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ABSTRACT 

Using conserved vector current and the Weinberg’s first sum rule, it is shown 

that the “missing” 10% of the hadronic 7 decay could come from the axial cur- 

rent. This implies for x --) evy decay, FA(O)/FV(O) = 0.50 f 0.15, and a charged 

pion polarisability a, = 5 X 10-42cm3. 
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-- .- ._ Using the conserved vector current hypothesis’ (CVC) and the experimental 

data on e+e- -+ even number of pions, it is- straightforward-to calculate the 

following branching ration (B.R.) of the hadronic heavy lepton r decay2: 

B.R.(T+ -+ n+r’v) = 24 f 1% 

B.R.(T+ + ~+n+n-r~v) = 5 f 0.5% (1) 

B.R.(T+ + n+3n04 = 1.2 f 0.0% 

where we have assumed B.R.(r + evP) = 17.5% compared with the experimental 

averaged branching ratio3 of 17.5 f 1.4%. 

The B.R.(r -+ n+v) can be calculated without any ambiguity and is equal 

to 11%. These results together with the experimental B.R.(r+ + ~+p’v) = 

5.4 f 1.7% enable us to compute the following quantities 

B.R.(r + one prong) = 77 f 2.4% 

B.R.(T + three prongs) = 10.6 f 2% 

compared with the experimental results, respectively, 86 f 3% and 14%.4 We 

have added to Eq. (2) 2% contribution of strange particle decays (K, K’, Qr, Q2) 

estimated by parton model calculation and we have neglected the A’, 5~ con- 

tribution to 3 and 5 prong events which were shown to be very sma1L5r8 From 

Eq. (2), it is clear that about 10% of the hadronic mode of the one prong type 

is unaccounted for. The origin of this discrepancy could be due to a statistical 

fluctuation and/or an inaccurate measurement of e, p branching ratio. In this 

article, we would like to point out that the 10% missing hadronic event could 

be real and in fact due to the axial matrix element. This is so because of the 

symmetry between axial and vector current metric elements as implied by the 
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---._ Weinberg’s first sum rule: the vector current (via CVC) contributes to a total 

branching ratio of 30 f l%, while the axial current contributes to a known ex- 

perimental branching ratio of 20.8 f 3.4% and hence the missing 10% is due to 

the axial current matrix element. The missing events could come from 37r con- 

tinuum or the existence of a second axial meson resonance A{. As a consequence 

of this analysis, the axial form factor in n -+ eq is calculated. It is found that 

the ratio 7 = F’(O)/Fv(O) = 0.5, which is independent of the nature of the 

missing 10% hadronic events. It agrees with one of the two solutions obtained 

from A -+ eu7 experiments. The charged pion polarisability deduced from this 

calculation agrees in sign and magnitude with that given by a recent indirect 

measurement. 

We begin first by writing down the formula for the hadronic decay rate: 

where 01 and 01 are, respectively, the spin 1 vector and axial spectral functions. 

The spin 0 part of the axial spectral function a,)(s) is given by a similar expression 

and is not written down. From the previous estimation of the decay constant 

of n’( 1300) F,J = 5 - 6 MeV,’ its branching ratio is completely negligible. We 

assume in the remaining of this article that this is also true for the continuum 

contribution to the function au(s) and can be estimated from the quark parton 

model.8 

The first Weinberg sum rule reads: 

J ds WI(S) = 
J 

ds al(s) + 27~ f: (4 
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where fn = 133 MeV. The axial form factor in R + evy decay is given bygplo 
-- .- . 

- 

‘A(O) = & / b-7 
% f (‘Q(8) - v(s)) + frT (5) 

Equations (3)-(5) represent our present knowledge of the low energy axial from 

factor matrix elements. Obviously Eq. (5) is least sensitive to the high energy 

behavior of the spectral function, while Eq. (4) is sensitive because it depends 

on how well the high energy cancellation between the axial and vector form fac- 

tor is. Fortunately Quantum Chromodynamics (QCD) and experimental data on 

e+e- + hadrons provide a reasonable estimate of the region where the asymp- 

totic freedom in QCD applies. We take a reasonable value .s = N = 3 GeV2 

above all the known isovector mesons; above N, 2rr(s) = al(s) + au(a) to a good 

accuracy as can be shown from QCD.8 

Using experimental data on e+e- -+ x+?T- and e+e- + 4n and Eq. (4) we 

obtain s vz,(s)ds = 0.27 GeV2, J q,(e)ds = 0.25 GeV2 and hence 

N 

J dsul(s) = 0.41 GeV2 . 

9m2, 

(6) 

Note that for our value of N, the 47r contribution is as important as the p 

contribution in the Weinberg sum rule. We now demand that the A1 contribution 

in the form of 7rp resonance to Eq. (6) yields approximately an experimental 

branching ratio of 12%. A S-function approximation for an A1 resonance with 

an experimental width of 300 MeV underestimates its effect in the Weinberg sum 

rule by as much as 60% compared with a numerical integration of a current 

algebra model5 which correctly takes into account the appropriate phase space 

factor and finite width of the A1 resonance. If we use, however, the &function 
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approximation in both the Weinberg sum rule Eq. (4) and the expression for 

r -+ Alv decay, Eq. (3), then the error cancels out. For clarity we use the 

b-function approximation. 

Denoting the Al contribution (m& = 1.27 GeV) in al(s) by 2nffmr26(s-s1) 

and requiring it to yield a branching ratio of 12%, we have: 

27r1,2mr2 =0.21 (7) 

(As long as ml is not at the edge of the r decay phase space, this expression is 

insensitive to the value of ml used.) Using this value in the Weinberg sum rule 

Eq. (4), the remaining contribution Aal to the axial spectral function is: 

J Au&) ds = 0.20 GeV2 . (8) 

Equation (8) is the basis for the following phenomenological analysis. In the 

following, we consider its consequence on r + axial + v decay and I -+ evy 

decay. 

(A) r decay 

Because the axial spectral function contribution is given in the integral form, 

it can be either in the form of a second axial vector meson resonance or a con- 

tinuum. 

a) Second Axial Vector Meson Resonance A 1’: It is not out of the question to 

consider the possibility of the existence of a second axial resonance of higher mass 

than the well-known Al resonance. This is so because there are two strange axial 

vector mesons Qr (1.28 GeV) and Q2 (1.40 GeV). Using the symmetry argument, 

we expect to have a second Al resonance, Ai, with essentially the same mass as 

Q2. (We can ignore the difference between up, down and strange quark masses.) 
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-- - .- ._ Denoting respectively the decay constant and mass of this second resonance as 

f2 and m2 = 1.4 GeV, using Eq. (8) we have - - 

2n firnF2 = 0.20 GeV2 (9) 

which is the same value as that of Al resonance, Eq. (7). The r-decay branching 

ratio for this second resonance is 8% which is very near to the missing 10% 

of the hadronic events. If the experimental data on one prong is correct, this 

resonance must decay mostly to one prong events (the neutral modes which are 

not detected could come from 7r”, q”, KL). Likely candidates for the decay modes 

are qqa+ for Kri’n which decays two thirds of the time as one prong events. 

b) Continuum contribution. The continuum contribution to al(s) could be in 

the form of 3n or 57r.. . Using current algebra, the 5n contribution was found 

to be very small.5 The 3n contribution could be in the form of a r “a” where 

“a” is a correlated 2n, i = OS state. In this case I’(7 -+ n+n+7r-~)/I’(r + 

n+n”noy) = 2 which is not what we need to account for the “missing” 10% 

one prong events. We cannot say however in general, what the value of this 

ratio is (continuum events could also come from qr/a and KKlr). Assuming the 

axial current continuum starts at se = 1.4 GeV2 with the value given by &CD, 

i.e. parton model, its branching ratio is 7.5% which is what we need. However, 

within the wisdom of the QCD sum rule and phenomenology this choice of 80 is 

rather low; it should be higher than the mass of the lowest axial vector meson 

resonance 90 2 1.7 GeV2; in this case its branching ratio would be 4.5% which 

would not present a convincing argument for the missing events. 

(B) A --) ev7 Decay 

The remainder of this note is devoted to study the implication of Eq. (8) on 

the axial form factor in n + euq and hence the pion polarisability. We begin first 
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by showing, to a good degree of accuracy, the 2n contribution to the integral of 

the vector spectral function trzlr(s) cancels out the (?) term in-Eq. (5). Because 

each of these two terms is large (its magnitude is about 2.4 times larger than 

Fv(0)). We cannot use experimental data on (r2) which has a large uncertainty. 

Instead, using analyticity and unitarity we can show that the integral of qJs) 

and (r2) are closely related and cancelled out. Experimental data on the pion 

form factor in the time-like region and, to a lesser degree, the space-like pion 

form factor can be used to control approximations and assumptions made. 

There is confusion in the literature on the question of whether to use sub- 

tracted or unsubtracted dispersion relations for the pion form factor. Of course, 

we must use the subtracted dispersion relation. But it is important to require 

that the time-like pion form factor must satisfy the final state theorem, which 

states that below the inelastic threshold, a condition which is practically valid 

for s < 1 GeV2, the phase of the pion form factor is the same as the P wave 

pion pion phase shift. Once this condition was imposed together with the exper- 

imental P wave phase shift, one could not have the flexibility associated with the 

question of subtracted or unsubtracted dispersion relation as frequently discussed 

in the literature. 

There are two steps involved in showing the cancellation. The first one con- 

sists in showing the validity of the one pole formula of Frazer-Fulco” or the 

Gounaris-Sakurai12 formula with parameters adjusted to give the observed p 

mass and width. To do this, we can use the crossing symmetric P wave Roy’s 

equation13 to study the P wave phase shift. Using experimental data on the S 

and P waves in Roy’s equation, it is straightforward to show that in the low 

energy region, and in the vicinity of the p resonance, the correction due to the 
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-- - .- ._ 
left-hand cut is almost cancelled out by the appropriate subtraction constants 

and amounts to a correction of only a few degrees phase shift. Hence we can 

write (s = 4(u + mz)): 

FM = 
up + rnz 1 - 7 h(-rnz) ( > 

u,-u+7uh(u)-i7 .-& d- 
9w (10) 

where h(u) is the well-known logarithm function11t12; the term multiplied with 

g(u) is the usual pion form factor formula, and g(u) simulates the inelastic effect 

and possibly the polynomial ambiguity, with g(0) = 1. Equation (10) provides 

an excellent description of pion factor data -4GeV2 5 s 5 1.8 GeV2.14 From 

experimental data, we have .sP = 25.8mz and 7 = 0.184 (sp is defined such that 

the P wave RI phase shift is equal to 90” at 770 MeV). Using the definition of 

the pion radius 

and ~124 s): 

m ds J 7 ?J2n(5) =&J” $(l-+)3’21F,(s)r. 
4m2, 4m2, 

Upon comparing Eqs. (lla)-( llb), using Eq. (10) and the fact that the integrand 

is peaked at the p mass while g(s) is a slowly varying function of s, we have: 

($ - $$ J f v243) = ($( 1 - &p)g(sp)) = -0.07(;) (12) % % 

where (r2) = 0.21 mi2, and g(sP) = 1.10. 



It remains to calculate the 47r contribution to VI(B), Al and Ai or continuum 

contribution to the right-hand side of Eq. (5).-Using Eqs. (7),-(g) and (12) and 

experimental data on e+e- + 4n, we have: 

f-A(O) = (0.021+ 0.017 - 0.020 - 0.005) m,’ = 0.013 m,’ (13) 

where the first term on the right-hand side represents the Al contribution, the 

second term the Ai contribution (this value would change slightly if we used 

instead the continuum contribution), and the third term the 4n state, and the 

last term comes from Eq. (12). Using CVC, Fv(O) = 0.0265 m;’ and hence 

finally 

y f FA(O)/FV(O) = 0.5 (14 

with an estimated uncertainty off 0.15 which comes mostly from the uncertainty 

of the time-like pion form factor at the p peak. The experimental values for 7 

are 0.44f 0.12 or -2.36f0.12 l5 and 0.26 or -1.98.16 The negative solution for 

7 is of course ruled out by our calculation. The pion polarisability arA calculated 

from Our Value Of FA(O) is:” 

a, = e2FA(o) 

m& 
= 5 x 10-42Cm3 (15) 

which is consistent with that obtained by an indirect measurement using the 

reaction n-A + ~~A7.l~ 

To end this note, we should like to point out that an unusually large second 

class current decay r --+ ?rqu could also account for the “missing” 1 prong events. 

While this possibility is unlikely, it is nevertheless worthwhile to investigate ex- 

perimentally this question.rgB2’ 
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