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Regularities 
-- -._ The fermion mass spectrum remains one of the outstanding problems of grand - 

unification. Conventional grand unified theories11 offer no explanation for the im- 
mense range of quark and lepton masses. Nor do they shed any light on the mag- 
nitudes of the quark mixing angles. Conventional grand unified theories reproduce 
the observed fermion masses and mixings by introducing at least 13 parameters 
whose magnitudes range between 1 and 10m8. 

The striking regularities of the fermion spectrum provide important insights 
into the question of fermion masses. The fermions cluster into groups of similar 
mass, called families, and this tendency to cluster is greatest at energies near the 
grand unified scale MGW. There are strong correlations between proximity in mass 
and the strength of the weak interactions. The weak partner of the lightest up-type 
quark is predominantly the lightest down-type quark, and similarly for the other 
families. In addition, nearest-neighbor families interact more strongly than families 
further removed. 

Many of these regularities are incorporated into the Fritzsch mass matrix, 2l 

where 0 s 1. The Fritzsch matrix has eigenvalues in the ratio 1 : O2 : 6”, and 
consecutive mixings of order 0. In a theory based on a Fritzsch-type matrix, the 
heaviest generation gets a direct mass, and subsequent families gain mass through 
mixings with their nearest neighbors. 

Mass matrices with the Fritzsch texture work well for the mass ratios 

but are less successful for 

(2) 

(3) 
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Important challenges to the model builder include fixing the unsuccesful relations 

_---._ (3), and explaining the zero entries and the 1 - 8 - 83 pattern of the Fritzsch mass 
matrix. . - 

A General Scenario 

In this section we shall describe a general scenario for constructing theories 
with Fritzsch mass matrices. 3l We shall focus on theories with three families, which 
we label by 1, 2 and 3 in Figure 1. To distinguish the families, we introduce a 
global U(1) family symmetry, with charges -4, 1 and 0 on the first, second and third 
families. 
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FIGURE 1: Diagrams that give rise to 
three-family Fritzsch matrices. 

Since we would like the third family to get a direct mass, we give the weak Higgs 
doublet he family charge 0. This lets the vacuum expectation value (ho) give an 
unsuppressed direct mass to the third family through the dimension-four operator 
of Figure La. 

The second and third families mix through the diagram of Figure lb. This 
mixing breaks the U(1) family symmetry by one unit, so Figure lb involves an extra 
Higgs scalar ~$1, where 41 carries one unit of family charge. This graph induces a 
dimension-five operator, suppressed by the ratio ($1) over M, where M characterizes 

. 
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the strength of the operator, and (Or) is the vacuum expectation value (vev) of the 
field $1. 

Similarly, the mixing of the first and second families breaks the U(1) family 
symmetry by three units, and is mediated by the dimension-seven operator shown 
in Figure lc. (We assume that q5i is the only Higgs scalar that breaks the U(1) sym- 
met.ry.) This implies that the mixing of the first and second families is suppressed 
by three powers of (41)/M. 

If we identify (&)/M with the mixing angle 0, the graphs of Figure 1 reproduce 
the nonzero entries of the Fritzsch mass matrix. If the graphs of Figure 1 are 
the only diagrams that contribute to the mass matrix, both the zeroes and the 
1 - 8 - O3 pattern of the Fritzsch matrix are explained naturally, without any small 
Yu kawa. couplings. 

An O(10) Example 

To illustrate the previous scenario, we will construct an O(l0) grand unified 
theory whose particle content and Yukawa couplings are summarized in Figure 2. 
We choose an O(10) theory because O(l0) is the minimal grand unified group that 
relates the up, down and electron masses. 

As before, the third family gets mass from the Weinberg-&lam Higgs doublet 
ho. This is shown in Figure 2a, where the third family receives an unsuppressed 
direct mass m = g(ha). The second and third families mix through a one-heavy- 
fermion intermediate state, as shown in Figure 26. This graph is suppressed by 

(~Q>/(xo>, where 1x0) is th e vev that gives mass to the heavy fermion. The first and 
second families mix through the graph of Figure 2c. This graph includes a three- 
heavy-fermion intermediat,e state, so it is suppressed by three powers of (&)/(x0). 
If we identify (#i)/(xe) with 0, we obtain a mass matrix with Fritzsch texture. We 
will only consider theories where the vevs (41) and (x0) are superlarge,+ so they 
must not break SU(3) x SU(2) x U( 1). 

* The vevs (41) and o( ) 0 must lie between lo* and 1012 GeV because the family U(1) has color 

anomalies and gives rise to an “invisible” axion. 
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FIGURE 2: Diagrams that give rise to 
three-family Fritzsch matrices for our O( 10) 
theory. These graphs are in oneto-one 
correspondence with the diagrams of Fig- 
ure 1. The heavy lines represent heavy 
fermions of mass between lo8 and 1012 
GeV. 

The graphs of Figure 2 define the complete quark and lepton mass matrices 
of our O(10) theory. One might hope that the quark and lepton masses could be 
computed in terms of three numbers, characterizing the overall scales of the three 
graphs. However, this is not usually the case, for the couplings of the fermions to 
the vevs depend, in general, on the unknown parameters of the Higgs potential. 
Our objective is to find conditions under which the couplings of the fermions to 
the vevs are given by simple group theory alone, and do not depend on the various 
parameters of the Higgs potential. 

To see what is involved, let us consider the scalars $1 and ~0. Their vevs must 
lie in the SU(3) X SU(2) X U(1) p reserving directions contained in 16 X 16 = 
I+ 45 + 210. There are six such directions, which we denote by 1, 45~~L, 45y, 
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‘21° (B-L)2 ) 21°Y(B-L) and 210~2, where, for example, 45&L points in the B - L 
direction of the adjoint of O(10). In general, we have 

--I._ 

(41) = 0 1 + p 45%J, + +/ 45y + 6 210(B4)2 + h? 210Y(B-L) + < 210y2 , (4 

and similarly for (x0). The coefficients Q, /3, y, 6, c and c cannot be calculated from 
pure group theory; they depend on the details of the Higgs potential. 

This situation can be improved if 41 and x0 belong to irreducible representations 
of O(lO), either 1 of 45 of 210. However, this is not enough, for one still cannot 
distinguish between the different SU(3) X SU(2) X U(1) preserving directions con- 
tained in a single irreducible representation. For example, if 41 is a 45 under O(lO), 
then 

(41) = a45&L + p45y , (5) 

where a and /3 still depend on the details of the Higgs potential. To remedy this 
problem we introduce the extended survival hypothesis,*1 which ensures that either 
cr or p = 0. 

Extended Survival Hypothesis 

We shall illustrate the extended survival hypothesis’1 with a simple example, 
where we take 41 to be a 45 of O(10). We would like to ensure that 

(45Y) - MGm and (45&L) - 0. How can we do this? If we break O(10) di- 
rectly to SU(3) x SU(2) x U(1) at MG~, and give the 45y a vev of order MG~T, 

then mixings between the Y and B - L components of 41 will induce a similar vev 
for (45&L). To avoid this problem, we shall consider the case where O(10) breaks 
to SU(3) x SU(2) x U(1) through an intermediate SU(S), 

WN Mp SU(5) - 
MGUT 

W(3) x W(2) x U(1) - (6) 
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The 45&L and the 45~ lie in di~erenf representations of SU(S), so it is possible 

_---._ to make the 458-L superheavy, with a mass of order Mp, and leave the 45~ light. 
At energies much less than Mp, the 45B-L is decoupled, so only-the 45~ can get a 
significant vev, (45~) - MG~. h4ixings will induce a vev for the 45~~L, but this 
will be suppressed by (Mcv~/Mp)~. 

The basic idea of the extended survival hypothesis is to introduce intermediate 
symmetries which interpolate between the initial and final symmetries. The inter- 
mediate symmetries allow one to split the desirable components of a representation 
from their undesirable counterparts. The extended survival hypothesis ensures that 
all vevs point in well-defined directions, and that these directions do not depend on 
the unknown parameters of the Higgs potential. 

The extended survival hypothesis allows us to construct theories with 
calculable fermion masses. This is because each of the #r and x0 vevs in Figure 
2 can be arranged to point in precisely one of the six SU(3) X SU(2) X U(1) 
preserving directions, either 1, 45~-~, 45y, 210(B4)2, 210y(B4,) or 210~2. 
This procedure leaves the overall scale of each graph undetermined. We choose 
to normalize the graphs in terms of the e, p and r lepton masses. Once e, JL and 
r are specified, all the quark masses and mixing angles may be calculated by group 
theory alone. 

The extended survival hypothesis may be readily applied to the three-family 
models of the previous section. The Fritzsch matrices 

give rise to masses and mixings of the following form, 

(7) 
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The coefficients m, 0 and 4 are unknown. They are determined by fitting the e, /.J 
and r masses. The prefactors Ba, Ci R and Di R are of order 1. They are calculated 

from group theory alone, and lead immediately to predictions for the quark masses 

and mixings in terms of e, p and r. 

Dual Feynman Diagrams 

Dual Feynman diagrams ‘1 are a convenient tool for constructing theories with 
Fritzsch mass matrices. Dual Feynman diagrams replace fermions (lines) by points, 
and vevs (points) by lines. In Figure 3 we summarize the graphical rules for dual 
Feynman diagrams. 
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FIGURE 3: Rules for dual Feynman diagrams. 

The dual Feynman diagrams of Figure 4 correspond to the ordinary Feynman 
diagrams of Figure 2. Note that each step of the dual Feynman diagram represents 
(41)/(x0), and costs one power of 6. 

The dual Feynman diagrams of Figure 4 may be joined together to form one 
large diagram, as shown in Figure 5. This diagram exhibits all the Yukawa couplings 
of the theory. The Fritzsch texture is manifest. -Each step costs one power of 6, 
and the Fritzsch zeroes follow from the topological properties of the graph. 
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FIGURE 4: The correspondence between 
the Feynman and dual ‘diagrams for the 
models of Figure 2. Note that each step 
in the dual diagram  costs one power of 19 
in the Fritzsch mass matrix. 
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FIGURE 5: The dual Feynman dia- 
gram  for our three-fam ily 0( 10) the- 
ory. 

CAT Scanning 

A given dual Feynman diagram  represents not one theory, but many theories, 
depending on the directions in which the various vevs point. Each set of vevs gives 
a different set of predictions. Scanning over these vevs gives all possible predictions 
that arise from  a given dual Feynman diagram . We refer to this procedure as 
Computer Assisted Theory Scanning, or CAT Scanning.‘) 

In this section we present results that arise from  scanning the three-fam ily 0( 10) 
models defined in Figures 6 and 7. These models were chosen because they naturally 
expla.in why r << Mw. We choose e, p and r as inputs, and compute the quark 
masses and m ixings in three stages: 

l Round 1) t, b 

l Round 2) c, 8, dbs 

l Round 3) d/s, d/u, end. 
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FIGURE 6: The dual diagram for the four- 
family model of Table 1. Note that the 
dashed links may be exchanged with the 
solid links immediately above. This gives 
rise to models with identical masses but dif- 
ferent mixing angles. 

e”5 
IT-84 
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FIGURE 7: The dual diagram for the 
three-family model of Table 1. The 
triangle pattern explains why r << 
Mw. 

After each round, we eliminate those models in conflict with experiment. The 
legoplots of Figure 8 illustrate this procedure for the first two rounds of the models 
defined in Figure 7. Tables 1 and 2 summarize the predictions of the best models 
that emerge from the scanning procedure. 

As we see from Table 1, the agreement between theory and experiment is good 5A 
for most values of b, c and &. The strange quark mass tends to be about twice the 
popular lower bound of .175f .055 GeV, which is extracted from QCD sum rules. 5l 
The top quark mass takes values between 20 and 35 GeV. 

The masses in Table 1 are renormalized from MG~ assuming Am = 100 MeV. 
The values of the low energy masses are sensitive to this choice. For example, if 
Am were 50 MeV, the four-family predictions for b and t would be reduced to 4.8 
and 26 respectively. ‘1 

In Table 2 we tabulate the predictions for 8/d, ‘d/u and &d for the best models 
of Table 1. The predictions for tied and 8/d are in good agreement with experiment. 
The results for d/u exclude the first two models. The predictions of our favorite 
models are underlined. The 22 GeV top quark mass is on the verge of being excluded 
by experiments at PETRA, so our favorite value for t is 35 GeV. 
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(0) 

(Cl (d) 

FIGURE 8: Legoplots summarizing the first and second rounds of CAT scanning 
for the models of Figure 7. The height of the plot is proportional to the number 
of theories with the indicated mass spectrum. a) Top and bottom  masses, at the 
GUT scale, for the 1299 models considered in the first round of scanning. The 
masses are collected in 1 GeV bins. b) The same models after imposing cuts coming 
from  experiment. Only 22 models survive the first round of cuts. c) Charm and 
strange masses, at the GUT scale, from  the second round of scanning. The charm 
masses are collected in 250 MeV bins, and the strange masses in 100 MeV bins. The 
230,320 models collected here follow from  the 22 models that survived Round 1. d) 
The same models after imposing cuts. The cuts elim inate all but the 920 models 
shown here. 

Conclusions 

We have found a framework which allows us to compute the quark masses and 
m ixing angles in terms of the lepton masses, using simple group theory. We have 
scanned about 10" models, and several hundred give the predictions of Table 2. We 
are presently looking through these models to find those whose Higgs structure is 
appealing, and whose dual Feynman diagrams follow from  simple fam ily symmetries. 

Our favored prediction for the top quark mass is 35 GeV. 
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TABLE 1. Results from the first two rounds of CAT Scanning for the models of 
---._ Figures 6 and 7. The top, bottom and charm masses are evaluated at their respective 

masses, and s is evaluated at 1 GeV. For sake of comparison, the popular values 
for t, 6, c, s and t& are collected in the second row. Each of the subsequent rows 
contains the predictions of various classes of three+ and four-family models. 

Model t(t) b(b) 44 e( 1GeV) 

popu1a.r values t 222 4.6f.2 1.2f.l .175f.055 0.5f.015 

4 - family 29 5.3 1.7 .39 .07 
I ST- '1 29 5.3 1.2 .39 .03 

29 5.3 1.2 .39 .06 
-5 29 5.3 1.2 .39 .05 

3 - family 22 4.8 1.2 .34 .07 
22 4.8 1.2 .34 .06 

7 22 4.8 1.2 
*.a. <11..6 

-7 ;; :*; .34 -34 .05 .04 
. 

:'; 
. .34 .06 

26 4.8 1.5 .34 .07 
26 4.8 1.0 .34 .06 
26 4.8 1.0 .34 .03 
31 6.2 1.2 .26 .06 
35 4.8 2.0 .34 .07 
35 4.8 1.1 .34 .03 
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TABLE 2. Results from the third round of CAT scanning for selected models of 
-- - .- ._ Table 1. The predictions of the best models are underlined. 

t(t) b(b) 

t 2 22 4.6 f .2 

29 5.3 
26 4.8 
35 4.8 
35 4.8 

35 e.8 
35 4.8 
22 4.8 
22 48 - A 
22 4.8 

44 

1.2 f .l 

1.7 
1.5 
2.0 
1.1 
1.1 
1.1 
1.2 
12 A 
1.2 

s( 1GeV) ebs 

,175 f .055 

.39 

.34 

.34 

.34 
& 
.34 
.34 
34 L 
.34 

.05 f .015 

.05 

.07 

.07 

.03 

.03 
.03 
.05 
05 L 
.05 

/ 20&2 1.8 f .2 .23 f .005 

23 
23 
16 
16 

16 
16 
18 
18 - 
18 

- 

d/u e ad 

1.0 
1.0 
1.4 
1.4 
1.4 
1.4 
1.3 
13 A 
1.3 

.23 

.23 

.19 

.25 
23 L 

.19 

.26 
23 L 

.18 
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