedlO'll 

here: 

(1.3) 

(1.4) 

(1.5) 

and six quartic invariants 
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Ij4) r pHCD CB AD ' 

Ii4) = GABGCD 
CD BA ' 

where 

HAB = AB EF 
CD 'EFQCD ' 

GAB = CD QAFQEB DE FC ' 

(4) 
I3 = HAB~CD CD AB ' 

= GABHCD CD AB ' 

(1.6) 

(1.7) 

However, nontrivial relations between these invariants can 

be derived in special cases. One of these is the SU(5) 

group. For this group, the following relations hold:12 

(3) 
I1 + 41i3) = 0 , (1.8) 

4I(4) = -I(4) 
4 0 

- Ii4) + 61i4) , (1.9) 

81(4) = -I(4) 

161t4) 

0 
- 21i4) + 81i4), (1.10) 

5 = -51A4) - 21i4) + 321i4) . (1.11) 

This means that we can use a smaller set of invariants. We 

choose 

I(2),I(3) = (3),I(4),I(4),I(4) 
I1 0 1 2 l 

(1.12) 

Now we are able to write the potential (1.2) explicitly: 

2 
v5 = - 5 EAHA + + (Fi,HA12 , (1.13) 

‘rn 
= aH HA,pBC DE A DEQBC + BHAQFDQEiHE I (1.14) 
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2 AB CD AB CD 2 
v75 = - % QCDQm + $ (QCDQAB) 

bl +rQ AB CD EF GH 
GHQABQCDQEF 

b2 AB CD EF GH 
+ r 'CDQAFQGHQEB 

+ c QmQCDQEF 
3 EF AB CD l 

(1.15) 

B. Breaking of SU(5) to SU(~)XSU(~)XU(~)~ 

This particular part of the problem was solved in Ref. 5 

with no cubic terms included. We present here the solution of 

a more general problem with cubic terms included and with 

simplifications due to Eqs. (1.8), (1.9), (l.lO), and (1.11). 

We introduce the decomposition of the tensor Q to its ir- 

reducible constituents under SU(~)XSU(~)XU(~)~: 

75 = (l,l,O) + (8,1,0) + (8,3,0) 

+ [(3,2,- 2) + (Z,2,- 2) + (3,1,- $) + compl.conj.], (2.1) 

together with the following explicit form of its subtensors: 

AB 
'CD 

AB 
'CD 

AB 
'CD (8,3,0) I 

= { Q;$+;;$+;~;+;aB } , 
rd (2.2) 
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QAB CD (3,2,- I 

QAB CD (&2,- I 

AB 
'CD (?,l,- I 

where we have used the conventional index splitting 

A,B,C,D + (a,a),(B,b)8(v8c)8(~,d) , 

a8B8y8G = 1'2'3 , a,b,c,d = 4'5 . 
(2.3) 

The quantities in (2.2) are related to the original tensor 

:ab = ab _ 
vd - Q 

yd 
-16aQEb _ &bQaf + &abQEf 

3 y Ed 2 d yf 6 yd Ef ' (2.4) 

$aB 
vd 

z QaB - 
yd 

We shall solve this problem  by using the methods of 

Refs. 10 and 11. Our approach essentially consists in 

introducing the decomposition (2.2) into Eq. (1.15) for 

the potential. For the purpose of the problem , it is 

sufficient to retain terms up to the second order in 

subtensors. It is useful to separate the vacuum ex- 

pectation value in the singlet variable: 

Q =s+e, <Q> = S . (2.5) 

In the SU(3) SU(2) U(l)y invariant point, all subtensors 

vanish except the singlet. In the new decomposition of 

' the potential, the terms linear in 8 produce the equation 
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for stationary points and quadratic terms in the 

fluctuations provide stability criteria as well as 

squares of boson masses. To obtain these results, 

one has to perform straightforward but lengthy calcula- 

tions. We can however use the results derived previously 11 

for the general SU(n) case and specify them for n = 5. 

Compared with this general case, the solution is simpler 

owinq to smaller number of subtensors and smaller 

number of invariants. More specifically, four of nine 

subtensors in Ref. 11 do not appear in the problem 

considered here. In the notation of Ref. 11, these are 

Xl8 X4’ X5, and X7- It is now straightforward to apply 

the results from Ref. 11, in particular to use Eqs. 

(37)' (38)' (39)' and (40)' together with the tables 

from Appendix B of the same reference. Of course, the 

use of the expressions given there can be avoided by 

performing calculations mentioned above. 

We obtain the condition for the stationary point 

2 lJ = 3 (108a + 60bl + 56b2)s2 +,$ cs (2.6) 

and the value of the potential in this point 

v= -[12 (108a + 60bl + 56b2) + 32 g]s" + g4 . (2.7) 

Boson masses squared, i.e., stability conditions read 

as follows: 

m:l,l,m = 96s2(108a+60b1+56b2+2t) 2 0 , 

. = -4s2(24bl+8b2+2 f) 10 , 
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m:8,3,0) = - i s2(24bl+8b2+10 5) 2 0 , 

+,2,- 5, = - g 3 s2(24bl+10b2+2 g) 2 0 I 

3 
m(?,l,- 5) = - $j s2(-24bl+2b2-2 ;) 2 0 , 

m:3,2,- $1 = 0 ("Goldstone bosons") . 

We find a relation between masses 

4m:8,1,0) + m:j,l,- $1 = 5m;&2,- 2) l 

(2.8) 

(2.9) 

If cubic couplings vanish owing to some discrete symmetry, 

we have another relation 

2 2 
m:8,3,0) = - m 3 (8,110) ' 

(2.10) 

For completeness, we add the value for the mass of the 

vector gauge bosons < 

48g2s2 , (2.11) 

where g is the SU(5) coupling constant. 

C. Breaking of SU(~)XSU(~)XU(~)~ to SU(~)XU(~)~ 

We introduce the five-dimensional multiplet 

HA 8 A = 1,...,5 . 

We recall the decomposition 

HA = Ha + Ha , 
(3.1) 

. ijA =iT +FIa, a 

or 
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5 = (3,1,- $1 + (1'24) , 

5= (3'1,f) + (1,2,- $1 . 

Each subtensor of tensors Q and H decomposes further 

under SU(3) U(llQ. These decompositions are as follows: 

Subtensors of Q: 

s s = or (l,l,O) = (1'0) , 
%a %a Qa = Q B or (8,1,0) = (8,O) , 

zafi s 1 %aB 
%dQ or (?,l,- 

Jz 
5) = (3,- 3, , (3.2) 

‘45 = -“54 = 1, '44 = E55 = 0 8 

:ab %a Q yd= +y ; fi $" i za 
OY 'Y or (88380) = (8,1)+(8,0)+(8,-l), 

where %a 
%a Q ,QJuL! & ;a4 %a5 $a 

QY58 a 
= 

+Y Q :a5 y4 = -Qy5, WY = y4 i 

Q: = xa + y ra or (3,2,- = (3,-4)+(3,; $1 8 

where 
%'a Xa = Q4 , ,a %'a Y =Q5; 

JaB ZaB 
yd = +y 

%aB + Q 'Y &r (Z,2,- Z) = (Z,- 4,+(b,- 4, , 

where 

SaB Q ;aB 
+y= y5' 

:a6 = $6 
'Y y4 i 

subtensors of H: 

Ha = Ha or (j,l,- ;)=(3,- $1 8 
(3.3) . 

Ha or (1,2,$) = (l,l)+(l,O) l 
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Let us separate the vacuum expectation values in 

the singlet variables: 

Q =s+e, <Q> = s , 

x5 =v+s+iT), <x 5 > = v . 
(3.4) 

Again we have to repeat the whole procedure. We obtain 

two conditions for the stationary point, one in 0 and 

the other in 5. These read explicitly as follows: 

p2 = 2 2- 
3 s 1108a+60bl+56b2+4 i + $($,'-I , 

V2 1 = - 2 Xv2 + 48ys2 , 

y is an abbreviation for 

Y = 3a + B . 

The value of the potential V in this point is 

V min = -{[12(108a+60bl+56b2)+32 f] s4 . 

+ xv4 16 + 12v2y2s21 . 

We can now find masses of the multiplets which are 

left after the breaking. These are two (1'0) fields which are 

mixtures of 5 and 0: 

1 T 
= (l+RT ) : l/2 If+RTe] , t = 

(l+$ )1'2 
[S+qe] , (3.6) 

1 e; 
2 

R 
T rc = 48~s 

-- 48Ps2 

+ [(96Ps - - 2 ';2)2+4(48)2v2s2y2{'21 8 (3.7) 
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where P is an abbreviation for 

P = 108a+60b,+56b,+2 g . (3.8) 

Masses 

A L ci 

of these particles are given by 

XV2 
4 + 48Ps2 + _ ; [(96Ps2- $)2+4(48)2v2s2y2]1'2 . 

(3.9) 3 
The positivity of rnt 5 is ensured by 8 

2 y +. (3.10) 

We see that one of those masses is heavy of the order O(s) 

and the other light of the order O(v). The latter is the 

usual Salam-Weinberg Higgs boson. 

There are "Goldstone bosons" 

5 n =Imx , 

X = r-J4 8 (3.11) 

with quantum numbers of the Salam-Weinberg vector bosons 

z", W, and W. There are states which are mixtures of 

(3,. ;) from Q and H. These mixtures are given by 

ya = 1 
(1,,2)1/2 H +xy [a y,uat (1+Z2,1,2 LH"- ; yIa.J, 

(3.12) 
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where 

Ya is a "Goldstone particle", 

and 
(3.13) 

The resulting stability condition is 

B<O. (3.14) 

Becuase of this mixing, the mass of the Y gauge boson is 

shifted by an amount of order O(v), in full analogy to the 

minimal model. Other states do not mix and have the follow- 

ing masses, i.e., stability conditions: 

(8,0) from (8,1,0): 

m2 = -4s2124b1+8b2+2 f + $ (;)2e] ' 0; 

(8,O) t (8,1), and (8, -1) from (8,3,0): 

m2 8 2 =-- 3 s [24b1+8b2+10 z + 

G, - $) : 
m2 =-- ; s2[24b1+10b2+2 f + $(g12J > 0; 

- !j s2[24bl+10b2+2 g + b 8(;)2] ' 0; 

m2 = - ; s2[-24b1+2b2-2 z + & k?(;)2] ' 0 . 
. 

-14- 



We see that it is possible to perform the desired 

breaking. Again as in the minimal model, the physical re- 

quirement i;~;<cII, becomes v<<s. We comment on other pro- ** .* 
perties of this symmetry-breaking pattern and its analogies 

to and differences from the minimal model.' Salam-Weinberg 

singlet states from Q and H mix. However, this is a simpler 

picture than in the minimal model where an additional Salam- 

Weinberg singlet state exists in the (1,3,0) subtensor 

of the adjoint Higgs and a more complicated mixing 

scheme arises. This is also the reason that the condi- 

tions (3.5) for the stationary point are simpler than 

the analogous conditions for the minimal model. In 

other words, we have two uncoupled equations, while the 

minimal model requires three coupled equations. 

Our next comment refers to the Salam-Weinberg "Goldstone" 

bosons n and x which, in contrast to the minimal model, 

do not mix with the states from 4. As a consequence 13 the 

Salam-Weinberg relation 

%= MZ cos 0 (3.15) 

is unchanged contrary to the minimal model where corrections 

of the order O(v2/s2) have to be included. Let us now consider 

the states with the (3,- i) quantum numbers from H and 4. 
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These mix completely analogously as in the minimal case 

and produce one "Goldstone" boson which can be "eaten up" 

to give mass to the Y vector boson and produce just one 

massive Higgs state. We end this section with Figs. 1, 2, 

and 3, which may serve as a guide through various sub- 

tensors mentioned in the paper. 

IV. CONCLUSION 

We have shown that the 75-dimensional Higgs field 

can be used to break the SU(5) symmetry to the standard 

model. In this analysis we have included the cubic term 

and also used nontrivial relations between invariants 

to simplify the potential. In fact, the potential con- 

tains only one more parameter than the potential for 

the adjoint representation. 

As mentioned in Sec. I, investigation of non- 

minimal models may be useful in avoiding the conflict 

of the minimal model with experiment. In fact, there 

are several possibilities of saving the SU(5) model 

mentioned in the literature. 

(a) Introduction of heavy Higgs fields different 

from the adjoint tensor may be associated with un- 

certainties in evaluations of MX from renormalization- 

group equations. For example, in the model by Barbieri 

et al. 6 there is an uncertainty by a factor of 6 in the 
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evaluation of M X. For the 45-dimensional scalar, 

a factor of 2.8 was calculated by Cook et al. 7 (see 

also Ref. 14). 

(b) If we combine 75 and 45 scalars, an important 

effect may arise from the fact that there is no obvious 

connection between Kobayashi-Maskawa mixing angles and 

mixing angles relevant to proton decay (see, e.g., Ref. 14). 

(c) Another effect may arise from introduction of non- 

renormalizable terms in the potential (15). 

(d) There are also proposals which do not change the 

Higgs sector, but change the fermion sector (16) instead. 

We also hope that this analysis may be helpful in 

developing the hierarchical mass model as proposed in 

Ref. 6, in analyzing SUSY GUT's, and in developing a non- 

minimal SU(5) model. For this last case, we have to break 

the symmetry down to SU(~)XU(~)~. One has several pos- 

sibilities of which the simplest one is to take a five- 

dimensional tensor plus its complex conjugate or the 45- 

dimensional representation instead and again its 

complex conjugate. Both possibilities are of interest. 

The latter choice may be more desirable because of its 

success with fermion masses; 17 however, in this paper 

we have presented the simpler version. It turns out 

that this step is simpler than in the minimal model, 

as explained in Sec. III. For completeness, we 
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have calculated the relative volume of the domain 

(2.8) to be (1.7720.07)%, corresponding to the physical 

standard minimum. 

After completion of this work we received a preprint 

by Ruegg et al. 18 which is in part overlapping and in part 

complementary to the first part of this paper treating the 

potential with the 75-dimensional scalar. 
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FIGURE CAPTIONS 

FIG. 1. Splitting of the fundamental representation 

HA under the chain of subgroups SU(5) + SU(~)XSU(~)XU(~)~ 

+ SU(3)xU(l)Q. The name used in the text is indicated 

under the subgroups content of the subtensor. 

A 
FIG. 2. Splitting of the adjoint representation TB 

under the chain of subgroups SU(5) -t SU(3)xSU(2)xU(l), 

+ SU(3)xU(1)Q. This tensor is not used in this paper, 

but we mention it for comparison of this work with 

the minimal model. 

FIG. 3. Splitting of the 75-dimensional tensor 

@yD under the chain of subgroups SU(5) + SU(~)XSU(~)XU(~)~ 

+ su(3)QxU(1)Q. The name used in the text is indicated 

under the subgroups content of the subtensor. 
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