May 1984

HADRONIC τ DECAY, PION RADIATIVE DECAY AND PION POLARISABILITY*

Tran N. Truong
Centre de Physique Théorique de l'Ecole Polytechnique Plateau de Palaiseau - 91128 Palaiseau - Cedex - FRANCE and
Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

Abstract

Using conserved vector current and the Weinberg's first sum rule, it is shown that the "missing" 10% of the hadronic τ decay could come from the axial current. This implies for $\pi \rightarrow e \nu \gamma$ decay, $F_{A}(0) / F_{V}(0)=0.50 \pm 0.15$, and a charged pion polarisability $\alpha_{\pi}=5 \times 10^{-42} \mathrm{~cm}^{3}$.

Submitted to Physical Review D

[^0]Using the conserved vector current hypothesis ${ }^{1}$ (CVC) and the experimental data on $e^{+} e^{-} \rightarrow$ even number of pions, it is straightforward to calculate the following branching ration (B.R.) of the hadronic heavy lepton τ decay 2 :

$$
\begin{align*}
& B . R .\left(\tau^{+} \rightarrow \pi^{+} \pi^{0} \nu\right)=24 \pm 1 \% \\
& B . R .\left(\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} \pi^{0} \nu\right)=5 \pm 0.5 \% \tag{1}\\
& \text { B.R. }\left(\tau^{+} \rightarrow \pi^{+} 3 \pi^{0} \nu\right)=1.2 \pm 0.0 \%
\end{align*}
$$

where we have assumed B.R. $(\tau \rightarrow e \nu \bar{\nu})=17.5 \%$ compared with the experimental averaged branching ratio ${ }^{3}$ of $17.5 \pm 1.4 \%$.

The B.R. $\left(\tau \rightarrow \pi^{+} \nu\right)$ can be calculated without any ambiguity and is equal to 11%. These results together with the experimental B.R. $\left(\tau^{+} \rightarrow \pi^{+} \rho^{0} \nu\right)=$ $5.4 \pm 1.7 \%$ enable us to compute the following quantities

$$
\begin{align*}
& B . R .(\tau \rightarrow \text { one prong })=77 \pm 2.4 \% \\
& B . R .(\tau \rightarrow \text { three prongs })=10.6 \pm 2 \% \tag{2}
\end{align*}
$$

compared with the experimental results, respectively, $86 \pm 3 \%$ and $14 \% .^{4} \mathrm{We}$ have added to Eq. (2) 2% contribution of strange particle decays (K, K^{*}, Q_{1}, Q_{2}) estimated by parton model calculation and we have neglected the $\pi^{\prime}, 5 \pi$ contribution to 3 and 5 prong events which were shown to be very small. ${ }^{5,6}$ From Eq. (2), it is clear that about 10% of the hadronic mode of the one prong type is unaccounted for. The origin of this discrepancy could be due to a statistical fluctuation and/or an inaccurate measurement of e, μ branching ratio. In this article, we would like to point out that the 10% missing hadronic event could be real and in fact due to the axial matrix element. This is so because of the symmetry between axial and vector current metric elements as implied by the

Weinberg's first sum rule: the vector current (via CVC) contributes to a total branching ratio of $30 \pm 1 \%$, while the axial current contributes to a known experimental branching ratio of $20.8 \pm 3.4 \%$ and hence the missing 10% is due to the axial current matrix element. The missing events could come from 3π continuum or the existence of a second axial meson resonance $\boldsymbol{A}_{1}^{\prime}$. As a consequence of this analysis, the axial form factor in $\pi \rightarrow e \nu \gamma$ is calculated. It is found that the ratio $\gamma=F_{A}(0) / F_{V}(0)=0.5$, which is independent of the nature of the missing 10% hadronic events. It agrees with one of the two solutions obtained from $\pi \rightarrow e \nu \gamma$ experiments. The charged pion polarisability deduced from this calculation agrees in sign and magnitude with that given by a recent indirect measurement.

We begin first by writing down the formula for the hadronic decay rate:

$$
\begin{equation*}
\frac{\Gamma\left[\tau \rightarrow\binom{V}{A} \nu\right]}{\Gamma(\tau \rightarrow e \nu D)}=\frac{6 \pi}{m_{\tau}^{2}} \int_{m_{\pi}^{2}}^{m_{\tau}^{2}} d s\left(1-\frac{s}{m_{\tau}^{2}}\right)^{2}\left(1+\frac{2 s}{m_{\tau}^{2}}\right)\binom{v_{1}(s)}{a_{1}(s)} \tag{3}
\end{equation*}
$$

where v_{1} and a_{1} are, respectively, the spin 1 vector and axial spectral functions. The spin 0 part of the axial spectral function $a_{0}(s)$ is given by a similar expression and is not written down. From the previous estimation of the decay constant of $\pi^{\prime}(1300), F_{\pi^{\prime}}=5-6 \mathrm{MeV},{ }^{6}$ its branching ratio is completely negligible. We assume in the remaining of this article that this is also true for the continuum contribution to the function $a_{0}(s)$ and can be estimated from the quark parton model. ${ }^{8}$

The first Weinberg sum rule reads:

$$
\begin{equation*}
\int d s v_{1}(s)=\int d s a_{1}(s)+2 \pi f_{\pi}^{2} \tag{4}
\end{equation*}
$$

where $f_{\pi}=133 \mathrm{MeV}$. The axial form factor in $\pi \rightarrow e \nu \gamma$ decay is given by ${ }^{9,10}$

$$
\begin{equation*}
F_{A}(0)=\frac{1}{2 \pi f_{\pi}} \int \frac{d s}{s}\left(a_{1}(s)-v_{1}(s)\right)+f_{\pi} \frac{\left\langle r^{2}\right\rangle}{3} \tag{5}
\end{equation*}
$$

Equations (3)-(5) represent our present knowledge of the low energy axial from factor matrix elements. Obviously Eq. (5) is least sensitive to the high energy behavior of the spectral function, while Eq. (4) is sensitive because it depends on how well the high energy cancellation between the axial and vector form factor is. Fortunately Quantum Chromodynamics (QCD) and experimental data on $e^{+} e^{-} \rightarrow$ hadrons provide a reasonable estimate of the region where the asymptotic freedom in QCD applies. We take a reasonable value $s=N=3 \mathrm{GeV}^{2}$ above all the known isovector mesons; above $N, v_{1}(s)=a_{1}(s)+a_{0}(s)$ to a good accuracy as can be shown from $\mathrm{QCD} .{ }^{8}$

Using experimental data on $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$and $e^{+} e^{-} \rightarrow 4 \pi$ and Eq. (4) we obtain $\int v_{2 \pi}(s) d s=0.27 \mathrm{GeV}^{2}, \int v_{4 \pi}(s) d s=0.25 \mathrm{GeV}^{2}$ and hence

$$
\begin{equation*}
\int_{\theta_{m}^{2}}^{N} d s a_{1}(s)=0.41 G e V^{2} \tag{6}
\end{equation*}
$$

Note that for our value of N, the 4π contribution is as important as the ρ contribution in the Weinberg sum rule. We now demand that the A_{1} contribution in the form of $\pi \rho$ resonance to Eq. (6), yields approximately an experimental branching ratio of 12%. A δ-function approximation for an A_{1} resonance with an experimental width of 300 MeV underestimates its effect in the Weinberg sum rule by as much as $\mathbf{6 0 \%}$ compared with a numerical integration of a current algebra model ${ }^{5}$ which correctly takes into account the appropriate phase space factor and finite width of the A_{1} resonance. If we use, however, the δ-function
approximation in both the Weinberg sum rule Eq. (4) and the expression for $\tau \rightarrow A_{1} \nu$ decay, Eq. (3), then the error cancels out. For ctarity we use the δ-function approximation.

Denoting the A_{1} contribution ($m_{A_{1}}=1.27 \mathrm{GeV}$) in $a_{1}(s)$ by $2 \pi f_{1}^{2} m_{1}^{-2} \delta\left(s-s_{1}\right)$ and requiring it to yield a branching ratio of 12%, we have:

$$
\begin{equation*}
2 \pi f_{1}^{2} m_{1}^{-2}=0.21 \tag{7}
\end{equation*}
$$

(As long as m_{1} is not at the edge of the τ decay phase space, this expression is insensitive to the value of m_{1} used.) Using this value in the Weinberg sum rule Eq. (4), the remaining contribution $\Delta a_{1}(s)$ to the axial spectral function is:

$$
\begin{equation*}
\int \Delta a_{1}(s) d s=0.20 G e V^{2} \tag{8}
\end{equation*}
$$

Equation (8) is the basis for the following phenomenological analysis. In the following, we consider its consequence on $\tau \rightarrow$ axial $+\nu$ decay and $\pi \rightarrow e \nu \gamma$ decay.
(A) τ decay

Because the axial spectral function contribution is given in the integral form, it can be either in the form of a second axial vector meson resonance or a continuum.
a) Second Axial Vector Meson Resonance A_{1}^{\prime} : It is not out of the question to consider the possibility of the existence of a second axial resonance of higher mass than the well-known A_{1} resonance. This is so because there are two strange axial vector mesons $Q_{1}(1.28 \mathrm{GeV})$ and $Q_{2}(1.40 \mathrm{GeV})$. Using the symmetry argument, we expect to have a second A_{1} resonance, A_{1}^{\prime}, with essentially the same mass as Q2. (We can ignore the difference between up, down and strange quark masses.)

Denoting respectively the decay constant and mass of this second resonance as f_{2} and $m_{2}=1.4 \mathrm{GeV}$, using Eq. (8), we have

$$
\begin{equation*}
2 \pi f_{2}^{2} m_{2}^{-2}=0.20 \mathrm{GeV}^{2} \tag{9}
\end{equation*}
$$

which is the same value as that of A_{1} resonance, Eq. (7). The τ-decay branching ratio for this second resonance is 8% which is very near to the missing 10% of the hadronic events. If the experimental data on one prong is correct, this resonance must decay mostly to one prong events (the neutral modes which are not detected could come from π^{0}, η^{0}, K_{L}. Likely candidates for the decay modes are $\eta \eta \pi^{+}$for $K \bar{K} \pi$ which decays two thirds of the time as one prong events.
b) Continuum contribution. The continuum contribution to $a_{1}(s)$ could be in the form of 3π or $5 \pi \ldots$ Using current algebra, the 5π contribution was found to be very small. ${ }^{5}$ The 3π contribution could be in the form of a π " σ " where " σ " is a correlated $2 \pi, i=0 S$ state. In this case $\Gamma\left(\tau \rightarrow \pi^{+} \pi^{+} \pi^{-} \nu\right) / \Gamma(\tau \rightarrow$ $\left.\pi^{+} \pi^{0} \pi^{0} \nu\right)=2$ which is not what we need to account for the "missing" 10% one prong events. We cannot say however in general, what the value of this ratio is (continuum events could also come from $\eta \eta \pi$ and $K K \pi$). Assuming the axial current continuum starts at $s_{0}=1.4 \mathrm{GeV}^{2}$ with the value given by QCD , i.e. parton model, its branching ratio is 7.5% which is what we need. However, within the wisdom of the QCD sum rule and phenomenology this choice of s_{0} is rather low; it should be higher than the mass of the lowest axial vector meson resonance $s_{0} \geq 1.7 \mathrm{GeV}^{2}$; in this case its branching ratio would be 4.5% which would not present a convincing argument for the missing events.
(B) $\pi \rightarrow e \nu \gamma$ Decay

The remainder of this note is devoted to study the implication of Eq. (8) on the axial form factor in $\pi \rightarrow e \nu \gamma$ and hence the pion polarisability. We begin first
by showing, to a good degree of accuracy, the 2π contribution to the integral of the vector spectral function $v_{2 \pi}(s)$ cancels out the $\left\langle r^{2}\right\rangle$ term in-Eq. (5). Because each of these two terms is large (its magnitude is about 2.4 times larger than $\left.F_{V}(0)\right)$. We cannot use experimental data on $\left\langle r^{2}\right\rangle$ which has a large uncertainty. Instead, using analyticity and unitarity we can show that the integral of $v_{2 \pi}(s)$ and $\left\langle r^{2}\right\rangle$ are closely related and cancelled out. Experimental data on the pion form factor in the time-like region and, to a lesser degree, the space-like pion form factor can be used to control approximations and assumptions made.

There is confusion in the literature on the question of whether to use subtracted or unsubtracted dispersion relations for the pion form factor. Of course, we must use the subtracted dispersion relation. But it is important to require that the time-like pion form factor must satisfy the final state theorem, which states that below the inelastic threshold, a condition which is practically valid for $s \leq 1 G e V^{2}$, the phase of the pion form factor is the same as the P wave pion pion phase shift. Once this condition was imposed together with the experimental P wave phase shift, one could not have the flexibility associated with the question of subtracted or unsubtracted dispersion relation as frequently discussed in the literature.

There are two steps involved in showing the cancellation. The first one consists in showing the validity of the one pole formula of Frazer-Fulco ${ }^{11}$ or the Gounaris-Sakurai ${ }^{12}$ formula with parameters adjusted to give the observed ρ mass and width. To do this, we can use the crossing symmetric P wave Roy's equation ${ }^{13}$ to study the P wave phase shift. Using experimental data on the S and P waves in Roy's equation, it is straightforward to show that in the low energy region, and in the vicinity of the ρ resonance, the correction due to the
left-hand cut is almost cancelled out by the appropriate subtraction constants and amounts to a correction of only a few degrees phase shift. Hence we can write $\left(s=4\left(\nu+m_{\pi}^{2}\right)\right)$:

$$
\begin{equation*}
F_{\pi}(\nu)=\frac{\nu_{\rho}+m_{\pi}^{2}\left(1-\gamma h\left(-m_{\pi}^{2}\right)\right)}{\nu_{\rho}-\nu+\gamma \nu h(\nu)-i \gamma \sqrt{\frac{\nu^{3}}{\nu+m_{\pi}^{2}}}} g(\nu) \tag{10}
\end{equation*}
$$

where $h(\nu)$ is the well-known logarithm function ${ }^{11,12}$; the term multiplied with $g(\nu)$ is the usual pion form factor formula, and $g(\nu)$ simulates the inelastic effect and possibly the polynomial ambiguity, with $g(0)=1$. Equation (10) provides an excellent description of pion factor data $-4 \mathrm{GeV}^{2} \leq s \leq 1.8 \mathrm{GeV}^{2} .{ }^{14}$ From experimental data, we have $s_{\rho}=25.8 m_{\pi}^{2}$ and $\gamma=0.184$ (s_{ρ} is defined such that the P wave $\pi \pi$ phase shift is equal to 90° at 770 MeV). Using the definition of the pion radius

$$
\begin{equation*}
\frac{1}{6}\left\langle r^{2}\right\rangle=\frac{1}{\pi} \int_{3 m_{\pi}^{2}}^{\infty} \frac{d s}{s^{2}} \operatorname{Im} F_{\pi}(s) \tag{11a}
\end{equation*}
$$

and $v_{2 \pi}(s)$:

$$
\begin{equation*}
\int_{4 m_{\pi}^{2}}^{\infty} \frac{d s}{s} v_{2 \pi}(s)=\frac{1}{12 \pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d s}{s}\left(1-\frac{4 m_{\pi}^{2}}{s}\right)^{3 / 2}\left|F_{\pi}(s)\right|^{2} \tag{11b}
\end{equation*}
$$

Upon comparing Eqs. (11a)-(11b), using Eq. (10) and the fact that the integrand is peaked at the ρ mass while $g(s)$ is a slowly varying function of s, we have:

$$
\begin{equation*}
\left\langle\frac{r^{2}}{3}\right\rangle-\frac{1}{2 \pi f_{\pi}^{2}} \int \frac{d s}{s} v_{2 \pi}(s)=\left\langle\frac{r^{2}}{3}\right\rangle\left(1-\frac{1}{24 \pi f_{\pi}^{2}}\left(\frac{s_{\rho}}{\gamma}\right) g\left(s_{\rho}\right)\right)=-0.07\left\langle\frac{r^{2}}{3}\right\rangle \tag{12}
\end{equation*}
$$

where $\left\langle r^{2}\right\rangle=0.21 m_{\pi}^{-2}$, and $g\left(s_{\rho}\right)=1.10$.

It remains to calculate the 4π contribution to $v_{1}(s), A_{1}$ and A_{1}^{\prime} or continuum contribution to the right-hand side of Eq. (5). Using Eqs. (7),-(9) and (12) and experimental data on $e^{+} e^{-} \rightarrow 4 \pi$, we have:

$$
\begin{equation*}
F_{A}(0)=(0.021+0.017-0.020-0.005) m_{\pi}^{-1}=0.013 m_{\pi}^{-1} \tag{13}
\end{equation*}
$$

where the first term on the right-hand side represents the $\boldsymbol{A}_{\mathbf{1}}$ contribution, the second term the A_{1}^{\prime} contribution (this value would change slightly if we used instead the continuum contribution), and the third term the 4π state, and the last term comes from Eq. (12). Using CVC, $F_{V}(0)=0.0265 m_{\pi}^{-1}$ and hence finally

$$
\begin{equation*}
\gamma \equiv F_{A}(0) / F_{V}(0)=0.5 \tag{14}
\end{equation*}
$$

with an estimated uncertainty of ± 0.15 which comes mostly from the uncertainty of the time-like pion form factor at the ρ peak. The experimental values for γ are 0.44 ± 0.12 or $-2.36 \pm 0.12{ }^{15}$ and 0.26 or $-1.98 .^{16}$ The negative solution for γ is of course ruled out by our calculation. The pion polarisability α_{π} calculated from our value of $F_{A}(0)$ is: ${ }^{17}$

$$
\begin{equation*}
\alpha_{\pi}=\frac{e^{2} F_{A}(0)}{m_{\pi} f_{\pi}}=5 \times 10^{-42} \mathrm{~cm}^{3} \tag{15}
\end{equation*}
$$

which is consistent with that obtained by an indirect measurement using the reaction $\pi^{-} A \rightarrow \pi^{-} A \gamma .{ }^{18}$

To end this note, we should like to point out that an unusually large second class current decay $\tau \rightarrow \pi \eta \nu$ could also account for the "missing" 1 prong events. While this possibility is unlikely, it is nevertheless worthwhile to investigate experimentally this question. ${ }^{19-20}$

It is a pleasure to thank G. Trilling for useful discussions on the heavy lepton τ decay, and the SLAC Theory Group for hospitality.

REFERENCES

1. R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 103 (1958).
2. Experimental data on $e^{+} e^{-} \rightarrow 2 \pi$ and $e^{+} e^{-} \rightarrow 4 \pi$ are given by A. Quenzer et al., Phys. Lett. 76B, 512 (1978) and G. Cosme et al., Nucl. Phys. B152, 215 (1979). The corresponding formulae for calculating the branching ratios for decay are given by F. J. Gilman and D. H. Miller, Phys. Rev. D17, 1846 (1978) and C. Roiesnel, Thèse de 3ème cycle Université Paris Sud. (1978), unpublished.
3. Review of Particle Properties, Phys. Lett. 111B, (1982).
4. G. H. Trilling-Talk presented at "21st International Conference on High Energy Physics, Paris 1982". Cello Collaboration (DESY preprint 84-008).
5. T. N. Pham, C. Roiesnel and Tran N. Truong, Phys. Lett. 78B, 623 (1878).
6. Tran N. Truong, Phys. Lett. 117B, 109 (1982).
7. A possible existence of a large CVC violation decay mode to account for the 10% missing one prong event cannot be excluded á priori and should be carefully checked.
8. E. G. Floratos, S. Narison and E. de Rafael, Nucl. Phys. B155, 115 (1979).
9. T. Das, V. S. Mathur and S. Okubo, Phys. Rev. Lett. 19, 859 (1967). Riazuddin and Fayyazuddin, Phys. Rev. 171, 1428 (1968).
10. For a similar calculation for $K \rightarrow e \nu \gamma$ decay, see K. Milton and W. Wada, Phys. Lett. 98B, 367 (1981).
11. W. R. Frazer and J. R. Fulco, Phys. Rev. Lett. 2, 365 (1959).
12. G. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21, 244 (1968).
13. S. M. Roy, Phys. Lett. 36B, 353 (1971).
14. Costa de Beauregard et al., Phys. Lett. 67B, 213 (1977). A. Quenzer et al., Phys. Lett. 76B, 512 (1978).
15. A. Stetz et al., Nucl. Phys. B138, 285 (1978).
16. P. Depommier et al., Phys. Lett. 7, 285 (1963).
17. For a review see M. V. Terentév, Sov. Phys. Usp. 17, 20 (1874).
18. Y. M. Antipov et al., Phys. Lett. 121B, 445 (1983).
19. C. Leroy and J. Pestiau, Phys. Lett. 72B, 398 (1978).
20. S. Tisserant and Tran N. Truong, Phys. Lett. 115B, 264 (1982).

[^0]: * This work was supported in part by the Department of Energy under Contract Number DE-AC03-76SF00515.

