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ABSTRACT 

We present a numerical analysis of the vacuum structure of periodic QED 

in 2+1 dimensions. We use a Hartree-Fock ansatz of a bi-linear Gaussian wave- 

functional on which we impose the conditions of gauge-invariance and compact- 

ness. This ansatz has the correct structure in the weak-coupling limit and can 

be solved by employing a dilute-gas expansion. A numerical investigation sub- 

stantiates the result of an exponentially increasing dynamical mass but deviates 

in detail from the analytic approximation. Using a Monte-Carlo program we ob- 

tain agreement with the dilute-gas approximation for weak-coupling, exhibit the 

behavior for strong-coupling and establish the viability of this form of analysis. 
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1. Introduction 

The Hamiltonian of the U(1) gauge theory-(PQED) is - 

H= ~~E;+~~(l-cosBp) 
e P 

(l-1) 

where the electric field Et is defined on the link e to be the canonical variable 

conjugate to the angle 0 5 Be 5 27r. BP is the magnetic field defined on the 

plaquette p 

Et=-i$- 
e 

BP = (V X Oe), . 

This is a confining theory in 2 + 1 dimensions.’ 

Eliminating the gauge freedom 

(1.2) 

ee -+ Be - (VW)e (1.3) 

one realizes that the independent variables are the plaquette fields BP. Describing 

the vacuum by a Hartree-Fock wave function, in which BP plays the role of the 

conjugate momentum of a free field2F3, one observes that the requirement that 

this ansatz be compact, i.e. invariant under the local transformation 

Be+t9e+2rNe (1.4) 

leads to the appearance of a dynamical mass which signals confinement. This 

mass vanishes as g + 0 with an essential singularity, which is also an expected 

feature of QCD in 3 + 1 dimensions; hence the interest in investigating this 

problem. 
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Using a cluster expansion Suranyi4 has obtained the following expression for 

the mass in this limit 

,2= 4n2(n2 -4) e--& xrD;1f2 

!J4 
(1.5) 

where Dk denotes the negative of the lattice Laplacian in momentum space: 

DI, =4-2coskl-2cosk2. (l-6) 

This result has exactly the same characteristics as the solution by GGpfert and 

Mack 5 of the Euclidean version of this model in 3 dimensions. 

We present a numerical investigation of the Hartree-Fock ansatz, a variational 

wave-function which incorporates the correct long-range correlations at weak- 

coupling and can interpolate throughout the whole range of g.3 Our purpose is 

to calculate pn(g) for a finite range in g and establish the properties of this ansatz 

that can be obtained in a Monte-Carlo calculation. 

In Chapter 2 we present a general formulation of our ansatz. The Hartree- 

Fock wave function is written for a non-compact link variable $e. To relate 

it to ee and impose compactness on the wave function we use an integer link 

field, and in order to render it gauge-invariant we use an auxiliary vertex field. 

In Chapter 3 we derive the weak-coupling expression for the energy by using a 

dilute-gas approximation for the curl of the integer link field. This expression 

is investigated numerically. We show that the minimum is obtained by a mass 

which is somewhat different from the analytic approximation (1.5) in the region 

7n 2 0.1, where it becomes measurable. Chapter 4 describes our Monte-Carlo 

calculation. We find agreement with the dilute-gas approximation for weak- 

coupling and display data which exhibit the effect of compactness on confinement 

for strong-coupling. 
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---_ 2. The Hartree-Fock Ansatz 

Let us start by setting up the ansatz in a-form that doesnot presume the 

use of specific gauge-invariant variables. Our first task is to decompactify the 

angular variable. This is done by using 

+%+= / Dlee-A({~~})rZC6(8e-~e-2KNe). 
e Nt 

(2.1) 

4e are non-compact link variables and Ne are integers defined on links. To render 

our ansatz gauge-invariant we perform the projection3 

P*=/ Da; *({tie-(Voi),}) (2.2) 

with the U( 1) parameter oi defined on the vertices of the lattice. This auxiliary 

field may be chosen to be non-compact. The norm of the resulting wave-function 

is 

Z= s DBe\llr’P\lr = D~eD,;e-A(I~+Va+2~N))e-A({~)) (2.3) 

and the expectation value of the Hamiltonian becomes 

(H) = 2-l E J DdeDa; e-A({4+Va+fLlrN))H( (4)) e--4({+)) 
{Nd 

(24 

where the non-compact variable $e replaces Be in H. 

We look now for an ansatz for A( { 4}) which minimizes the ground state 

energy (2.4). We use a general bilinear Gaussian form 

N{4e)) = f C tie, A(f!,hMe, 
el e2 

(2.5) 
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where A has the Fourier decomposition 

P-6) 

In this expression the link e is represented by its origin 31 and direction p. The 

sum is carried out over all lattice momenta and V is the total volume (number 

of lattice vertices). 

With this series of steps we have brought our problem into a form of statistical 

mechanics in 2 spatial dimensions. This allows the use of Monte-Carlo techniques 

for the evaluation of (2.4). For a given set of cz one can easily generate $ fields 

in k-space whose distribution is determined by emA( One may then randomly 

generate {ai} and {Ne} distributions to evaluate (2.4). Since the number of 

independent cz is V it pays to start from some suitable parametrization that is 

motivated by a theoretical approximation. Such an expression is available in the 

g + 0 limit. 
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3. The Dilute Gas Approximation 

For the derivation of the weak-coupling limit it is useful to consider separately 

the longitudinal and transverse parts of the vector fields. In particular let us 

decompose the integer link variable into 

Ne = Vqi + V X cp (3.1) 

where vi and cp are vertex and plaquette fields respectively obeying Laplace 

equations with integer sources 

V2qi = V * Ne V2cp = -V X Ne . P-2) 

In our Zdimensional problem cp is understood to point in the z-direction and 

the curl operator connects it to the Ne field in the z- and y-directions. With this 

separation we may rewrite the exponential terms of (2.4) as 

A(4+=+2W+A(4)= 244')+2A(3+2A(aV x e) (3.3) 

where 4’ and o’ are the shifted fields 

The electric term of the Hamiltonian depends on all variables whereas the 

magnetic term depends only on the transverse part. The longitudinal part of 

the integer field just shifts the o field and has no effect on the calculation. The 

integration over the fields 4 and Q can be carried out in closed form for the 

Gaussian distribution (2.6) but the transverse part of the integer field, V X E, 



can be calculated only by approximation. Note however that its distribution can 

be simply expressed as - 

2A(7rV x E) = -1r2 cp(k)p(-k) g 
k 

(3.5) 

where p(k) is the Fourier transform of the source of the equation of motion of 6 

pp = -(V X Ne)p - 

The value of the energy can then be derived by using a cluster expansion whose 

underlying assumption is that the p field is a dilute gas of monopoles (p = fl 

at largely separated locations, p = 0 otherwise). In this limit one finds that 

EDG =(H) = $ ~~ck-2n2~-e c2k -M2 

k k Dk I 
-gemM1(l-4eBM2)+$ (3.6) 

where 

The variation of the energy with respect to ck can be solved analytically in the 

weak-coupling limit. It turns out that the ansatz 

Dk ck = 2 
9 @k 

w;=Dk+rn2 

minimizes (3.6) in the limit g -+ 0 with p obeying the consistency condition 

p2 = eM1 /( 1 - 4eSM2) --) 1 

and the mass given by 

m2 = 4?r2( r2 - 4r2esM2) e-Ml -M2 
. 

(3.7) 

(3.8) 
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---_ This ansatz may be interpreted as assigning to V X 4 the role of a canonical 

momentum of a free field of mass m. _ - 

In the weak-coupling limit MI --) 0 and M2 + 00. Eq. (3.8) can be approx- 

imated by using in the calculation of both Ml and M2 the values p = 1 and 

m = 0. Eq. (1.5) is a further simplification of this formula in which only the 

leading terms were kept. This approximation is presented as the dotted line in 

Fig. 1, where it is compared with the iterative solution of (3.8) (dashed line) and 

the result of minimizing EDG. We have used the momentum space of a Q2 lat- 

tice to construct the functions Ml,2 of (3.6) which are needed for the numerical 

evaluation of EDG as well as pn of (3.8) and (1.5). This lattice size was chosen 

in order to enable us to compare these results with the Monte-Carlo calculations 

which will be described in the next chapter. 

The comparison between the different mass curves is carried out over a range 

of g in which the dilute gas approximation holds. We find that the mass obtained 

by the numerical minimization lies lower than the analytic approximation but 

has the same exponential trend. The value of the mass is very sensitive to the 

value of ,!Y. Thus, for example, the mass values that are obtained by minimizing 

EDG for p = 1 lie outside the scale of Fig. 1. Over the range 0.65 < g < 0.8 we 

find that the best p (for which E DG has a global minimum and 731 obtains the 

displayed values) increases linearly between 1.12 s ,L? s 1.19. 

A very important feature of the numerical evaluation is that the variation of 

/3 and pn leads to only minute changes in the energy, hence the minimum of EDG 

in the (p, m) plane is very shallow. Characteristic values of & E are of order 

10S8. This is so because the physical effect that we are looking at is tunneling 

between vacua of different integer-field distributions. An example of an energy 
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surface is presented in Fig. 2. We show the case of g = 0.8 with ,f3 varying 

between 1.1 to 1.28. The minimum of the energy-density is obtained at /3 = 1.19 

and m = 0.542 and its value is 0.874720. This shows us that it will be very 

difficult to find the optimal mass value by a Monte-Carlo calculation. 

It is instructive to look for the solution to our problem with the integer-field 

turned off. This corresponds to using an ansatz which is gauge-invariant but is 

not compact. In this case one can solve for the energy within our Hartree-Fock 

wave-function in a closed form. The result can be read off (3.6) by dropping the 

emM2 terms: 

E g2Cck-!Le-rbC,%+V NC = 4 
k !J2 !I2 

(3-Q) 

In the weak-coupling limit this is solved by (3.7) with m = 0. This massless 

solution continues to be valid over a finite range of g with only p adjusting itself. 

The variation of the energy as well as ,B is displayed in Fig. 3. At g = 1.13 the 

strong-coupling solution takes over. This solution has energy-density l/g2 and 

its wave-function is constant, i.e. it may be characterized as having m = co. We 

conclude that the non-compact approximation undergoes an abrupt transition 

from a massless mode to a completely confining one. 
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4. Monte-Carlo Calculations 

It is to be expected from the analysis in the previous chapter that we will 

need highly accurate numerical results in order to establish the correct mass of 

the vacuum structure. The effect leading to the best mass is due to tunneling 

between different N values, and it is as small as a tunneling effect can be. We 

will first of all establish the region where the numerical results agree with the 

dilute-gas analysis and then move to stronger couplings. 

We will quote results of calculations carried out for a g2 lattice. We found 

this lattice size to be a convenient compromise between our quest for accuracy 

and our wish to avoid exorbitant computer runs. The calculation proceeded in 

the following way. For a given set of values of ,8 and m in our ansatz (3.7) 

we first generated the Gaussian distribution of 4’ in k-space, anticipating the 

decomposition of the action according to (3.3). In a similar way we generated 

the distribution of Vcr’. Once this was done we used a Fourier transformation 

to generate the distribution of the same fields in configuration space. At this 

point we added the integer field using a Metropolis algorithm to satisfy also the 

last term of the action in (3.3). We worked directly with the plaquette field 

pp. Had we imposed periodic boundary-conditions on the integer link fields, we 

would be restricted to monopole anti-monopole pairs. It is necessary to allow for 

free monopole distributions to reconstruct the correct results at weak couplings, 

especially so if one works on a small lattice. Once all the distributions were 

generated we reconstructed the original 4 fields and measured the Hamiltonian. 

Typically we ran 500 iterations for each point (i.e. specified values of p, m and 

9). 

For very weak couplings, g s 0.6, the integer-field is inactive and the energy 
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---._ is well approximated by the non-compact expression ENS of (3.9). Correspond- 

ingly, the Monte-Carlo calculations show that the mass vanishes. In order to 

make contact with the dilute-gas approximation, which should manifest itself 

above g = 0.6, we fix p = 1 and vary only m. An example of the resulting data 

for g = 0.7 is displayed in Fig. 4. Every data point shown here is based on 8000 

iterations and took 8 minutes to compute on the 8 MIPS CPU of the IBM 3081. 

This is compared with the variation of EDG (p = 1, g = 0.7). All data points 

agree very well with EDG within the statistical errors. 

The best m, which is obtained by varying also ,B, is much smaller: it is 

m = 0.16540 at p = 1.143. This is the value on the curve of Fig. 1 at g = 0.7. 

The analytic calculation of the previous chapter gives EDG = 0.898115 at the 

minimum compared to EDG = 0.900596 for p = 1 and m = 0.84, the one shown 

in Fig, 4. Since at this value of g we established that EDG reproduces correctly 

the data, we can rely on the calculation of the “best m” value in the previous 

chapter and do not have to search for it numerically. 

Varying g we find that the agreement with the dilute-gas approximation 

continues to hold throughout the range g s 0.9. After that we do not have a 

valid theoretical approximation to work with, nonetheless we can continue the 

Monte-Carlo investigation. Using a fixed value of /3 (e.g. 1) one finds that the 

mass increases with g for a while, and then reverses the trend and tends to zero. 

However massive solutions continue to exist for lower ,f3 values. A characteristic 

case, for g = 1.5, is shown in Fig. 5. It is particularly impressive to note the 

pronounced minimum observed here, in contrast to the shallow minimum for 

g = 0.7 dis p ayed in Fig. 4. The m 1 -+ co end of the curve, which represents the 

correct solution at g + 03 comes down and is much closer to the minimum value 
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of the curve, as expected. 

An unpleasant surprise is found by varying p: we obtain vacua with all 

possible mass values, all of which have energy-densities of about 0.42 for g = 

1.5. The two extrema are m = 0 for which p = 1.4 and the energy-density is 

0.424 f 0.001 , and m -+ 0~) with /3 = 0 and ,Om = 2.8 for which the energy- 

density is 0.422 f 0.002. The same value of pm is obtained for all /3 < 0.5. It 

is a tedious and costly procedure to lind the lowest energy density. We found it 

to be around m = 26 and p = 0.01 for which we obtained an energy-density 

of 0.419 f 0.001. All these values are close to the prediction 0.4226 of strong- 

coupling perturbation theory at g = 1.5.6 Similar results were obtained when 

we limited ourselves to dipole p distributions. We conclude that the mass which 

governs the structure of the vacuum continues to grow with increasing coupling. 

5. Summary 

We have carried out a numerical analysis of a wave-functional that has been 

used until now for analytic approximations only. Our ansatz employs the correct 

behaviour of a free-field theory and is applicable in the weak-coupling domain 

of an asymptotically-free gauge-theory. This enables one to use a variational 

method directly in the weak- coupling regime, which is the interesting region for 

&CD. In this paper we have demonstrated the viability of this approach on a 

simpler problem which has similar characteristics for weak-coupling. 

As the first step we decompactify our link-variable and introduce auxiliary 

fields which guarantee gauge-invariance and compactness. The Hartree-Fock 

wave-functional of the new non-compact variable depends on a mass-parameter 

which sets the scale of all correlations. This is a dynamically generated mass 
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which vanishes in the weak-coupling domain with an essential singularity. This 

non-perturbative behaviour is due to the compactness of the theory (and of the 

vacuum), and can therefore be traced back to the integer field that we use to 

guarantee compactness. Using a cluster-expansion we solve this problem analyt- 

ically and numerically for weak couplings. The analytic solution involves further 

assumptions and turns out to be different from the numerical answer in the re- 

gion where the mass becomes measurable. 

After establishing the correct behaviour of the dilute-gas approximation, we 

turn to a Monte-Carlo analysis and check it in the weak-coupling domain. The 

results are very encouraging. We are able to obtain the correct behaviour over 

the entire domain in which we can check it, and we can extend the method into 

the strong-coupling region as well. We find, as expected, that the dynamically- 

generated mass increases strongly with the coupling. 

This method requires large amounts of computer time because it involves an 

iteration scheme which is non-local on the lattice. This is an obstacle in the way 

of its application to interesting non-abelian problems. Hopefully one can develop 

further refinements and shortcuts that will enable one to apply a similar analysis 

to QCD in the foreseeable future. 
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FIGURE CAPTIONS 

Mass curves for the dilute-gas approximation. The full line represents the 

result of numerical minimization of EDG. The dashed curve is the iterative 

solution of the analytic approximation (3.8) and the dotted curve is the 

result of (1.5). 

I - - _ -  

1 

2. The energy-density in the dilute-gas approximation at g = 0.8 is displayed 

as a function of the mass for ten values of ,# varying from 1.1 to 1.28 by 

steps of 0.02. 

3. The non-compact problem (3.9) displays an abrupt transition from a mass- 

less solution (whose energy is given by the full line and p by the dotted 

curve) to the strong coupling result (infinite mass) E = l/g2. 

4. Results of the Monte-Carlo calculation show complete agreement with the 

dilute-gas approximation (full curve) for g = 0.7 and p = 1. 

5. MonteCarlo analysis at g = 1.5 displays a clear minimum at m = 1.7 for 

p= 1. 
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