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ABSTRACT 

Self-consistent solutions of the system of Vlasov equations are found for the case 

when the electric field in the gap does not depend on the longitudinal coordinate. The 

solution is valid: a) for an arbitrary nonrelativistic particle distribution in velocity and 

time at the gap entrance, b) for any gap length, c) for any beam current, and d) for 

a broad class of field dependences on time. In the region of applicability of the small 

signal approximation (small beam current, small transit angle of the gap), the solution 

derived reproduces the results of the small signal approximation. Numerical results 

for the input klystron cavity and for an idler cavity are given and compared with the 

calculations in small signal approximation. Possible applications of this formulation 

are discussed. In particular, we argue that the Vlasov description provides a suitable 

framework for developing one-dimensional models of a multiple cavity klystron. 
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1. Introduction 

The present study is motivated by the modelling of high-power klystrons. The 

two basic components of a klystron are the resonant cavities and the drift spaces. 

This paper addresses only the first of these two components. Modelling of the drift 

spaces is deferred to future work. In one particular case considered here of the drift 

space between the first (externally powered) and the next (idler) cavities, the ballistic 

approximation is used for the particle motion. The formulation is not restricted to 

klystron modelling, but is applicable to any problem involving the interaction of an 

electron beam with a resonant cavity. 

While the theory of klystrons has been worked out in detail in the small signal 

limit, the problem remains largely unsolved when the signals are large. In particular, 

the hydrodynamic models of electron beams used to derive the small signal theories 

fail when particle trajectories cross each other. In this paper, we employ a Vlasov 

description of the electron beam to study the klystron problem. In the Vlasov for- 

mulation we follow the evolution of the electron distribution function in phase space. 

The general framework can naturally accommodate particle crossing, and the beam 

dynamics is accurately described even when the signals are large. 

While the Vlasov formulation is equivalent in principle to a particle simulation, 

the mathematical structure of the Vlasov equations makes it relatively easy to build in 

the steady-state condition. Since in many klystron problems we are interested mostly 

in the steady-state solution, the Vlasov description is very convenient. This is an 

advantage that a particle simulation does not share. 

The self-consistent solution of the system of Vlasov equations is found under the 

following assumptions: 

a) One dimensional (longitudinally) nonrelativistic particle flow. 
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b) Electric field uniform in the longitudinal coordinate (gridded gap). 

The solution is valid a) for an arbitrary particle distribution of the flow entering the 

gap, b) for any gap size, c) for all beam intensities, and d) for a broad class of time 

dependences of the electric field in the gap, although we will be studying in detail the 

special case of a resonant cavity with a single dominant frequency. 

In section 2 the problem is formulated in terms of the Vlasov equations [1,2,3]. 

In section 3 we present the solution of the Liouville equation for a given gap field. 

Solutions both for the initial value problem and for the boundary value problem are 

given. At the end of the section we also write down the gap field excited by a current 

source. The results of this section are combined in section 4 to produce a self-consistent 

solution for the Vlasov equations. In the limit of a small beam intensity and/or a small 

electric field the solution gives the same results as the small signal theory based on 

the hydrodynamic beam models. This is shown in section 5 for the input klystron 

cavity and in section 6 for the second (idler) cavity where the expressions for the gap 

voltage are derived in the small signal approximation. We have also derived a general 

solution in the limit of small gap size (section 7). The last sections contain a numerical 

example, comparison with known approximations and some conclusions as well as a 

discussion of possible applications of the suggested solution to the klystron problem. 

The results of present paper in greater detail can be found in [4]. 

2. The Vlasov Equations 

The most general and exact description of the electromagnetic interaction of a 

particle flux with environment is given by a system of equations describing the evo- 

lution of the particle phase space distribution function and the electromagnetic field 

produced by particle charges. This system of equations is referred to usually as the 

Vlasov equations. For the nonrelativistic one dimensional problem considered here, 
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the Vlasov equations are as follows: 

Consider the motion of an electron in the gap in z direction with the velocity w = 

dzldt: 

dv 
- 5 E(t) . 

x-m (2-l) 
Here E(t) is the z-component of the electric field assumed to depend on time only. 

The physical realization of such a field takes place in a gridded gap, for example. 

The first two integrals of this equation are 

t 
u(t) = &/ E( t’)dt’ + ~0 (2.2) 

to 

and 

t 

z(t) = z. + u . (t - to) - f / (t - to)E(t’)de 
to 

P-3) 

The evolution of a flux of electrons inside the gap can be described by a distribution 

function T,LI of time t, coordinate z and velocity w : 1c) = $(z, u, t). The continuity 

equation in the phase space Z, w is called the Liouville equation. In our case it looks 

like (L is an operator): 

Notice that v and t in this equation are considered as independent variables. 

The electric field E(t) in general can be produced by the charges and currents of the 

flux taking into account the environment as well as by external sources. Introducing 

axial component of the vector-potential A(?, t) and the scalar potential $(Y, t) we can 
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describe the electromagnetic field by the following Maxwell equations: 

l a2A - d2A = !p) q 
ZGG- aza 

,3d, lc?A 
EC--w-m-- 

3% cat 

P-5) 
P-6) 

(2.7) 

The axial current density i(?, t) in (2.5) in turn can be expressed as a sum of 

external current density iezt (produced for example by an external RF generator) and 

the current density of the flux itself. In our case, we assume for simplicity for the 

electron current density a uniform dependence on the radial distance from the axis in 

the interval 0 < r < b: 

i(%, r, t) = g(r)&, t) + id 

i 

l/r b2 r<b 
SW = 

0 t-20 

co 
I(%, t) = e / dv 2, I+, u, t) 

-00 

P-8) 

(2.9) 

(2.10) 

The system of equations (2.4) through (2.10) are the Vlasov equations. The solution 

of this system satisfying all the necessary initial and boundary conditions is the self- 

consistent solution of the problem. The search for such a solution and the study of 

its properties are the subject of the present paper. 

3. Solution Of The Liouville Equation 

We solve first the Liouville equation (2.4) assuming for the time being E(t) as a 

given function of time. It is known, that any function of the integrals of motion is the 
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solution of the Liouville equation. Hence the function 

t 
e(.z, v, t) = q. z - v - (t - to) + f 

( / 
(t’ - to)E(t’)dt’ 7 u - ;j E(t’)dt’) 

to to 

is a solution of equation (2.4). $0 (z, V) corresponds to the initial distribution at t = 

to. It is easy to check by direct substitution, that this function indeed satisfies (2.4). 

We will not do this here since we are interested in the solution of the boundary value 

problem rather than the initial value problem. 

Suppose now that at z = zo the distribution function is given for all times and 

velocities: 

$0 = $0 (217 0 P-1) 

We are interested now in finding a solution $J(Z - zo, V, t) of (2.4) which goes into (3.1) 

for z -, ZO. This solution will describe the evolution of $0 in t, w and t. In particular, 

it will give us the distribution function $(e, V, t) at the exit of the gap x = zo + C. 

The aim is achieved in the following way. Introduce first the implicit function 

8 (z- zg, V, t) as a solution of the equation 

F(z - zo, 0, t, 0) z % - %o - w - (t - C3) + $(t - e)E(@)dt’ = 0 P-2) 
0 

which satisfies the condition: 

9(0, w, t) = t 

Introduce next the function 

t 
V(% - %O, 21, t) = 0 - f 

I 
E( t’)dt’ 

8 (-0,&t) 

(3.3) 

(3.4 
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From (3.3) it follows immediately 

V(0, ?.I, t) = 0 . (3.5) 

Then 

f/+7 u, q = 90 (w- ~O,~J) , B(%-%oM)) P-6) 

is such a solution of the Liouville equation (2.4) which goes into the boundary value 

(3.1) when z + zg. To prove this, note first of all that 

Then it is easy to see that 

therefore the only thing we have to show is that 

Le=o (3-7) 

Indeed, if (3.7) is true then f.q = 0 and (3.3) and (3.5) provide that $&=, = 

$o(v, t). To prove (3.7) find LF (which is 0 since F = 0) 

LF=V.L8=0 

Hence (3.7) is true. In the particular case of a harmonic electric field: 

E/&(f) = A?.?() cos(wf + (0) 

formula (3.4) gives: 

v, = t, -$[Sif+Jf + Cp)- sk(&h + p)] , 

(3.8) 

(3-Q) 



@h satisfies the following equation (from formula (3.2)): 

%-%o--u(f- e,) + 2 [co+t + (0) - C08(Weh + P)] 
(3.10) 

+- eEo (f - eh) sin (wf + (0) = 0 
mw 

The solution (3.6) possesses an important feature of periodicity. Namely, if $o(v, t) 

and E(t) are both periodic in time (T is the period): 

tio(v, t + T) = $o(% q t (3.11) 

E(f + T) = E(f) (3.12) 

then 

$(z, 21, t + T) = $o(V(f + T),8(f + T) + T) 

= eo( v(t), e(t)) = w, v, 4, 
(3.13) 

i.e. it is also periodic. 

The correctness of this statement is very easy to see in the simple case of the 

harmonic electric field with 20 = 27r/T. In this case (3.10) is invariant under trans- 

formation t -+ t + T, 8 + 8 + T and so is (3.9). The proof for more general periodic 

function E(t) = En E,cos(nwt + (pn) is more elaborate and we will not give it here. 

The constants E, cp in (3.8) are to be found self-consistently from the solution of 

the Maxwell equation with the current density as a source of the field defined in (2.8) 

and (2.10). 

Define the gap voltage first harmonic for the frequency w 

u, = -W1(4) I (3.14) 

where (El(r)) is the average electric field harmonic over the beam cross section 

bw)) = $Jgb rdrdpEl(r) and the gap impedance on the frequency w: 

Ul z’=(11) 1 (3.15) 
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where (II) is the first harmonic of the full current averaged over the gap (4! is the gap 

length): 

,,,=;j da h(4 (3.16) 
0 

Here 

2nlw 

I dte -iwt I( t, f) 
0 

is the first Fourier harmonic of the current I(%, t). 

For the resonant cavity 

(3.17) 

(3.18) 

where (R/Q), Q and fu are the shunt resistance, the quality and the proper frequency 

of the cold cavity. 

4. Self-Consistent Solution Of The Vlasov Equations 

We can rewrite (3.15) in the following way: 

Zl 
t 

Ul =- 
e / d% w 

0 
(4.1) 

It is more convenient to consider the current due to electron flow separately from other 

possible currents, e.g. the current arising from the external generator. 

Consider for example the first klystron cavity. Assume that the cold cavity is 

excited by an external rf generator. Then it is convenient to rewrite (4.1) in the 

following form: 

Zl 
t 

El = El,t-F dz II(z) , J 0 
(4.2) 



where now 11 is the first harmonic of the electron flow current I(%, t) defined in (2.10) 

and which in turn depends on El. El ezt is the first harmonic of the field excited in 

the cold cavity by an external generator. It can be equal zero in particular case of not 

excited cavity (for example the second klystron cavity). 

The complex equation (4.2) constitutes two transcendental equations for the am- 

plitude EO and the phase cp (or for the real and imaginary parts) of the first harmonic 

of the field. Solution of these equations provide the self-consistent field 

Eh = Eocos(wt + cp) (3.8). Substitute this field back into the solution (3.6) for the 

distribution function. One gets now the selfconsistent solution of the Vlasov equation 

which satisfies the boundary value at z = zo. 

As an example, let us assume for the initial electron flow a dc current with no 

velocity spread: 

where 10 is the dc electron current, and ug = n 2eVo m is the initial velocity due 

to the dc gun voltage VO. At this point it is convenient to introduce the following 

dimensionless variables 

x=(%-%0)/e O<x<l (4.4 

u = v/we - OO<U<OO (4.5) 

7 =wt+p (4.6) 

70 =we+p (4.7) 

k = eEglmw2e (4.8) 

According to (3.6) the distribution function for any later coordinate and time is in the 

new variables 

ax, u, 7) IO 
=~~(u-ksinr+ksinzo-clO) , (4.9) 
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where uo = vu/we and the function 70 = ro(z, u, r) is defined by equation: 

x- u(r - ro) + k[coiw-coq +(v-ro)sim] =O. (4.10) 

From the distribution function (4.9) one can find the beam density current 

I(z, 7) = $ /m du u6(u - ksin r + ksin 70 - ug) 
--oo (4.11) 

= I0 luo + k[r 
W) 

- 7o(a)]cos?0(ql ’ 

where fi = Q (7) is the solution of equation 

a + ksinq(ii) = ug + ksinr (4.12) 

The first harmonic of I(z, r) is 

10 - 
277 

II(X) = %etp / 
dr ti (7) eDis 

o luo + k 17 - fowl co9 70Wl (4.13) 

Calculate now the average over x of this current and substitute into (4.2). Note 

that El = I&e@/2 and Elezt = Eoezt/2. 

2if 

k = kezte-@ -%&,jdz/ 
d7 o ( T)eBiT 

luo + k(v-~o)cos~o( ’ 
0 0 

(4.14) 

where kezt = eEo,t/mw2e. The complex equation (4.14) is equivalent to two tran- 

scendental equations which define the amplitude EO and the phase p (in respect to the 

external field) of the field in the gap. 

Figures l-3 are the phase plots of u/k versus x/k for k = 0.2,0.25 and 0.33 

respectively, for different values of the time parameter r. One sees the onset of the 

crossover of the particle trajectories for the large gap voltage (Fig. 3). 
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5. Small Signal Approximation. The Input Klystron Cavity. 

It is instructive to study the previous results in the limit of a small electric field 

and to compare them with the known results from the small signal theory. 

In the small signal limit the lowest power of the parameter k: should be retained 

in all expansions in power series. 

In variables (4.4) - (4.8), equations (3.9), (3.10) for a = Vh/od and ro look like: 

o= u - ksin7 + ksinro 61) 

X- 21(7 - TV) + k(cos 7 - CO870 + 7sin7-7708irH) =o (5.2) 

The solutions of (5.1) and (5.2) to the first order in k are 

70 = 7 -f + ~[c08(T-~)-co87-~8inr] (5.4) 

The terms independent of k here give the ballistic approximation. The last terms 

in (4.3) and (5.4) represent the influence of the electric field. 

Let us assume for simplicity that the distribution function of the electron flow on 

the entrance of the gap is (4.3). 

5.1 COUPLING COEFFICIENT 

Let us first of all find the expression for the coupling coefficient p as it follows 

from our solution. One can define Jo as the ratio of the average kinetic energy change 

to the maximum of the energy gain in the gap [5]. Calculate first the average (u2) as 

the function of x: 

7 [ 
duu26 u-ksinr + ksin ( -;)-UC] r 

(u2) =-“00 (5.5) 
ksin ( -+o] T 
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To the first order in k for x = 1 

(u2>1 =uo2 + 2kuo 

Prom here we get (4 denotes r + 1/2uo) 

cr = b2)1 - 4 _ t+uJ 
2kcosqb ti ’ 

(5.6) 

(5.7) 

where 8 = & = & is the half of the gap transit angle. 

5.2 BEAM LOADING 

Now, let us consider the beam loading by the electron flow as it follows from our 

solution. We need now the expression for the beam current density in the small signal 

approximation. The charge and the current densities both can found by integration 

of (4.9) 

cm 
u- ksin?$ ksin r ( -;)-uo] 

-00 

I(z,r)=z /mdu ub[u-ksinr+ksin(r-z)-uo] 
-00 

Performing the integrations we find to the first order in k: 

4x14 = I() 1+: 
{, [ 

sin?- 8+-;)I-$CO+-;)} 

PC? 4 IO kx =- tlOwe 1 -3 cO8(4-)} 

It is easy to see that (5.10) and (5.11) satisfy the continuity equation 

dP 1 aI 
is+--=O we a~ 

F-8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
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As one sees from (5.10) in the small signal approximation the current density besides 

the dc component contains only the first harmonic. Expression (5.10) can be obtained 

conversely by expanding expression (4.11) in the power series in parameter k. 

Using the definition (3.17) the first harmonic of the beam current density is 

* k II(X) = IOe’p- 
2uo 

8;n?-.?cO8?-i + ,-co8 ’ 
uo uo uo > 

(5.13) 

This expression is the same as one obtained from formula (2.1) of the paper [5] assuming 

Ez = const. It also coincides with the corresponding expression for iv in the book [S]. 

Let us rewrite equation (4.2) in variables (4.4) - (4.7): 

El =~~lezt-jdXll(r)] (5.14) 
0 

Here Ilezt is the first harmonic of the external current exciting the cavity. Substitute 

now (5.13) into (5.14) and take into account that El = Eoe’p/2 , Ilezt = &t/2. 

Then: 

Eo 21 = e Ioezte+ 21 - e Iok(B+iA) , (5.15) 

where 

l/u0 
B= 

/ 
dc( sine -tXO84 COOI , 

> 
(5.16) 

0 

l/u0 
A=- 

/ 
.dU(l -COsU -U8inU) = 48CO88 

sine 
T- CO88 , 

> 
(5.17) 

0 
Here 8 = 112~0 = we/2vo is half of the transit angle for the gap. Solving (5.15) in 

respect to Eo (see definition of k in equation (4.8)) one finds: 

(5.18) 

14 



I 

Substitute now expression (3.18) for 21: 

(5.19) 

From formula (5.19) immediately follow the usual expressions for the loaded quality 

QL and the shifted frequency /L of the gap* 

1 1 -=- + IO (W&l 
QL Q 2vO 

COSe (5.20) 

fL = fo[l - &($Q) CO8 ti )I (5.21) 

6. Small Signal Approximation. Second (Idler) Klystron Cavity. 

Let us now proceed to the second (idler) klystron cavity. We want to study how it 

is excited by an electron flow perturbed by the action of the field in the first cavity and 

bunched in the drift tube with the length dl between the first and the second cavity. 

We neglect in the present formulation the debunching effects of the space charge in 

the drift tube and use the ballistic approximation for the particle motion inside the 

drift tube. 

We use the solution for the field in the first cavity kl to obtain the distribution 

function of the electron flow at its exit. for initial distribution function defined in (4.3) 

we have (see expression (5.3) for x = 1): 

, 

where rr = wt + cpl , u = u/wer, uo = vu/wel. kl = eE&w2& and cpl constitute 

the solution of equation (4.14). The distribution function at the entrance of the second 

cavity is obtained from (6.1) in ballistic approximation: 

d2,i,(V,t)=~~[U-klsin(n-~) + k18+l-e1u~ld1)-Uo] (6.2) 
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To obtain the distribution function at any place x = t inside the second gap (with 

the length e2) according to (3.6) one should substitute in (6.2) v + V and t -+ 9. Or,’ 

in the variables u, r (see expressions (5.3) and (5.4)): 

u--,212= u - k&n?2 + kpin (6.3) 

k2 kp . 
- ;CO8?2 - 28lTZT2 

U 
(6.4) 

Here 12 = wt+p2 and k2 = eE2/mw2fYl. k2, ‘p2 should be found from the solution of 

(4.14) for the second gap, in which one should put k,t = 0. In the linear approxima- 

tion in kl and k2 we get: 

IO 
$(X,U,T) = -6 U 

eu0 
- kpin?2 + k&n ( -ff)-k~8in(?2+p1-p2-xe~l~d1) 72 

+klsin ?2+(pl-(pg- 
( 

xel + el + dl 
e u 1 1 - uo 

1 
(6.5) 

The charge (5.8) and current (5.9) densities both can be found from (6.5): 

IO 
Qb, 72) = y& 

k2x 
1 - ---go8 

klW1 + 4) 

flu; 
CO8 72 + Ql - $02 - xe, + dl 

eluO 

hwh + el + 4) xe, + e, + dl - 
hug 

Cm 72 + Q l - $02 - 
elu0 

VW 
qx, 72)= 10{l+~8inr2-~8in(q-~)+~8in(rZ+pl-pZ-xyodl) 

xe, + e, + dl 
eluO )-$co8(T2-~) 

+ We1 + 4) 
CO8 72 + Ql - Q2 - 

xel + dl 
hug eluO 

_ we1 + 6 + dl) 
CO8 72 + Ql - Q2 - 

xe, + e, + dl 

flU$ bo 
(6.7) 
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Expressions (6.6) and (6.7) satisfy the continuity equation (5.12). Substituting (6.7) 

into (4.14) one obtains for U2 - - e2E2 and ~2 the following complex equation: 

UZeiv2 = _ eIfJUle 9B12 + iA12) 
63.8) 

where Ule @1 is the first gap voltage, 22 is the second gap cold unloaded impedance, 

B2 and A2 are the coefficients defined in (5.16) and (5.17), respectively, in which 0 

should be substituted by 02 = &/2&uo. The coefficients B12 and A12 are defined as 

follows: 

&2 = 
4 

-2COS - 
w0 

4 . 4 
-- - 

eluO 81n elt10 

4 1 - ( 2e2+- + 1 - 8in ( 2e2 dl -+- +’ 
eluO ~0 eluO ~0 > 

42 = 

(6.10) 

- 28in 2e2 + dl dl - 
m0 

+ 2sin - 
4u0 

4 4 -- - 
b0 '08 eluo 

In deriving expressions (6.6) - (6.10) in addition to the small signal approximation 

conditions kl/ug < 1 and kz/uo < 1 we assumed also that the length of the drift 

tube is small enough so that the inequality kldl/uoel < 1 is still valid. 



I 

Expression (6.8) has a simple meaning. Namely, the first harmonic of the current 

at the entrance to the cavity plays the roll of the external excitation current, while 

the first harmonic of the current produced by the gap voltage loads the cavity by 

changing its parameters exactly in the same way as it is described by expressions 

(5.20) and (5.21). 

7. Narrow Gap Approximation 

In this section, we derive an analytic solution to the Vlasov equation in the limit 

of narrow gap. The expansion is not restricted to small signals, but the result is 

consistent with small signal theory in the proper limit. 

The assumption of narrow gap allows us to expand the distribution function in a 

Taylor series. We have in general 

$(z) = nEo $ gq, @ - %O)” (7.1) 
For a narrow gap, the solution is given by the first few terms of the series. We will 

work out the example of an initial cold distribution, with 

$o(“, t) = $(v - vf.3) 

for which the general solution is given by 

tc1(Zl v, t) = --$Y(v- jcz(t)dtbg) 

where 0 is given by 

z-zo=v’(t- (3) -i (t’ - 0)a(t)dt 
0 

(7.2) 

(7.3) 

(7.4) 
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and a(t) = eE(t)/m (see (3.2)). W e will perform the expansion of (7.3) up to n = 3. 

The first term in the series (n = 0) is given of course by $o(v, t) as defined in Eq. 

(7.2). To obtain the n = 1 term, we need to evaluate 

Differentiating Eq. (7.4) we obtain 

a% t 
is=-“+ / a( ()dt’ 

8 

The coefficient of the n = 1 term is then given by 

= --$?(v - ~o)a(t)/v , n = 1 

(7.5) 

(7.6) 

V-7) 

The coefficient of the n = 2 term is proportional to the second derivative of (I, and 

is evaluated to be 

ev0 a2$ 

(-1 I 
- b”(V - a2(t) 

IO dz:! tO - 
vo) 7+6~~v-v~~~-~] ,n=2 (7.8) 

Note that 6’ refers to the derivative of the delta function with respect to velocity while 

a’(t) is a derivative of the acceleration with respect to time. A superscript with n 

primes refers to the nth derivative. Finally, the n = 3 coefficient is evaluated to be 

ev, a3$ 

0 I 

a3 a3 
Kaz3 

ZO 

= - 6”‘(V - vo) --$ + 36”(v - vo) .=$ + 7;a [ 1 
(7.9) 

-6’( v - 
uN 4a’a 3a3 

vo) gyj-+yj?y 
[ 1 1n=3 

The current is related to the first moment of the distribution function 

I( t, t) = e 
/ dv v I+, v, t) (7.10) 

19 



In the Taylor series expansion of +, the velocity integrals may be evaluated term by 

term. The n = 0 term gives rise to the d.c. component of the current since 

e 
/ 

IO dv v tie = G / dv vb(v - vo) = IO 

The n = 1 component gives no contribution since 

e 
/ 

dvv 21 =-- 
20 

2 a(t) / dv 6’(v - vo) = 0 

(7.11) 

(7.12) 

The n = 2 component of the distribution function has terms which are proportional 

to a2(t). However, these two terms cancel exactly when we take the velocity moment 

of the distribution function. We are then left with a contribution to the rf current 

e (7.13) 

To evaluate the n = 3 component of the current, we take the velocity moment of Eq. 

(7.9). Again, the terms proportional to a3(t) vanish and we obtain 

e 
I 

1 a3tio 
dv v 6 -&g- b- %o13 = IO --q g b- %oJ3 

tBaa’- =“I 
(7.14) 

t0 

In performing the velocity integrals, we have made use of the delta function identity 

I 
g(v) dn)(v - vo)dv = (-l)n 2 

I vo 
(7.15) 

Combining these results, we have that to n = 3 in the Taylor series expansion, 

I(%$) = IO 1+9&,- zo)2 
( 0 

- [$-$k- %oY] 1 (7.16) 

The term which is proportional to aa’ represents our first explicit nonlinear contri- 

bution to the current. However, it is clear that if a(t) is a pure first harmonic, the 

quadratic term in a can contribute only to the zeroth and second harmonic. Hence, to 
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the order considered, there is no higher order contribution to the rf component of the 

current. 

We now turn to examine more carefully the z-dependence of 11. The first harmonic 

of the current is related only to the linear terms in a(t). 

For 

a a(t) = - me Co’(‘Q’ + lo) 

we have 

I&l t) = 
2w( % - %o) 

3v 
0 

(7.17) 

(7.18) 

Hence the derived formula predicts a quadratic z-dependence of the amplitude and a 

linear z-dependence of the phase of 11. These features are consistent with the numerical 

results presented in Fig. 4 where the self consistent solution for the amplitude and the 

phase of the first harmonic of the current are plotted as functions of the dimensionless 

distance (4.4) inside the gap. The magnitude of the amplitude and rate of phase change 

are also in agreement. 

8. Numerical Result!. 

Comparison With The Small Sigd Approximation. 

Here we apply derived formulae to the SLAC XK-5 klystron. Table 1 contains 

its relevant parameters [7]. In general, the small signal approximation gives correct 

results for the first cavity. This is true due to small values of both the input power and 

the length of the gap. In addition, the initial distribution of electrons at the cavity 

entrance in velocities has very small velocity spread and is constant in time. Hence, 

in this case the results obtained by using the self-consistent solution agree with the 

small signal approximation [4]. To model the effect of an initial velocity spread, the 
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distribution function at entrance is assumed to be a Gaussian in velocity with the 

dispersion u. The Vlasov equations for the two cavities are solved numerically. Figure 

5 illustrates the dependence of the first cavity gap voltage k,,, and its phase ~~~~ on u 

of the initial Gaussian distribution. For u/w smaller than 10e2 the result is the same 

as for zero spread velocity beam (m S(v - ~0)). At the same time this is the condition 

of the validity of the small signal approximation. 

Similar results are found for the second (idle) cavity. Figure 6 presents the am- 

plitude and phase of the second gap voltage, as functions of u/v0 (solid curves). Here 

again, the small signal approximation (dashed curves) gives correct values for u/v0 5 

10-2. 

On Figs. 7 and 8 the amplitudes and phases of the current first harmonic are given 

at the exit of the first and at the exit of the second cavities of the XK-5 klystron, 

respectively. 

Figure 9 illustrates the self consistent (solid curves) and the small signal (dashed 

curves) solutions for the voltage and the current first harmonic for the entrance and the 

exit of second gap in function of the external excitation of the first cavity, respectively. 

Increasing the external excitation leads to an increasing 11 at the entrance to the second 

cavity, as is evident from this plot. Figure 10 presents the same quanitities as functions 

of the drift length between the cavities. 

9. Conclusions 

The approach suggested in this work proves to be correct. The results obtained 

agree to a great accuracy with the small signal approximation. In the limit of a narrow 

gap the solution gives valid results both for the amplitude and phase of the resonant 

harmonic of the beam current. 
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The next questions which should be addressed are how useful and how convenient is 

the Vlasov approach in general and with respect to the klystron problem in particular. 

The calculation of the particle distribution along the klystron tube seems to be straight 

forward although substantial work need to be done. 

Nevertheless, the approach looks promising. One can attempt to develop a one- 

dimensional model of a klystron which will include all important physics of the beam 

dynamics in multicavity system, including the interaction with the output cavity and 

crossover of the electron trajectories. The model takes into account the space charge 

effects in the cavities. The debunching effect of the space charge in drift sections of the 

klystron can be evaluated in perturbative manner using the ballistic approximation as 

the unperturbed solution. Such a model might be useful1 as a fast and convenient tool 

for the klystron design. It can also provide information (at least as the first guess) on 

the amplitudes and the phases of the gap voltages for klystron cavities. That might 

be useful as the input for more elaborate numerical models of a klystron. 

Further work is needed to extend the present formulation into the region of rela- 

tivistic velocities. 
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Table 1 

XK-5 - Klystron 

eVo = 0.2700003+06 eV 

U = O.l3OOOOE+O6 m/set 

I, = 293.00 A 

e&t = 0.3843OOE+O4 eV (kezt = 0.495415EOl) 

***** First Cavity ***** 

fo = 0.2856OE+lO Hz 

e, = 0.006500 m 

Q1 = 250.0 

(R/Q)1 = 100.0 Ohm 

(f - fob = 0.4OE+O7 Hz 

flL = 0.284423+10 Hz 

Q1~ = 161.84656 

***** Drift ***:$* 

dl = 0.059850 m 

***** Second Cavity ***** 

fo = 0.28560+ 10 Hz 

e2 = 0.005000 m 

Q2 = 2000.0 

(R/Q)2 = 96.0 Ohm 

(f - fol2 = 0.90E+o7 Hz 

f2L = 0.2871E+lO Hz 

92~ = 572.54130 
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Figure Captions 

Fig. 1 Phase trajectories of an electron with the dimensionless velocity u = 1 

entering the gap with the dimensionless field strength k = 0.2. The ratio 

u/k is plotted versus x/k (the ratio of the dimensionless coordinate x to 

the field strength k) for the different values of the field phase T. 

Fig. 2 The same as on Fig. 1 but for the field strength parameter k = 0.25. The 

onset of the particle crossover can be seen for large x/k. 

Fig. 3 The same as on Fig. 1 but for the field strength parameter k = 0.33. The 

crossover is fully pronounced now. 

Fig. 4 Dependence of the first harmonic of the current (relative to the dc current 

of the initial beam) found from a self consistent solution of the Vlasov 

equations on the coordinate x for small values of x. The left hand side 

scale is for the amplitude. The right hand side scale is for the phase. Both 

curves agree with the‘narrow gap calculation (see text). 

Fig. 5 Dependence of the field strength in the first cavity of the klystron XK- 

5 found from the self consistent solution of the Vlasov equations on the 

velocity spread in the initial beam. The initial velocity distribution is 

assumed to be Gaussian with the mean velocity vu and the dispersion u. 

The left hand side scale is for t.he dimensionless amplitude kl (curve a). 

The right hand side scale is for the phase ~1 (curve 6). The values of kl 

and ~1 found from the small signal approximation are 0.191 and 0.451, 

respectively. 
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Fig. 6 The same as on Fig. 5 but for the second cavity of the klystron XK-5 (the 

solid curves). The dashed curves represent the small signal approximation 1 

(see section 6). 

Fig. 7 Dependence of the first harmonic of the current at the end of the first 

cavity of the klystron XK-5. The left hand side scale is for the amplitude 

in A (curve a). The right hand side scale is for the phase (curve b). 

Fig. 8 The same as on Fig. 7 but for the second cavity of the klystron XK-5. 

Fig. 9 Dependence of the field strength k2 in the second cavity and of the first 

harmonic of the current at its exit on the rf excitation in the first cavity. 

The left hand side scale is for k2 (solid curve is for the self consistent 

solution, dashed curve is for the small signal approximation). The right 

hand side scale is for the amplitude of the current in A. Increase of the rf 

excitation (bottom scale is for the dimensionless amplitude kezt) brings up 

to increase of the current harmonic on the entrance to the second cavity. 

The upper scale represents the corresponding harmonic amplitude in A. 

Fig. 10 The same as on Fig. 9 but in function of the drift length (m) between the 

first and the second cavities. Increase of the drift length (bottom scale) 

brings up to increase of the current harmonic on the entrance to the second 

cavity. The upper scale represents the corresponding harmonic amplitude 

in A. 
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